1 Algebraic function fields

1.1. Consider extensions $\mathbb{R} \subseteq \mathbb{R}(x) \subseteq \mathbb{C}(x)$
(a) Prove that $\mathbb{R}(x)$ and $\mathbb{C}(x)$ are AFFs over \mathbb{R},
(b) compute the field of constants $\tilde{\mathbb{R}}$ of the $\operatorname{AFF} \mathbb{R}(x)$,
(c) compute the field of constants $\tilde{\mathbb{R}}$ of the $\operatorname{AFF} \mathbb{C}(x)$,
(d) find a transcendental element $\alpha \in \mathbb{C}(x)$ such that $[\mathbb{C}(x): \mathbb{R}(\alpha)]$ is minimal.
(a) It is enough to take the transcendental element x and compute using Proposition 2.3

$$
[\mathbb{C}(x): \mathbb{R}(x)]=[\mathbb{C}: \mathbb{R}]=2 \text { and }[\mathbb{R}(x): \mathbb{R}(x)]=1
$$

(b) By the proof of Lemma 2.6 we know that $[\tilde{\mathbb{R}}: \mathbb{R}] \leq[\mathbb{R}(x): \mathbb{R}(x)]=1$, so $\tilde{\mathbb{R}}=\mathbb{R}$.
(c) Using (a) and the argument from (b) we can see that $[\tilde{\mathbb{R}}: \mathbb{R}] \leq[\mathbb{C}(x): \mathbb{R}(x)]=2$.

As $\mathbb{C} \subseteq \tilde{\mathbb{R}}$ and $[\mathbb{C}: \mathbb{R}]=2$ we obtain that $\tilde{\mathbb{R}}=\mathbb{C}$.
(d) We know that $[\mathbb{C}(x): \mathbb{R}(x)]=2$. Since

$$
[\mathbb{C}(x): \mathbb{R}(\alpha)] \geq[\tilde{\mathbb{R}}(\alpha)): \mathbb{R}(\alpha)]=[\tilde{\mathbb{R}}: \mathbb{R}]=2
$$

by Proposition 2.3, and $[\mathbb{C}(x): \mathbb{R}(x)]=2$, the element $\alpha=x$ is a transcendental element with a minimal value of $[\mathbb{C}(x): \mathbb{R}(\alpha)]$.
1.2. Let $K \subseteq U$ be a finite degree extension. Prove that $U(x)$ is an AFF over K with the field of constants $\tilde{K}=U$.

Applying Proposition 2.3 we can compute $[U(x): K(x)]=[U: K]<\infty$ again, where x is transcendental and $U \subseteq \tilde{K}$. As

$$
[U: K] \leq[\tilde{K}: K]=[\tilde{K}(x): K(x)] \leq[U(x): K(x)]=[U: K]
$$

it holds $\tilde{K}=U$.
1.3. Prove that $\mathbb{Q}(\sqrt[3]{5}, \pi)$ is an AFF over \mathbb{Q} and determine the field of constants $\tilde{\mathbb{Q}}$.

Observe that $\mathbb{Q}(\sqrt[3]{5}, x) \mathbb{Q}(\sqrt[3]{5})(x) \cong \mathbb{Q}(\sqrt[3]{5}, \pi)$. Now it remains to apply 1.2 , which implies that $\tilde{\mathbb{Q}}=\mathbb{Q}(\sqrt[3]{5})$.
1.4. Let $g \in K[x, y]$ be an irreducible polynomial, $R:=K[x, y] /(g), L$ be a fraction field of R. Prove that L is an AFF over K.

Put $\xi:=x+(g)$ and $v:=y+(g)$. Then $R=K[\xi, v]$ and $L=K(\xi, v)$. Assume to contrary that ξ, v are both algebraic over K, then $[K(\xi, v): K]<\infty$, hence $R=$ $K[\xi, v]=K(\xi, v)=L$. Note that K-algebras $K[x]$ and $K[y]$ are infinitely dimensional as K-spaces, which implies $(g) \cap K[x] \neq 0$ and $(g) \cap K[y] \neq 0$. Then $g \in K^{*}$, a contradiction.

Since either ξ or v is transcendental over K. Let w.l.o.g. $\alpha:=\xi$ transcendental, then $g(\alpha, v)=0$, and so $[L: K(\alpha)]<\infty$. We have proved that L is an AFF over K.

2 Local rings

2.1. Prove that each valuation ring is uniserial.

Assume to contrary that R is a non-uniserial VR , so there exists a pair of ideals I, J such that $I \nsubseteq J$ and $J \nsubseteq I$, Hence $\exists a \in I \backslash J$ and $\exists b \in J \backslash I$. Since R is a VR, either $\frac{a}{b} \in R$, which implies $a=b \cdot \frac{a}{b} \in J$ or $\frac{b}{a} \in R$, which implies $b=a \cdot \frac{b}{a} \in I$, a contardiction.
2.2. Let p be a prime number and define $\mathbb{Z}_{(p)}=\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z}, b \in \mathbb{N}, p\right.$ does not divide $\left.b\right\}$ is a VR.

It satisfies to observe that arbitrary non-zero element of \mathbb{Q} (which is the field od fractions of \mathbb{Z} and so of every subring of \mathbb{Q}) is of the form $\alpha=\frac{a}{b} \cdot p^{i}$ for $a, b, i \in \mathbb{Z}$ with a, b non-divisible by p. It imples that $\alpha \in \mathbb{Z}_{(p)}$ whenever $i \geq 0$, and $\alpha^{-1} \in \mathbb{Z}_{(p)}$ if $i \leq 0$.
2.3. Let $R_{x, y}=\left\{\left.\frac{r}{s} \in \mathbb{R}(x, y) \right\rvert\, r, s \in \mathbb{R}[x, y], s(0,0) \neq 0\right\} \subseteq \mathbb{R}(x, y)$. Prove that
(a) $R_{x, y}$ is local,
(b) $R_{x, y}$ is not uniserial,
(c) $R_{x, y}$ is not valuation.
(a) It is enough to note that (x, y) is a maximal ideal of $R_{x, y}$ and that
$R_{x, y} \backslash(x, y)=\left\{\left.\frac{c+a x+b y}{s} \in \mathbb{R}(x, y) \right\rvert\, c \in \mathbb{R}^{*}, a, b, s \in \mathbb{R}[x, y]: s(0,0) \neq 0\right\}=R_{x, y}^{*}$
since $[c+a x+b y](0,0)=c \neq 0$.
(b) As $(x) \nsubseteq(y)$ and $(y) \nsubseteq(x), R_{x, y}$ is not uniserial.
(c) It follows from (b) because every valuation ring is uniserial by 2.1, nevertheless, it is clear that both $\frac{x y}{x+y}, \frac{x+y}{x y} \notin R_{x, y}$.
2.4. Let (R, M) be a local ring (not necessary a domain) with $M=(t)$ for $t \neq 0$ and $A=\bigcap_{i} M^{i}=\bigcap_{i}\left(t^{i}\right)$. Prove that for each $s \in R \backslash A$ there exist unique $i \geq 0$ and some (not neceessary unique) $u \in R^{*}$ such that $s=t^{i} u$,

The proof of existence is the same as in Proposition 3.2 and we slightly modify the original proof of uniqueness:

Let $t^{i} u=t^{j} v$ for $i \geq j$ and $u, v \in R^{*}$, then $t^{j}\left(t^{i-j}-u^{-1} v\right)=0$. If $i>j$ then $t^{i-j}-u^{-1} v \notin M$, hence $t^{i-j}-u^{-1} v \in R^{*}$, which implies $t^{j}=0$, a contradiction. Thus $i=j$ and we are done.
08.03.
2.5. Let (R, M) be a local domain with $M=(t)$ for $t \neq 0$ and $A=\bigcap_{i} M^{i}=\bigcap_{i}\left(t^{i}\right)$. Prove that $A M=A$.

If there exists i for which $M^{i}=M^{i+1}$ then $A=M^{i}$, hence $A M=M^{i+1}=A$.
Let $a \in A=\bigcap_{i} M^{i}$ then for each $i>0$ there exists $a_{i} \in M^{i}$ such that $a=a_{i} t$, since $R \backslash M=R^{*}$. As $a_{i} t=a=a_{j} t$, we get $\left(a_{i}-a_{j}\right) t=0$, which implies $a_{0}:=a_{i}=a_{j}$ for each $i, j>0$. Hence $a=a_{0} t$ for $a_{0} \in \bigcap_{i} M^{i}=A$.

3 Discrete valuation rings

3.1. Let R be a noetherian ring and $p \in R$ a prime element. Prove that the localization $R_{(p)}$ is a DVR with the NDV ν_{p}.

By Example $4.1 \nu_{p}$ is a NDV of the field od fractions K of R and it remains to observe that

$$
R_{(p)}=\left\{\left.\frac{a}{b} \in K \right\rvert\, a \in R, b \in R \backslash(p)\right\}=\left\{\left.\frac{a}{b} \in K \right\rvert\, \nu(a) \geq 0, \nu(b)=0\right\}=\nu_{p}^{-1}(\langle 0, \infty\rangle) .
$$

3.2. Let $S=\mathbb{F}_{2}[X]_{\left(x^{2}+x+1\right)}$ be a localization of $\mathbb{F}_{2}[X]$ in $\left(x^{2}+x+1\right)$.
(a) Show that S is DVR and find all DV ν such that $S=\nu^{-1}(\langle 0, \infty\rangle)$,
(b) if ν is NDV determining S, compute $\nu\left(x^{5}\right)$, and $\nu\left(\frac{x^{4}+x^{2}+x}{(x+1)^{5}\left(x^{2}+x+1\right)^{3}}\right)$,
(c) if ν is NDV determining S, M is the maximal ideal of $S, a \in M^{2} \backslash M^{3}$ and $b \in M^{3} \backslash M^{4}$, compute $\nu(a b)$ and $\nu(a+b)$.
(a) S is DVR by 3.1 and all DV determining S are of the form $k \nu_{x^{2}+x+1}$ for an arbitrary natural k by Lemma 4.4.
(b) As $\nu=\nu_{x^{2}+x+1}$ by Lemma 4.4 and $x^{2}+x+1$ does not divide x, we obtain that $\nu\left(x^{5}\right)=5 \nu(x)=0$. Similarly, $\nu\left(\frac{x^{4}+x^{2}+x}{(x+1)^{5}\left(x^{2}+x+1\right)^{3}}\right)=$

$$
=\nu(x)+\nu\left(x^{3}+x+1\right)-5 \nu(x+1)-3 \nu\left(x^{2}+x+1\right)=0+0-0-3=-3 .
$$

(c) Since $M=(t)$ for a uniformizing element t, the condition $a \in M^{2} \backslash M^{3}=\left(t^{2}\right) \backslash\left(t^{3}\right)$ mens that $\nu(a)=\nu\left(t^{2}\right)=2$ and $b \in M^{3} \backslash M^{4}$ implies that $\nu(b)=\nu\left(t^{3}\right)=3$. Thus

$$
\nu(a b)=\nu(a)+\nu(b)=5 \quad \text { and } \quad \nu(a+b)=\min (2,3)=2
$$

by (D1) and Lemma 4.6.
3.3. Let $R=\mathbb{Z}_{(5)} \leq \mathbb{Q}$ be a localization of \mathbb{Z} in the prime ideal (5). Find for every $k \geq 2$ elements $a, b \in \mathbb{Z}_{(5)}$ such that $\nu_{5}(a)=\nu_{5}(b)=2$ and $\nu_{5}(a+b)=k$.

Note that $\nu_{5}(25 s)=2$ for an arbitrary element $s \in R^{*}$ and $\nu_{5}\left(5^{k}\right)=k$, in particular $\nu_{5}(50)=\nu_{5}(-50)=2$. Put $a=5^{k}+50$ and $b=5^{k}-50$, then

$$
\begin{aligned}
& \nu_{5}\left(5^{k} \pm 50\right)=\nu(50)=2 \quad \forall k>2 \quad \text { by Lemma 4.6. and } \\
& \nu_{5}\left(5^{2}+50\right)=\nu(3 \cdot 25)=2=\nu_{5}\left(5^{2}-50\right)=\nu(-1 \cdot 25)
\end{aligned}
$$

Now, clearly $\nu_{5}(a+b)=\nu_{5}\left(5^{k}\right)=k$.
3.4. Let P be a place of an AFF L over K and $\nu_{P}(a)=3$ for $a \in L$. Compute $\nu_{P}\left(a^{2}-a\right)$ and $\nu_{P}\left(a^{-2}-a^{-1}\right)$.

We can apply Lemma 4.9(3),(4): Since $p=x^{2}+x$ is a polynomial of the degree 2 and the multiplicity $1, \nu_{P}(a)=3$ and so $\nu_{P}\left(a^{1-}\right)=-3$ we get that

$$
\begin{gathered}
\nu_{P}\left(a^{2}-a\right)=\nu_{P}(a) \cdot \operatorname{mult}\left(x^{2}+x\right)=3 \cdot 1=3 \text { by } 4.9(3) \text { and } \\
\nu_{P}\left(a^{-2}-a^{-1}\right)=\nu_{P}\left(a^{-1}\right) \cdot \operatorname{deg}\left(x^{2}+x\right)=-3 \cdot 2=-6 \text { by } 4.9(4) .
\end{gathered}
$$

4 Weierstrass equations

4.1. Find a short WEP which is \mathbb{R}-equivalent to the WEP

$$
w=y^{2}+y(2 x+2)-\left(x^{3}-4 x^{2}+1\right) \in \mathbb{R}[x, y] .
$$

We apply linear algebra machinery used in the proofs of Section 5. First, we remove the term $2 x y$. Let $A=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right) \in U_{2}(\mathbb{R})$, which represents replacement of y by $y-x$ and compute

$$
\vartheta_{A}^{*}(w)=(y-x)^{2}+(y-x)(2 x+2)-\left(x^{3}-4 x^{2}+1\right)=y^{2}+2 y-\left(x^{3}-3 x^{2}+2 x+1\right) .
$$

Now we use $b=(1,-1)$ to exclude monomials y and x^{2} :
$\tau_{b}^{*} \vartheta_{A}^{*}(w)=(y-1)^{2}+2(y-1)-\left((x+1)^{3}-3(x+1)^{2}+2(x+1)+1\right)=y^{2}-\left(x^{3}-x+2\right)$.
4.2. Show that the real polynomial $\tilde{w}=y^{2}-\left(x^{3}-x+2\right)$ is
(a) \mathbb{R}-equivalent to $y^{2}-\left(x^{3}-\frac{1}{16} x+\frac{1}{32}\right)$,
(b) \mathbb{C}-equivalent to $y^{2}-\left(x^{3}-x-2\right)$.
(a) It is enough to take the matrix $A_{1}=\left(\begin{array}{ll}4 & 0 \\ 0 & 8\end{array}\right)$ and compute $\vartheta_{A_{1}}^{*}(\tilde{w})=64 y^{2}-$ $64\left(x^{3}-\frac{1}{16} x+\frac{1}{32}\right)$, hence $y^{2}-\left(x^{3}-x+2\right)$ and $y^{2}-\left(x^{3}-\frac{1}{16} x+\frac{1}{32}\right)$ are \mathbb{R}-equivalent by Corollary 5.4 for $c=2$.
(b) Now, we chose the complex matrix $A_{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & i\end{array}\right)$. Since $\vartheta_{A_{2}}^{*}(\tilde{w})=-y^{2}-\left(-x^{3}+\right.$ $x+2)$, the same argument as in (a) proves \mathbb{C}-equivalence of \tilde{w} and $y^{2}-\left(x^{3}-x-2\right)$.
4.3. Decide which of the following WEPs are smooth and find all singularities of singular ones:
(a) $y^{2}-\left(x^{3}+1\right) \in \mathbb{R}[x, y]$,
(b) $(y+1)^{2}-\left(x^{3}+1\right) \in \mathbb{F}_{3}[x, y]$,
(c) $y^{2}-\left(x^{3}-x^{2}-x+1\right) \in \mathbb{R}[x, y]$,
(d) $y^{2}+y(2 x+2)-\left(x^{3}-4 x^{2}+1\right) \in \mathbb{R}[x, y]$ (from 4.1).
(a) $y^{2}-\left(x^{3}+1\right) \in \mathbb{R}[x, y]$ is a smooth short WEP by Proposition 6.4 since the polynomial $x^{3}+1$ is separable,
(b) $(y+1)^{2}-\left(x^{3}+1\right) \in \mathbb{F}_{3}[x, y]$ is a singular WEP, since the polynomial $x^{3}+1=(x+1)^{3}$ has the root 2 of multiplicity 3 . It is easy to see that the only singularity is $(2,2)$,
(c) $y^{2}-\left(x^{3}-x^{2}-x+1\right) \in \mathbb{R}[x, y]$ is also a singular WEP, since the root 1 of $x^{3}-x^{2}-x+1$ has the multiplicity 2 . Then the singularity is $(1,0)$.
(d) Using the equivalent short form $y^{2}-\left(x^{3}-x+2\right)$ computed in 4.1 we can easily see that the polynomial $f=x^{3}-x+2$ is separable. Indeed, the roots of $f^{\prime}=3 x-1$ are $\pm \frac{1}{\sqrt{3}}$ and $f\left(\pm \frac{1}{\sqrt{3}}\right) \neq 0$, so there is no multiple root of f. This means that $y^{2}-\left(x^{3}-x+2\right)$ is smooth by Proposition 6.4 , so $y^{2}+y(2 x+2)-\left(x^{3}-4 x^{2}+1\right)$ is smooth by Corollary 6.3.
4.4. Find at least 3 maximal ideals in $\mathbb{R}[x, y]$ containing the WEP $w=y^{2}-\left(x^{3}+1\right)$.

Since maximal ideal of $\mathbb{R}[x, y]$ are of the form $I_{\left(c_{1}, c_{2}\right)}$ for $c_{1}, c_{2} \in \mathbb{C}$ by Theorem 7.4 and $w \in I_{\left(c_{1}, c_{2}\right)} \Leftrightarrow w\left(c_{1}, c_{2}\right)=0$, it is enough to find 3 zeros of w. We get for example maximal ideals containing w :

$$
I_{(-1,0)}=(y, x+1), \quad I_{u}=\left(y, x^{2}-x+1\right), \quad I_{(-\sqrt[3]{2}, i)}=\left(y^{2}+1, x+\sqrt[3]{2}\right)
$$

where $u=\left(e^{\frac{\pi}{3} i}, 0\right)$.
06.04 .

5 Computing discrete valuations

5.1. Let $w=(y+x+1)^{2}-\left(x^{3}+2 x+1\right) \in \mathbb{R}[x, y]$. Note that $f=\frac{1}{2} w=\frac{1}{2}\left(y^{2}+x^{2}+\right.$ $\left.2 y x+2 y-x^{3}\right)=y\left(x+\frac{1}{2} y\right)+\frac{1}{2}\left(x^{2}-x^{3}\right)+y$. so $f=y g(x, y)+h(x)+y$ for $g=x+\frac{1}{2} y$ and $h=\frac{1}{2}\left(x^{2}-x^{3}\right)$.
(a) Show that w is a WEP,
(b) compute $\mu(g), S(g)$ and $\mu(h), S(h)$,
(c) compute $\mu\left(x^{3} y^{2}\right), \mu\left(x^{2} y^{3}\right)$ and $\mu\left(x^{3} y^{2}+x^{2} y^{3}\right)$,
(d) find $S\left(\Lambda\left(x^{3} y^{2}\right)\right)$ and $S\left(\Lambda\left(x^{3} y^{2}+x^{2} y^{3}\right)\right)$.
(a) It is easy to see by applying the substitution $\hat{y} \leftarrow y+x+1$ that $\hat{y}-\left(x^{3}+2 x+1\right) \in$ $\mathbb{R}[x, y]$ is a short WEP equivalent to w by. Since $\operatorname{gcd}\left(x^{3}+2 x+1,3 x^{2}+2\right)=1$, the polynomial w is a smooth WEP by Corollary 6.3 and Proposition 6.4.
(b) Note that $\operatorname{mult}(g)=1$ and $m=\operatorname{mult}(h)=2$. Then it is easy to compute

$$
\mu(g)=\operatorname{mult}\left(x+\frac{1}{2} y^{2}\right)=1, S(g)=x \text { and } \mu(h)=\operatorname{mult}(h)=2, S(h)=\frac{1}{2} x^{2} .
$$

(c) By the definition we can see that $\mu\left(x^{3} y^{2}\right)=3+2 \cdot 2=7, \mu\left(x^{2} y^{3}\right)=2+3 \cdot 2=8$ hence $\mu\left(x^{3} y^{2}+x^{2} y^{3}\right)=7$ by Observation (2) on page 13.
(d) Using the proof of Lemma 9.2 we observe that

$$
S\left(\Lambda\left(x^{3} y^{2}\right)\right)=\left(-\frac{1}{2}\right)^{2} x^{\mu\left(x^{3} y^{2}\right)}=\frac{1}{4} x^{7} .
$$

Since Λ is K-endomorphisms of the K-algebra $K[x, y]$ we can compute

$$
S\left(\Lambda\left(x^{3} y^{2}+x^{2} y^{3}\right)\right)=S\left(\Lambda\left(x^{3} y^{2}\right)+\Lambda\left(x^{2} y^{3}\right)\right)=S\left(\Lambda\left(x^{3} y^{2}\right)\right)=\frac{1}{4} x^{7}
$$

by Observation (4) on page 13, because $\mu\left(\Lambda\left(x^{3} y^{2}\right)\right)=8>7=\mu\left(\Lambda\left(x^{2} y^{3}\right)\right)$.
5.2. Let $f=y g(x, y)+h(x)+y=y\left(x+\frac{1}{2} y\right)+\frac{1}{2}\left(x^{2}-x^{3}\right)+y \in \mathbb{R}[x, y]$ for $g=x+\frac{1}{2} y$ and $h=\frac{1}{2}\left(x^{2}-x^{3}\right)$ from 5.1. Put $u=x+(f), v=y+(f)$ and note that $L=\mathbb{R}(u, v)$ is an AFF over \mathbb{R} given by $f(u, v)=0$. Let P be the uniquely determined place from Theorem 9.5 containing u, v. Compute
(a) $\nu_{P}(u), \nu_{P}(v)$,
(b) $\nu_{P}(u+v)$,
(c) $\nu_{P}\left(u^{2}+v\right), \nu_{P}\left(u^{2}+2 v\right)$.
(a) $\nu_{P}(u)=1$ and $\nu_{P}(v)=\operatorname{mult}(h)=2$ follows immediately form Theorem 9.5
(b) Using (a) and Lemma 4.6 we get $\nu_{P}(u+v)=\min \left(\nu_{P}(u), \nu_{P}(v)\right)=1$.
(c) Since $f(u, v)=0$, we get $v=-v\left(u+\frac{1}{2} v\right)+\frac{1}{2}\left(u^{3}-u^{2}\right)$, hence

$$
\nu_{P}\left(u^{2}+v\right)=\nu_{P}\left(\frac{1}{2} u^{2}-v u-\frac{1}{2} v^{2}+\frac{1}{2} u^{3}\right)=\min (2,3,4,3)=2 .
$$

Note that $\nu_{P}\left(u^{2}-2 v\right)=\nu_{P}\left(-u^{3}+2 v u+v^{2}+2 u^{2}\right)=\min (2,3,4,3)=2$, which implies $\nu_{P}\left(u\left(u^{3}-2 v\right)\right)=3$. Thus

$$
\nu_{P}\left(u^{2}+2 v\right)=\nu_{P}\left(u\left(u^{3}-2 v\right)-v^{2}\right)=\min (3,4)=3 .
$$

again by Lemma 4.6
5.3. Let $f=y^{2}+x y+x^{5}+32 \in \mathbb{R}[x, y]$ and denote by L the AFF over \mathbb{R} given by $f(\alpha, \beta)=0$ for $\alpha=x+(f)$ and $\beta=y+(f) \in \mathbb{R}[x, y] /(f)$.
(a) Determine the field of constants of L the AFF over \mathbb{R},
(b) show that $(-2,2) \in V_{f}$ and compute $t_{(-2,2)}(f)$,
(c) if $P \in \mathbb{P}_{L / K}$ contains $\alpha+2, \beta-2$, compute $\nu_{P}(\alpha+2)$ and $\nu_{P}(\alpha+\beta)$ and
(d) describe the structure of P.
(a) Since f is an absolutely irreducible by Lemma 8.2, the the field of constants $\tilde{\mathbb{R}}=\mathbb{R}$ by Proposition 8.3.
(b) It is easy to see that $f((-2,2))=0$, hence $(-2,2) \in V_{f}$. Since

$$
\frac{\partial f}{\partial x}=y+5 x^{4}, \quad \frac{\partial f}{\partial y}=2 y+x
$$

we get

$$
\frac{\partial f}{\partial x}(-2,2)=82, \quad \frac{\partial f}{\partial y}(-2,2)=2, \text { hence } t=t_{(-2,2)}(f)=82 x+2 y+160
$$

(c) Note $(-2,2)$ is a zero of both lines $x+2, x+y$. As $x+2, x+y \notin(t)$ we get that $\nu_{P}(\alpha+2)=\nu_{P}(\alpha+\beta)=1$ by Theorem 9.7.
(c) By (c) both elements $\alpha+2$ and $\alpha+\beta$ are uniformizing elements of the DVR \mathcal{O}_{P}, i.e. the generators of its maximal ideal P. Thus by Proposition 10.4 and Theorem 9.7 $P=P_{(-2,2)}=(\alpha+2)=\left\{\left.(\alpha+2) \frac{p(\alpha, \beta)}{q(\alpha, \beta)} \right\rvert\, q(-2,2) \neq 0\right\}$.

6 Places and divisors

6.1. Let $f=y^{2}+y-\left(x^{3}+1\right)=y^{2}+y+x^{3}+1 \in \mathbb{F}_{2}[x, y]$ and denote by L the AFF over \mathbb{F}_{2} given by $f(\alpha, \beta)=0$ for $\alpha=x+(f)$ and $\beta=y+(f) \in \mathbb{F}_{2}[x, y] /(f)$.
(a) Find all points of $V_{f}\left(\mathbb{F}_{2}\right)$, which of them are smooth?
(b) Determine $\mathbb{P}_{L / K}^{(1)}$.
(c) Find $P \in \mathbb{P}_{L / K} \backslash \mathbb{P}_{L / K}^{(1)}$.
(a) We can directly compute that $V_{f}\left(\mathbb{F}_{2}\right)=\{(1,0),(1,1)\}$. As

$$
\frac{\partial f}{\partial x}=x, \quad \frac{\partial f}{\partial y}=1
$$

we compute $t_{(1,0)}(f)=x+y+1$ and $t_{(1,1)}(f)=x+y$, hence both points of $V_{f}\left(\mathbb{F}_{2}\right)$ are smooth.
(b) $\mathbb{P}_{L / K}^{(1)}=\left\{P_{(1,0)}, P_{(1,1)}, P_{\infty}\right\}$, since $V_{f}\left(\mathbb{F}_{2}\right)=\{(1,0),(1,1)\}$ by Proposition 11.8.
(c) Note that by Corollary $11.3 \mathbb{P}_{L / K}$ is infinite, hence $P \in \mathbb{P}_{L / K} \backslash \mathbb{P}_{L / K}^{(1)}$ is infinite. Fix for example an irreducible polynomial $m \in \mathbb{F}_{2}[x]$ of degree greater than 1 . Then there exists $P_{m} \in \mathbb{P}_{L / K}$ such that $m(\alpha) \in P_{m}$ since $m(\alpha)$ is transcendental over \mathbb{F}_{2}. Note that $K[\alpha] /(m(\alpha))$ is a K-space of dimension $\operatorname{deg}(m)$ which is embeddable into the K-algebra \mathcal{O}_{P} / P since $P \cap K[\alpha]=(m(\alpha)$. Thus

$$
\operatorname{deg} P_{m}=\operatorname{dim}_{K}\left(\mathcal{O}_{P} / P\right) \geq \operatorname{dim}_{K}(K[\alpha] /(m(\alpha)))=\operatorname{deg}(m)>1 .
$$

If we choose for example $m=x^{2}+x+1$, then $\operatorname{deg} P_{m} \geq 2$.
03.05.
6.2. Consider the AFF given by $f(\alpha, \beta)=0$ for $f=y^{2}+y-\left(x^{3}+1\right)=y^{2}+y+x^{3}+1 \in$ $\mathbb{F}_{2}[x, y]$ from 6.1.
(a) Compute degrees of positive and negative parts of principal divisors $(\alpha+1)$ and (α)
(b) Determine divisors $(\alpha+1)$ and (α) as elements of free group $\operatorname{Div}\left(L / \mathbb{F}_{2}\right)$.
(a) By 12.6

$$
\operatorname{deg}\left((\alpha+1)_{+}\right)=\operatorname{deg}\left((\alpha+1)_{-}=\left[L: \mathbb{F}_{2}(\alpha+1)\right]=\left[L: \mathbb{F}_{2}(\alpha)\right]=2 .\right.
$$

and similarly $\operatorname{deg}\left((\alpha)_{+}\right)=\operatorname{deg}\left((\alpha)_{+}\right)=\left[L: \mathbb{F}_{2}(\alpha)\right]=2$.
(b) Recall that $(\alpha+1)_{+}=\sum_{P: \alpha+1 \in P} \nu_{P}(\alpha+1) P$. It is easy to compute that $\alpha+1 \in$ $P_{(1,0)} \cap P_{(1,1)}$ and we know that $\nu_{P_{\infty}}(\alpha+1)=\nu_{P_{\infty}}(\alpha)=-2$ by 17.7 , so we get

$$
(\alpha+1)=1 \cdot P_{(1,0)}+1 \cdot P_{(1,1)}-2 \cdot P_{\infty} .
$$

Since $\alpha \notin P$ for all $P \in \mathbb{P}_{L / K}{ }^{(1)}$, hence there exists a unique P such that $\alpha \in P$ and $\operatorname{deg} P=2$, which means that

$$
(\alpha)=1 \cdot P-2 \cdot P_{\infty}
$$

17.05.
6.3. Compute the genus of an AFF $K(x)$ over o field K.

By 4.7 we know the structure of places $K(x)$:

$$
\mathbb{P}_{K(x) / K}=\left\{P_{p} \mid p \in K[x] \text { is monic irreducible }\right\} \cup\left\{P_{\infty}\right\}
$$

where P_{p} is the maximal ideal of the localization with $\nu_{P_{p}}=\nu_{p}$ and P_{∞} is given by the discrete valuation $\nu_{\infty}\left(\frac{a}{b}\right)=\operatorname{deg}(b)-\operatorname{deg}(a)$. Then $\nu_{p}\left(x^{i}\right) \geq 0$ for each $i \geq 0$ and p is irreducible monic. Furthermore $\nu_{\infty}\left(x^{i}\right)=-i$ for each $i \geq 0$, hence $\left(x^{i}\right)_{-}=i P_{\infty}$. Thus $K(x)$ is of genus 0 by 14.4(3).

6.4. Describe ale principal divisors of $K(x)$ over o field K.

For every $s \in K(x)^{*}$ there exist $k \in K^{*}$, irreducible, pairwisely non-associated polynomials $p_{i} \in K[x]$ and exponents $e_{i} \in \mathbb{Z}$, for which $s=k \prod_{i} p_{i}^{e_{i}}$. If we put $d=\sum_{i} e_{i} \operatorname{deg} p_{i}$, then $(s)=\sum_{i} e_{i} P_{p_{i}}-d P_{\infty}$ forms a principal divisor and it holds $e_{i}=\nu_{p_{i}}(s)=\nu_{P_{p_{i}}}(s)$. This presents a way of searching of an element of L determining a divisor of degree 0 , which is in this case necessarily principal.
18.05.
6.5. Decide whether $\mathbb{F}_{2}\left(V_{w}\right)$ is an EFF, if (a) $w=y^{2}+y+x^{3}+1 \in \mathbb{F}_{2}[x, y]$, (b) $w=y^{2}+x^{3}+x+1 \in \mathbb{F}_{2}[x, y]$
(a) We have computed in 6.1 that w is smooth at rational points $\left.V_{w}\left(\mathbb{F}_{2}\right)=\{(1,0),(1,1))\right\}$. Thus by 15.4 the genus of $\mathbb{F}_{2}\left(V_{w}\right)$ is 1 , hence it is an EFF.
(b) Since there is a singularity at $(1,1) \in V_{w}\left(\mathbb{F}_{2}\right), \mathbb{F}_{2}\left(V_{w}\right)$ is of genus 0 again by by 15.4.
6.6. If there exists, find s such that $\mathbb{F}_{2}(s)=\mathbb{F}_{2}\left(V_{w}\right)$ for w from ref6.5.
(a) Since $\mathbb{F}_{2}\left(V_{w}\right)$ is an EFF, $\mathbb{F}_{2}(s) \varsubsetneqq \mathbb{F}_{2}\left(V_{w}\right)$ for each $s \in \mathbb{F}_{2}\left(V_{w}\right)$ by Proposition 14.6.
(b) As $(1,1) \in V_{w}\left(\mathbb{F}_{2}\right)$ is a singularity, there exists $s \in \mathbb{F}_{2}\left(V_{w}\right)$ such that $\mathbb{F}_{2}(s)=$ $\mathbb{F}_{2}\left(V_{w}\right)$ by 15.3. Using the proof of 15.3 , it is easy to compute that e.g. $s=\frac{\beta+1}{\alpha+1}$ for $\alpha=x+(w), \beta=y+(w)$, hence $\mathbb{F}_{2}\left(V_{w}\right)=\mathbb{F}_{2}(\alpha, \beta)$ is given by $w(\alpha, \beta)=0$.

