
23.02.

1 Algebraic function fields

1.1. Consider extensions R ⊆ R(x) ⊆ C(x)

(a) Prove that R(x) and C(x) are AFFs over R,

(b) compute the field of constants R̃ of the AFF R(x),

(c) compute the field of constants R̃ of the AFF C(x),

(d) find a transcendental element α ∈ C(x) such that [C(x) : R(α)] is minimal.

(a) It is enough to take the transcendental element x and compute using Proposition
2.3

[C(x) : R(x)] = [C : R] = 2 and [R(x) : R(x)] = 1.

(b) By the proof of Lemma 2.6 we know that [R̃ : R] ≤ [R(x) : R(x)] = 1, so R̃ = R.
(c) Using (a) and the argument from (b) we can see that [R̃ : R] ≤ [C(x) : R(x)] = 2.

As C ⊆ R̃ and [C : R] = 2 we obtain that R̃ = C.
(d) We know that [C(x) : R(x)] = 2. Since

[C(x) : R(α)] ≥ [R̃(α)) : R(α)] = [R̃ : R] = 2

by Proposition 2.3, and [C(x) : R(x)] = 2, the element α = x is a transcendental element
with a minimal value of [C(x) : R(α)].

1.2. Let K ⊆ U be a finite degree extension. Prove that U(x) is an AFF over K with
the field of constants K̃ = U .

Applying Proposition 2.3 we can compute [U(x) : K(x)] = [U : K] <∞ again, where
x is transcendental and U ⊆ K̃. As

[U : K] ≤ [K̃ : K] = [K̃(x) : K(x)] ≤ [U(x) : K(x)] = [U : K],

it holds K̃ = U .

1.3. Prove that Q( 3
√

5, π) is an AFF over Q and determine the field of constants Q̃.

Observe that Q( 3
√

5, x)Q( 3
√

5)(x) ∼= Q( 3
√

5, π). Now it remains to apply 1.2, which
implies that Q̃ = Q( 3

√
5).

1.4. Let g ∈ K[x, y] be an irreducible polynomial, R := K[x, y]/(g), L be a fraction field
of R. Prove that L is an AFF over K.

Put ξ := x + (g) and υ := y + (g). Then R = K[ξ, υ] and L = K(ξ, υ). Assume
to contrary that ξ, υ are both algebraic over K, then [K(ξ, υ) : K] < ∞, hence R =
K[ξ, υ] = K(ξ, υ) = L. Note that K-algebras K[x] and K[y] are infinitely dimensional as
K-spaces, which implies (g)∩K[x] 6= 0 and (g)∩K[y] 6= 0. Then g ∈ K∗, a contradiction.

Since either ξ or υ is transcendental over K. Let w.l.o.g. α := ξ transcendental, then
g(α, υ) = 0, and so [L : K(α)] <∞. We have proved that L is an AFF over K.

02.03.
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2 Local rings

2.1. Prove that each valuation ring is uniserial.

Assume to contrary that R is a non-uniserial VR, so there exists a pair of ideals I, J
such that I * J and J * I, Hence ∃a ∈ I \ J and ∃b ∈ J \ I. Since R is a VR,
either a

b
∈ R, which implies a = b · a

b
∈ J or b

a
∈ R, which implies b = a · b

a
∈ I, a

contardiction.

2.2. Let p be a prime number and define Z(p) = {a
b
| a ∈ Z, b ∈ N, p does not divide b} is

a VR.

It satisfies to observe that arbitrary non-zero element of Q (which is the field od
fractions of Z and so of every subring of Q) is of the form α = a

b
·pi for a, b, i ∈ Z with a, b

non-divisible by p. It imples that α ∈ Z(p) whenever i ≥ 0, and α−1 ∈ Z(p) if i ≤ 0.

2.3. Let Rx,y = { r
s
∈ R(x, y) | r, s ∈ R[x, y], s(0, 0) 6= 0} ⊆ R(x, y). Prove that

(a) Rx,y is local,

(b) Rx,y is not uniserial,

(c) Rx,y is not valuation.

(a) It is enough to note that (x, y) is a maximal ideal of Rx,y and that

Rx,y \ (x, y) = {c+ ax+ by

s
∈ R(x, y) | c ∈ R∗, a, b, s ∈ R[x, y] : s(0, 0) 6= 0} = R∗x,y

since [c+ ax+ by](0, 0) = c 6= 0.
(b) As (x) * (y) and (y) * (x), Rx,y is not uniserial.
(c) It follows from (b) because every valuation ring is uniserial by 2.1, nevertheless,

it is clear that both xy
x+y

, x+y
xy

/∈ Rx,y.

2.4. Let (R,M) be a local ring (not necessary a domain) with M = (t) for t 6= 0 and
A =

⋂
iM

i =
⋂
i(t

i). Prove that for each s ∈ R \ A there exist unique i ≥ 0 and some
(not neceessary unique) u ∈ R∗ such that s = tiu,

The proof of existence is the same as in Proposition 3.2 and we slightly modify the
original proof of uniqueness:

Let tiu = tjv for i ≥ j and u, v ∈ R∗, then tj(ti−j − u−1v) = 0. If i > j then
ti−j − u−1v /∈ M , hence ti−j − u−1v ∈ R∗, which implies tj = 0, a contradiction. Thus
i = j and we are done.

08.03.

2.5. Let (R,M) be a local domain with M = (t) for t 6= 0 and A =
⋂
iM

i =
⋂
i(t

i).
Prove that AM = A.

If there exists i for which M i = M i+1 then A = M i, hence AM = M i+1 = A.
Let a ∈ A =

⋂
iM

i then for each i > 0 there exists ai ∈ M i such that a = ait, since
R \M = R∗. As ait = a = ajt, we get (ai − aj)t = 0, which implies a0 := ai = aj for
each i, j > 0. Hence a = a0t for a0 ∈

⋂
iM

i = A.

09./11.03.
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3 Discrete valuation rings

3.1. Let R be a noetherian ring and p ∈ R a prime element. Prove that the localization
R(p) is a DVR with the NDV νp.

By Example 4.1 νp is a NDV of the field od fractions K of R and it remains to observe
that

R(p) = {a
b
∈ K | a ∈ R, b ∈ R \ (p)} = {a

b
∈ K | ν(a) ≥ 0, ν(b) = 0} = ν−1p (〈0,∞〉).

3.2. Let S = F2[X](x2+x+1) be a localization of F2[X] in (x2 + x+ 1).

(a) Show that S is DVR and find all DV ν such that S = ν−1(〈0,∞〉),

(b) if ν is NDV determining S, compute ν(x5), and ν( x4+x2+x
(x+1)5(x2+x+1)3

),

(c) if ν is NDV determining S, M is the maximal ideal of S, a ∈ M2 \ M3 and
b ∈M3 \M4, compute ν(ab) and ν(a+ b).

(a) S is DVR by 3.1 and all DV determining S are of the form kνx2+x+1 for an arbitrary
natural k by Lemma 4.4.

(b) As ν = νx2+x+1 by Lemma 4.4 and x2 + x + 1 does not divide x, we obtain that
ν(x5) = 5ν(x) = 0. Similarly, ν( x4+x2+x

(x+1)5(x2+x+1)3
) =

= ν(x) + ν(x3 + x+ 1)− 5ν(x+ 1)− 3ν(x2 + x+ 1) = 0 + 0− 0− 3 = −3.

(c) Since M = (t) for a uniformizing element t, the condition a ∈M2\M3 = (t2)\(t3)
mens that ν(a) = ν(t2) = 2 and b ∈M3 \M4 implies that ν(b) = ν(t3) = 3. Thus

ν(ab) = ν(a) + ν(b) = 5 and ν(a+ b) = min(2, 3) = 2

by (D1) and Lemma 4.6.

3.3. Let R = Z(5) ≤ Q be a localization of Z in the prime ideal (5). Find for every k ≥ 2
elements a, b ∈ Z(5) such that ν5(a) = ν5(b) = 2 and ν5(a+ b) = k.

Note that ν5(25s) = 2 for an arbitrary element s ∈ R∗ and ν5(5
k) = k, in particular

ν5(50) = ν5(−50) = 2. Put a = 5k + 50 and b = 5k − 50, then

ν5(5
k ± 50) = ν(50) = 2 ∀k > 2 by Lemma 4.6. and

ν5(5
2 + 50) = ν(3 · 25) = 2 = ν5(5

2 − 50) = ν(−1 · 25)

Now, clearly ν5(a+ b) = ν5(5
k) = k.

3.4. Let P be a place of an AFF L over K and νP (a) = 3 for a ∈ L. Compute νP (a2−a)
and νP (a−2 − a−1).

We can apply Lemma 4.9(3),(4): Since p = x2 +x is a polynomial of the degree 2 and
the multiplicity 1, νP (a) = 3 and so νP (a1−) = −3 we get that

νP (a2 − a) = νP (a) ·mult(x2 + x) = 3 · 1 = 3 by 4.9(3) and

νP (a−2 − a−1) = νP (a−1) · deg(x2 + x) = −3 · 2 = −6 by 4.9(4).

22.03.
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4 Weierstrass equations

4.1. Find a short WEP which is R-equivalent to the WEP

w = y2 + y(2x+ 2)− (x3 − 4x2 + 1) ∈ R[x, y].

We apply linear algebra machinery used in the proofs of Section 5. First, we remove

the term 2xy. Let A =

(
1 0
−1 1

)
∈ U2(R), which represents replacement of y by y − x

and compute

ϑ∗A(w) = (y − x)2 + (y − x)(2x+ 2)− (x3 − 4x2 + 1) = y2 + 2y − (x3 − 3x2 + 2x+ 1).

Now we use b = (1,−1) to exclude monomials y and x2:

τ ∗b ϑ
∗
A(w) = (y− 1)2 + 2(y− 1)− ((x+ 1)3− 3(x+ 1)2 + 2(x+ 1) + 1) = y2− (x3− x+ 2).

4.2. Show that the real polynomial w̃ = y2 − (x3 − x+ 2) is

(a) R-equivalent to y2 − (x3 − 1
16
x+ 1

32
),

(b) C-equivalent to y2 − (x3 − x− 2).

(a) It is enough to take the matrix A1 =

(
4 0
0 8

)
and compute ϑ∗A1

(w̃) = 64y2 −

64(x3 − 1
16
x+ 1

32
), hence y2 − (x3 − x+ 2) and y2 − (x3 − 1

16
x+ 1

32
) are R-equivalent by

Corollary 5.4 for c = 2.

(b) Now, we chose the complex matrix A2 =

(
−1 0
0 i

)
. Since ϑ∗A2

(w̃) = −y2− (−x3 +

x+ 2), the same argument as in (a) proves C-equivalence of w̃ and y2− (x3− x− 2).

4.3. Decide which of the following WEPs are smooth and find all singularities of singular
ones:

(a) y2 − (x3 + 1) ∈ R[x, y],

(b) (y + 1)2 − (x3 + 1) ∈ F3[x, y],

(c) y2 − (x3 − x2 − x+ 1) ∈ R[x, y],

(d) y2 + y(2x+ 2)− (x3 − 4x2 + 1) ∈ R[x, y] (from 4.1).

(a) y2 − (x3 + 1) ∈ R[x, y] is a smooth short WEP by Proposition 6.4 since the
polynomial x3 + 1 is separable,

(b) (y+1)2−(x3+1) ∈ F3[x, y] is a singular WEP, since the polynomial x3+1 = (x+1)3

has the root 2 of multiplicity 3. It is easy to see that the only singularity is (2, 2),
(c) y2 − (x3 − x2 − x + 1) ∈ R[x, y] is also a singular WEP, since the root 1 of

x3 − x2 − x+ 1 has the multiplicity 2. Then the singularity is (1, 0).
(d) Using the equivalent short form y2 − (x3 − x + 2) computed in 4.1 we can easily

see that the polynomial f = x3 − x+ 2 is separable. Indeed, the roots of f ′ = 3x− 1 are
± 1√

3
and f(± 1√

3
) 6= 0, so there is no multiple root of f . This means that y2− (x3−x+2)

is smooth by Proposition 6.4, so y2 + y(2x+ 2)− (x3 − 4x2 + 1) is smooth by Corollary
6.3.
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29.03.

4.4. Find at least 3 maximal ideals in R[x, y] containing the WEP w = y2 − (x3 + 1).

Since maximal ideal of R[x, y] are of the form I(c1,c2) for c1, c2 ∈ C by Theorem 7.4
and w ∈ I(c1,c2) ⇔ w(c1, c2) = 0, it is enough to find 3 zeros of w. We get for example
maximal ideals containing w:

I(−1,0) = (y, x+ 1), Iu = (y, x2 − x+ 1), I(− 3√2,i) = (y2 + 1, x+
3
√

2),

where u = (e
π
3
i, 0).

06.04.

5 Computing discrete valuations

5.1. Let w = (y + x + 1)2 − (x3 + 2x + 1) ∈ R[x, y]. Note that f = 1
2
w = 1

2
(y2 + x2 +

2yx + 2y − x3) = y(x + 1
2
y) + 1

2
(x2 − x3) + y. so f = yg(x, y) + h(x) + y for g = x + 1

2
y

and h = 1
2
(x2 − x3).

(a) Show that w is a WEP,

(b) compute µ(g), S(g) and µ(h), S(h),

(c) compute µ(x3y2), µ(x2y3) and µ(x3y2 + x2y3),

(d) find S(Λ(x3y2)) and S(Λ(x3y2 + x2y3)).

(a) It is easy to see by applying the substitution ŷ ← y+x+1 that ŷ− (x3 +2x+1) ∈
R[x, y] is a short WEP equivalent to w by. Since gcd(x3 + 2x + 1, 3x2 + 2) = 1, the
polynomial w is a smooth WEP by Corollary 6.3 and Proposition 6.4.

(b) Note that mult(g) = 1 and m = mult(h) = 2. Then it is easy to compute

µ(g) = mult(x+
1

2
y2) = 1, S(g) = x and µ(h) = mult(h) = 2, S(h) =

1

2
x2.

(c) By the definition we can see that µ(x3y2) = 3 + 2 · 2 = 7, µ(x2y3) = 2 + 3 · 2 = 8
hence µ(x3y2 + x2y3) = 7 by Observation (2) on page 13.

(d) Using the proof of Lemma 9.2 we observe that

S(Λ(x3y2)) = (−1

2
)2xµ(x

3y2) =
1

4
x7.

Since Λ is K-endomorphisms of the K-algebra K[x, y] we can compute

S(Λ(x3y2 + x2y3)) = S(Λ(x3y2) + Λ(x2y3)) = S(Λ(x3y2)) =
1

4
x7.

by Observation (4) on page 13, because µ(Λ(x3y2)) = 8 > 7 = µ(Λ(x2y3)).

12.04.
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5.2. Let f = yg(x, y) + h(x) + y = y(x + 1
2
y) + 1

2
(x2 − x3) + y ∈ R[x, y] for g = x + 1

2
y

and h = 1
2
(x2 − x3) from 5.1. Put u = x + (f), v = y + (f) and note that L = R(u, v)

is an AFF over R given by f(u, v) = 0. Let P be the uniquely determined place from
Theorem 9.5 containing u, v. Compute

(a) νP (u), νP (v),

(b) νP (u+ v),

(c) νP (u2 + v), νP (u2 + 2v).

(a) νP (u) = 1 and νP (v) = mult(h) = 2 follows immediately form Theorem 9.5
(b) Using (a) and Lemma 4.6 we get νP (u+ v) = min(νP (u), νP (v)) = 1.
(c) Since f(u, v) = 0, we get v = −v(u+ 1

2
v) + 1

2
(u3 − u2), hence

νP (u2 + v) = νP (
1

2
u2 − vu− 1

2
v2 +

1

2
u3) = min(2, 3, 4, 3) = 2.

Note that νP (u2 − 2v) = νP (−u3 + 2vu + v2 + 2u2) = min(2, 3, 4, 3) = 2, which implies
νP (u(u3 − 2v)) = 3. Thus

νP (u2 + 2v) = νP (u(u3 − 2v)− v2) = min(3, 4) = 3.

again by Lemma 4.6

19.04.

5.3. Let f = y2 + xy + x5 + 32 ∈ R[x, y] and denote by L the AFF over R given by
f(α, β) = 0 for α = x+ (f) and β = y + (f) ∈ R[x, y]/(f).

(a) Determine the field of constants of L the AFF over R,

(b) show that (−2, 2) ∈ Vf and compute t(−2,2)(f),

(c) if P ∈ PL/K contains α + 2, β − 2, compute νP (α + 2) and νP (α + β) and

(d) describe the structure of P .

(a) Since f is an absolutely irreducible by Lemma 8.2, the the field of constants R̃ = R
by Proposition 8.3.

(b) It is easy to see that f((−2, 2)) = 0, hence (−2, 2) ∈ Vf . Since

∂f

∂x
= y + 5x4,

∂f

∂y
= 2y + x,

we get

∂f

∂x
(−2, 2) = 82,

∂f

∂y
(−2, 2) = 2, hence t = t(−2,2)(f) = 82x+ 2y + 160.

(c) Note (−2, 2) is a zero of both lines x+ 2, x+ y. As x+ 2, x+ y /∈ (t) we get that
νP (α + 2) = νP (α + β) = 1 by Theorem 9.7.

(c) By (c) both elements α+ 2 and α+ β are uniformizing elements of the DVR OP ,
i.e. the generators of its maximal ideal P . Thus by Proposition 10.4 and Theorem 9.7
P = P(−2,2) = (α + 2) = {(α + 2)p(α,β)

q(α,β)
| q(−2, 2) 6= 0}.
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26.04.

6 Places and divisors

6.1. Let f = y2 + y− (x3 + 1) = y2 + y+x3 + 1 ∈ F2[x, y] and denote by L the AFF over
F2 given by f(α, β) = 0 for α = x+ (f) and β = y + (f) ∈ F2[x, y]/(f).

(a) Find all points of Vf (F2), which of them are smooth?

(b) Determine P(1)
L/K .

(c) Find P ∈ PL/K \ P(1)
L/K .

(a) We can directly compute that Vf (F2) = {(1, 0), (1, 1)}. As

∂f

∂x
= x,

∂f

∂y
= 1,

we compute t(1,0)(f) = x + y + 1 and t(1,1)(f) = x + y, hence both points of Vf (F2) are
smooth.

(b) P(1)
L/K = {P(1,0), P(1,1), P∞}, since Vf (F2) = {(1, 0), (1, 1)} by Proposition 11.8.

(c) Note that by Corollary 11.3 PL/K is infinite, hence P ∈ PL/K \P(1)
L/K is infinite. Fix

for example an irreducible polynomial m ∈ F2[x] of degree greater than 1. Then there
exists Pm ∈ PL/K such that m(α) ∈ Pm since m(α) is transcendental over F2. Note that
K[α]/(m(α)) is a K-space of dimension deg(m) which is embeddable into the K-algebra
OP/P since P ∩K[α] = (m(α). Thus

degPm = dimK(OP/P ) ≥ dimK(K[α]/(m(α))) = deg(m) > 1.

If we choose for example m = x2 + x+ 1, then degPm ≥ 2.

03.05.

6.2. Consider the AFF given by f(α, β) = 0 for f = y2 + y− (x3 + 1) = y2 + y+x3 + 1 ∈
F2[x, y] from 6.1.

(a) Compute degrees of positive and negative parts of principal divisors (α + 1) and
(α)

(b) Determine divisors (α + 1) and (α) as elements of free group Div(L/F2).

(a) By 12.6

deg((α + 1)+) = deg((α + 1)− = [L : F2(α + 1)] = [L : F2(α)] = 2.

and similarly deg((α)+) = deg((α)+) = [L : F2(α)] = 2.
(b) Recall that (α+ 1)+ =

∑
P : α+1∈P νP (α+ 1)P . It is easy to compute that α+ 1 ∈

P(1,0) ∩ P(1,1) and we know that νP∞(α + 1) = νP∞(α) = −2 by 17.7, so we get

(α + 1) = 1 · P(1,0) + 1 · P(1,1) − 2 · P∞.
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Since α /∈ P for all P ∈ PL/K (1), hence there exists a unique P such that α ∈ P and
degP = 2, which means that

(α) = 1 · P − 2 · P∞.

17.05.

6.3. Compute the genus of an AFF K(x) over o field K.

By 4.7 we know the structure of places K(x):

PK(x)/K = {Pp | p ∈ K[x] is monic irreducible } ∪ {P∞}

where Pp is the maximal ideal of the localization with νPp = νp and P∞ is given by the
discrete valuation ν∞(a

b
) = deg(b) − deg(a). Then νp(x

i) ≥ 0 for each i ≥ 0 and p is
irreducible monic. Furthermore ν∞(xi) = −i for each i ≥ 0, hence (xi)− = iP∞. Thus
K(x) is of genus 0 by 14.4(3).

6.4. Describe ale principal divisors of K(x) over o field K.

For every s ∈ K(x)∗ there exist k ∈ K∗, irreducible, pairwisely non-associated polyno-
mials pi ∈ K[x] and exponents ei ∈ Z, for which s = k

∏
i p

ei
i . If we put d =

∑
i ei deg pi,

then (s) =
∑

i eiPpi − dP∞ forms a principal divisor and it holds ei = νpi(s) = νPpi (s).
This presents a way of searching of an element of L determining a divisor of degree 0,
which is in this case necessarily principal.

18.05.

6.5. Decide whether F2(Vw) is an EFF, if (a) w = y2 + y + x3 + 1 ∈ F2[x, y], (b)
w = y2 + x3 + x+ 1 ∈ F2[x, y]

(a) We have computed in 6.1 that w is smooth at rational points Vw(F2) = {(1, 0), (1, 1))}.
Thus by 15.4 the genus of F2(Vw) is 1, hence it is an EFF.

(b) Since there is a singularity at (1, 1) ∈ Vw(F2), F2(Vw) is of genus 0 again by by
15.4.

6.6. If there exists, find s such that F2(s) = F2(Vw) for w from ref6.5.

(a) Since F2(Vw) is an EFF, F2(s) $ F2(Vw) for each s ∈ F2(Vw) by Proposition 14.6.
(b) As (1, 1) ∈ Vw(F2) is a singularity, there exists s ∈ F2(Vw) such that F2(s) =

F2(Vw) by 15.3. Using the proof of 15.3, it is easy to compute that e.g. s = β+1
α+1

for
α = x+ (w), β = y + (w), hence F2(Vw) = F2(α, β) is given by w(α, β) = 0.
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