CURVES AND FUNCTION FIELDS

Motivation

Objective: to build an (algebraic) apparatus for describing curves over finite fields. Idea: generalization of geometric theory (with geometrically descriptive analogies)
Key tool: description of the structure of function fields (places \leftrightarrow points at a curve)
Key problem: situation $\mathbb{R} \subseteq \mathbb{C}$ easier than $\mathbb{F}_{q} \subseteq \overline{\mathbb{F}_{q}}\left([\mathbb{C}: \mathbb{R}]=2\right.$ vs. $\left.\left[\overline{\mathbb{F}_{q}}: \mathbb{F}_{q}\right]=\infty\right)$
Lecture structure:
(1) Rings - algebras over a field, valuation rings,
(2) Polynomials - WEP, coordinate rings,
(3) Ideals - places in function fields,
(4) Spaces - divisors, Weil differentials,
(5) Groups - function fields of elliptic curves.

1. Algebras over a field

A ring always means commutative ring with operations $+,-, \cdot, 0$ and 1 and we will usually write R instead ($R,+,-, \cdot, 0,1$).

T\&N. Let K be a field and A a ring containing K as a subring. Then A is called K-algebra (or algebra over K). If A and B are two K-algebras, then $f: A \rightarrow B$ is a homomorphism of K-algebras, if it is a ring homomorphism and $f(k)=k$ for every $k \in K$.
K always denotes a field and $R \leq K$ means that R a subring of K.
Observation. If A and B are K-algebras and I is a proper ideal of A, then
(1) A / I is a K-algebra,
(2) A is a vector space over K and I is its subspace,
(3) if $f: A \rightarrow B$ is a homomorphism of K-algebras, then f is K-linear.
$\mathbf{T} \& \mathbf{N}$. Let R be a ring, $M \subset R$ a $a \in R$. Then (M) denotes the ideal of R generated by the set M and $(a):=(\{a\}) . \quad R\left[x_{1}, \ldots, x_{n}\right]$ denotes a polynomial ring over R and $K\left(x_{1}, \ldots, x_{n}\right)$ is a field of fractions of $K\left[x_{1}, \ldots, x_{n}\right]$.
Example 1.1. (1) $K[x], K[x, y], K(x)[y]$ and $K(x, y)$ are K-algebras.
(2) $\mathbb{R}, \mathbb{C}, \mathbb{Q}[\sqrt{2}]$ are \mathbb{Q}-algebras.
(3) $\mathbb{Q}[x] \cong \mathbb{Q}[\pi] \not \approx \mathbb{Q}(\pi) \cong \mathbb{Q}(x)$ are \mathbb{Q}-algebras.
$\mathbf{T} \& \mathbf{N}$. If A and B are two vector spaces over K (for short K-spaces), then $\operatorname{Hom}_{K}(A, B)$ is an abelian group of all linear maps $A \rightarrow B$ and $C \leq A$ means that C is a subspace of A.

Lemma 1.2. If A a B are two vector spaces over $K, I \leq A, J \leq B$ such that $\varphi \in$ $\operatorname{Hom}_{K}(A, B)$ satisfies $\varphi(I) \subseteq J$, then $\tilde{\varphi}(a+I)=\varphi(a)+J$ is a well-defined linear map $\tilde{\varphi} \in \operatorname{Hom}(A / I, B / J)$ and
(1) $\tilde{\varphi}$ is injective iff $\varphi^{-1}(J)=I$,
(2) $\tilde{\varphi}$ is surjective and $J \subseteq \varphi(A)$ iff φ is surjective.

Lemma 1.3. Let V be a vector space over K such that $A, B, C \leq V$, and $A \leq C$.
(1) $A+(B \cap C)=(A+B) \cap C$,
(2) if $\operatorname{dim}(C / A)<\infty$, then $\operatorname{dim}((C+B) /(A+B))=\operatorname{dim}(C / A)-\operatorname{dim}((C \cap B) /(A \cap B))$.
$\mathbf{T} \& \mathbf{N}$. If V is a vector space over $K A \leq V$, then we denote

$$
V^{*}=\operatorname{Hom}_{K}(V, K) \text { and } A^{o}=\left\{f \in V^{*} \mid f(A)=0\right\}
$$

Lemma 1.4. Let V be a vector space over K and $A, B \leq V$, then
(1) V^{*} is a vector space over K and $A^{o}, B^{o} \leq V^{*}$,
(2) $A^{o} \cong(V / A)^{*}$,
(3) if $\operatorname{dim}(V / A)<\infty$, then $A^{o} \cong V / A$,
(4) if $A \leq B$, then $B^{o} \leq A^{o}$,
(5) $(A \cap B)^{o}=A^{o}+B^{o},(A+B)^{o}=A^{o} \cap B^{o}$,

Proposition 1.5. Let $K \subseteq L$ be an extension of the fields, V an L-space. Then V is a K-space and we can define multiplication by each $l \in L$ on V^{*} by the rule $l \varphi(v)=\varphi(l v)$ for all $\varphi \in V^{*}=\operatorname{Hom}_{K}(V, K)$ and $v \in V$. Then
(1) $l \varphi \in V^{*} \forall l \in L, \varphi \in V^{*}$,
(2) V^{*} is an L-space,
(3) if $A_{K} \leq V_{K}$ and $\alpha \in L \backslash\{0\}$, then $\alpha^{-1} A^{o}=(\alpha A)^{o}$.

2. Algebraic function fields

$\mathbf{T \& N}$. Let R be a subring of a field K, and V a K-space. We say that $A \subset V$ is linearly dependent (LD) over R, if $\exists\left\{a_{1} \ldots, a_{k}\right\} \subseteq A$ a $\exists r_{1}, \ldots, r_{k} \in R \backslash\{0\}$ such that $\sum_{i} r_{i} a_{i}=0$, otherwise A is linearly independent (LI) over R.

Lemma 2.1. Let R be a domain, K its fraction field, V a vector space over K and $M \subset V$. Then M is LI over $R \Leftrightarrow M$ is LI over K.

Lemma 2.2. Let V be a vector space over $K(x)$ and $v_{1}, \ldots, v_{n} \in V$. Then v_{1}, \ldots, v_{n} is LD over $K(x) \Leftrightarrow \exists a_{1}, \ldots a_{n} \in K[x]$ such that $\sum_{i} a_{i} v_{i}=0$ and $a_{j}(0) \neq 0$ for at least one j.
$\mathbf{T} \& \mathbf{N}$. Let R be a ring and $A, B \subset R$, then we denote
$A B:=\langle a b \mid a \in A, b \in B\rangle$ a subgroup of the additive group $(R,+,-, 0)$ generated by the set $\{a b \mid a \in A, b \in B\}$,

$$
\begin{aligned}
& A[B]:=\left\{f\left(b_{1}, \ldots, b_{k}\right) \mid k \in \mathbb{N}, f \in A\left[x_{1} \ldots, x_{k}\right], b_{1}, \ldots, b_{k} \in B\right\} \\
& A\left[b_{1}, \ldots, b_{k}\right]:=A\left[\left\{b_{1}, \ldots, b_{k}\right\}\right] \text { pro } b_{1}, \ldots, b_{k} \in R .
\end{aligned}
$$

Observation. Let R be a ring and $A, B, C \subset R$, then
(1) $A B=B A$ and $A(B C)=(A B) C$,
(2) if A, B are subrings (ideals) of R, then $A B=A[B]$ is a subring ($A B$ is an ideal) of R,
(3) $A\left[b_{1}, \ldots, b_{k}\right]=\left\{f\left(b_{1}, \ldots, b_{k}\right) \mid f \in A\left[x_{1} \ldots, x_{k}\right]\right\} \forall b_{1}, \ldots, b_{k} \in R$.

In the sequel $K \subseteq L$ means a field extension of K by L and recall that $[L: K]=\operatorname{dim}_{K} L$ and $[U: K]=[U: L][L: K]$ for extensions $K \subseteq L \subseteq U$.
Proposition 2.3. Let $K \subseteq L$ be an algebraic extension.
(1) If B is a basis of L as a K-space, then B is a basis of $L(x)$ as a $K(x)$-space,
(2) $[L(x): K(x)]=[L: K]$.

Lemma 2.4. Let V be a $K(x)$-space and $M \subset V$. Then

$$
M \text { is LD over } K(x) \Leftrightarrow\left\{v x^{j} \mid v \in M, j \geq 0\right\} \text { is LD over } K \text {. }
$$

Definition. Let $K \subseteq L$. L is called an algebraic function field (AFF) over K, if $\exists \alpha \in L$ transcendental over K for which $[L: K(\alpha)]<\infty$.

Example 2.5. (1) $\mathbb{R}(x)$ and $\mathbb{C}(x)$ are an AFF over \mathbb{R}.
(2) $\mathbb{Q}(\sqrt[3]{5})(x)=\mathbb{Q}(\sqrt[3]{5}, x) \cong \mathbb{Q}(\sqrt[3]{5}, \pi) \subseteq \mathbb{R}$, then $\mathbb{Q}(\sqrt[3]{5}, x)$ is an AFF over \mathbb{Q}.
(3) Let $g \in K[x, y]$ be an irreducible polynomial, $R:=K[x, y] /(g), L$ be a fraction field of R. Put $\xi:=x+(g)$ and $v:=y+(g)$. Then $R=K[\xi, v]$ and $L=K(\xi, v)$. Assume to contrary that ξ, v are both algebraic over K, then $[K(\xi, v): K]<\infty$, hence $R=K[\xi, v]=K(\xi, v)=L$, which implies $(g) \cap K[x] \neq 0$ and $(g) \cap K[y] \neq 0$. Then $g \in K^{*}$, a contradiction. Thus ξ or v is transcendental over K. Let w.l.o.g. $\alpha:=\xi$ transcendental, then $g(\alpha, v)=0$, and so $[L: K(\alpha)]<\infty$. We have proved that L is an AFF over K.

Lemma 2.6. If $K \subseteq U \subseteq L$ are field extensions, L is an AFF over K and U is algebraic over K, then $[U: K]<\infty$.
T\&N. Let $K \subseteq L$ and L be an AFF over K, then

$$
\tilde{K}:=\{\alpha \in L \mid[K(\alpha): K]<\infty\}
$$

is said to be the field of constants (of the AFF).
Corollary 2.7. \tilde{K} is a subfield of L and $[\tilde{K}: K]<\infty$ for any AFF L over K.
Theorem 2.8. Let $K \subseteq L, \alpha$ be transcendental over K and $[L: K(\alpha)]<\infty$. Then the following conditions are equivalent for each $u \in L$:
(1) $[L: K(u)]<\infty$,
(2) $\exists g \in K[x, y]$ for which $g(x, u) \neq 0$ and $g(\alpha, u)=0$,
(3) u is transcendental over K.

3. Valuation Rings

K is a field. $R \leq K$ means that R is a subring of K and R^{*} is the group of invertible elements of R.
$\mathbf{T} \& \mathbf{N}$. The notation (R, M) means that R is a local ring with the unique maximal ideal M.

Observation. The following conditions are equivalent for an ideal M of a ring R :
(1) (R, M) is a local ring,
(2) each proper ideal of R is contained in M,
(3) $M=R \backslash R^{*}$,
(4) $R^{*}=R \backslash M$.

Lemma 3.1. Let (R, M) be a local ring and A a finitely generated ideal such that $A M=A$. Then $A=0$.

Proposition 3.2. Let (R, M) be a local domain with $M=(t)$ for $t \neq 0$ and put $A:=\bigcap_{i} M^{i}=\bigcap_{i}\left(t^{i}\right)$. Then
(1) for each $s \in R \backslash A$ there exist unique $i \geq 0$ and unique $u \in R^{*}$ such that $s=t^{i} u$,
(2) if A is finitely generated, then $A=0$.
$\mathbf{T} \& \mathbf{N}$. Recall that a ring R is noetherian if all its ideals are finitely generated, and R is uniserial if for every pair of ideals I, J either $I \subseteq J$ or $J \subseteq I$.

Corollary 3.3. If (R, M) is a noetherian local domain with the field of fractions K and $M=(t)$ for some $t \in M$, then
(1) for each $s \in R \backslash\{0\}$ there exist unique $i \geq 0$ and unique $u \in R^{*}$ such that $s=t^{i} u$,
(2) for each $s \in K \backslash\{0\}$ there exist unique $i \in \mathbb{Z}$ and unique $u \in R^{*}$ such that $s=t^{i} u$,
(3) R is a uniserial principal ideal domain.
$\mathbf{T \& N}$. If $R \leq K, R$ is called a valuation ring (VR) of K if for every $\alpha \in K^{*}$ either $\alpha \in R$ or $\alpha^{-1} \in R$.

Observation. Let K be the fraction field of a domain R and let $i: K^{*} \rightarrow K^{*}$ is defined $i(\alpha)=\alpha^{-1}$.
(1) R is a VR $\Rightarrow R$ is uniserial $\Rightarrow R$ is local,
(2) $i\left(R^{*}\right)=R^{*}$
(3) if R is a VR, then $i(M \backslash\{0\})=i\left(R \backslash\left(R^{*} \cup\{0\}\right)=K^{*} \backslash R\right.$.

Example 3.4. (1) $\mathbb{Z}_{(p)}=\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z}, b \in \mathbb{N}, p\right.$ does not divide $\left.b\right\}$ is a VR for each prime p (of the field of fractions \mathbb{Q}).
(2) $R_{x, y}=\left\{\left.\frac{r}{s} \in \mathbb{R}(x, y) \right\rvert\, r, s \in \mathbb{R}[x, y], s(0,0) \neq 0\right\} \subseteq \mathbb{R}(x, y)$ is noetherian local domain with the maximal ideal (x, y), which is not a VR: for instance neither $\frac{x+y}{x y}$ nor $\frac{x y}{x+y}$ belongs to $R_{x, y}$.
Lemma 3.5. Let $R \leq K, \alpha \in K \backslash R$ such that $\alpha^{-1} \notin R$. If J is a proper ideal of R, then either $J[\alpha] \subsetneq R[\alpha]$ or $J\left[\alpha^{-1}\right] \subsetneq R\left[\alpha^{-1}\right]$.
Theorem 3.6. Let $R \leq K$ and I be an ideal satisfying $0 \neq I \neq R$.
(1) There exists a VR S of K with the maximal ideal M, for which $R \subseteq S \subsetneq K$ and $I \subseteq M$.
(2) If R is maximal subring of K, then it is a VR.

Observation. Let $R_{j}, j=1,2$, be valuation rings of $K, 0 \neq M_{j}=R_{j} \backslash R_{j}^{*}$ and define $i(a)=a^{-1} \forall a \in K^{*}$. Then
(1) $M_{1} \subseteq M_{2} \Leftrightarrow K \backslash R_{1}=i\left(M_{1} \backslash\{0\}\right) \subseteq \underset{4}{\subseteq} i\left(M_{2} \backslash\{0\}\right)=K \backslash R_{2} \Leftrightarrow R_{2} \subseteq R_{1}$,
(2) $M_{1}=M_{2} \Leftrightarrow R_{1}=R_{2}$.

Observation. If R is a subring of a $\operatorname{ring} S$ and P is a prime ideal of S, then $P \cap R$ is a prime ideal of R.
Lemma 3.7. Let R_{i} be a noetherian VR of K with the maximal ideal $0 \neq M_{i}=R_{i} \backslash R_{i}^{*}$ for $=1,2$. Then for $i=1,2$
(1) R_{i} is a principal ideal domain, in particular M_{i} is principal,
(2) R_{i} is a maximal subring of K,
(3) $M_{1} \subseteq M_{2} \Leftrightarrow M_{1}=M_{2} \Leftrightarrow R_{1}=R_{2} \Leftrightarrow R_{1} \subseteq R_{2}$.

4. Discrete valuation rings

In this section, R is a domain and $R \leq K$ means that K is the field of fractions of R.
Definition. A map $\nu: K \rightarrow \mathbb{Z} \cup\{\infty\}$ is a discrete valuation (DV) of K if for each $a, b \in K$:
(D1) $\nu(a b)=\nu(a)+\nu(b)$,
(D2) $\nu(a+b) \geq \min (\nu(a), \nu(b))$,
(D3) $\nu(a)=\infty$ iff $a=0$.
ν is said to be the trivial discrete valuation if $\nu\left(K^{*}\right)=0$.
We will suppose that all discrete valuations are nontrivial.
$\mathbf{T \& N}$. Let $R \leq K$, where R is noetherian and $p \in R$ a prime element. For each $a, b \in R \backslash\{0\}$ let us define

$$
\nu_{p}(a)=\max \left\{i \mid p^{i} / a\right\}, \quad \nu_{p}\left(\frac{a}{b}\right)=\nu_{p}(a)-\nu_{p}(b), \quad \nu_{p}(0)=\infty .
$$

Example 4.1. Let $R \leq K, R$ be noetherian, and p a prime element. Then ν_{p} is a correctly defined discrete valuation of K.

Note that if $(R,(p))$ is a local ring, then p is prime.
Observation. Let ν be a discrete valuation of K and let us define

$$
S=\{x \in K \mid \nu(x) \geq 0\}, \quad M=\{x \in K \mid \nu(x)>0\} .
$$

Then for each $x \in K^{*}$
(1) $\left.\nu\right|_{K^{*}}$ is a group homomorphism of $\left(K^{*}, \cdot,^{-1}, 1\right)$ into $(\mathbb{Z},+,-, 0)$ by (D1), hence $\nu(1)=\nu(-1)=0$ a $\nu\left(x^{-1}\right)=-\nu(x)$,
(2) S is a subring of K, M its ideal and S is a VR of K,
(3) $\nu(x)=0 \Leftrightarrow \nu\left(x^{-1}\right)=-\nu(x)=0 \Leftrightarrow x \in S^{*}, M=S \backslash S^{*}$ is the maximal ideal of S,
(4) if $I \neq 0$ is an ideal of S and $a \in I \backslash\{0\}$ is of minimal value $\nu(a)$, then $(a)=I$, since for $b \in I$ satisfying $\nu(b) \geq \nu(a)$ we get $\nu\left(b a^{-1}\right) \geq 0$, hence $b a^{-1} \in S$ a $b=a b a^{-1} \in(a)$,
(5) S is a principal ideal domain.

Definition. Let $R \leq K . R$ is said to be a discrete valuation ring (DVR), if there is a discrete valuation ν such that $R=\nu^{-1}(\langle 0, \infty\rangle)=\{a \in K \mid \nu(a) \geq 0\}$.

Proposition 4.2. The following is equivalent for a domain R which is not a field:
(1) R is a discrete valuation ring,
(2) R is a noetherian valuation ring,
(3) R is a local principal ideal domain,
(4) R is a noetherian local ring such that its maximal ideal is principal.
$\mathbf{T \& N}$. If R is a DVR with the maximal ideal (t) then t is called a uniformizing element and ν_{t} is a normalized discrete valuation (NDV).

Example 4.3. For a noetherian domain R and a prime element p, the localization $R_{(p)}$ is a DVR with the discrete valuation ν_{p} from 4.1.

In particular, $\mathbb{Z}_{(p)} \leq \mathbb{Q}$ from 3.4(1) is a DVR for each prime p.
Lemma 4.4. Let $R \leq K$ and R be a DVR with a uniformizing element t. Then for each DV μ with $R=\mu^{-1}(\langle 0, \infty\rangle)$ there exists unique $k \in \mathbb{N}$ for which $\mu=k \nu_{t}$.
Corollary 4.5. Let ν be a DV of K. Then ν is a NDV $\Leftrightarrow \exists t \in K: \nu(t)=1$.
Lemma 4.6. If ν is a DV of K and $a, b \in K$ satisfies $\nu(a) \neq \nu(b)$, then $\nu(a+b)=$ $\min (\nu(a), \nu(b))$.
$\mathbf{T} \& \mathbf{N}$. Let L be an AFF over K. We say that R is a valuation ring of the AFF L over K, if R is a valuation ring of L and $K \subseteq R . \nu$ is a (normalized) discrete valuation of the AFF L over K, if ν is a (normalized) discrete valuation of L and $\nu\left(K^{*}\right)=0$.

We define $\nu_{\infty}\left(\frac{a}{b}\right)=\operatorname{deg}(b)-\operatorname{deg}(a)$ for $a, b \in K[x] \backslash\{0\}$ on the AFF $K(x)$ and $\nu_{\infty}(0)=\infty$.
Observation. x^{-1} is a prime element of $K\left[x^{-1}\right](\cong K[x]), K(x)=K\left(x^{-1}\right)$ and $\nu_{\infty}=\nu_{x^{-1}}$ is a NDV of the AFF $K(x)$ over K.
Proposition 4.7. A normalized discrete valuation of the AFF $K(x)$ over K is either ν_{∞} or ν_{p} for an irreducible polynomial $p \in K[x]$.

In the sequel, L is an AFF over K and \tilde{K} its field of constants.
Definition. Let us define
$\mathbb{P}_{L / K}=\left\{M \subset L \mid \exists\right.$ a valuation ring of the AFF L over $\left.K R: K \subseteq R \subsetneq L, M=R \backslash R^{*}\right\}$.
Every element $P \in \mathbb{P}_{L / K}$ is said to be a place of the AFF L over K, \mathcal{O}_{P} denotes a VR of the AFF determined by P and the number

$$
\operatorname{deg} P=\operatorname{dim}_{K}\left(\mathcal{O}_{P} / P\right)=\left[\mathcal{O}_{P} / P:(K+P) / P\right]
$$

is called degree of P.
Theorem 4.8. If $P \in \mathbb{P}_{L / K}$, then
(1) $\tilde{K} \subseteq \mathcal{O}_{P}$,
(2) \mathcal{O}_{P} is a uniquely defined discrete valuation ring,
(3) $\operatorname{deg} P<\infty$.
$\mathbf{T \& N}$. For any $P \in \mathbb{P}_{L / K}$ denote by $\nu_{P}=\nu_{t}$ the NDV determined by \mathcal{O}_{P} where $P=(t)$.
Let $a=\sum a_{i_{1} \ldots i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}} \in K\left[x_{1}, \ldots, x_{n}\right]$. Then $\operatorname{mult}(a)=\min \left(\sum_{j=1}^{n} i_{j} \mid a_{i_{1} \ldots i_{n}} \neq 0\right)$ is called multiplicity of the polynomial a.

Observation. If $a \in K[x]$, then $\operatorname{mult}(a)=\max \left\{i \geq 0 \mid x^{i}\right.$ divides $\left.a\right\}$, hence it is the multiplicity of the root 0 .

Lemma 4.9. Let $z \in L \backslash \tilde{K}, a \in K[x], P \in \mathbb{P}_{L / K}$. Then
(1) $\exists Q_{1}, Q_{2} \in \mathbb{P}_{L / K}$ for which $\nu_{Q_{1}}(z)>0>\nu_{Q_{1}}(z)$,
(2) $\nu_{P}(z) \geq 0 \Rightarrow \nu_{P}(a(z)) \geq 0$,
(3) $\nu_{P}(z)>0 \Rightarrow \nu_{P}(a(z))=\operatorname{mult}(a) \cdot \nu_{P}(z)$,
(4) $\nu_{P}(z)<0 \Rightarrow \nu_{P}(a(z))=\operatorname{deg}(a) \cdot \nu_{P}(z)$.

5. Weierstrass equations

Recall that K is a field. $K \leq L$ denotes a field extension and $n \in \mathbb{N}$.
T\&N. Let $K \leq L$ and A be a K-algebra. Denote
$\operatorname{End}_{K}(A)=\{\varphi: A \rightarrow A \mid \varphi$ is a K-homomorphism $\}$
$\operatorname{Aut}_{K}(A)=\left\{\varphi \in \operatorname{End}_{K}(A) \mid \varphi\right.$ is a bijection $\}$
Let $A \in K^{n \times n}, b \in K^{n}$, define a map $\vartheta_{A}, \tau_{b}: K^{n} \rightarrow K^{n}$ by rules $\vartheta_{A}(v)=A v$, $\tau_{b}(v)=v+b$. Denote $\operatorname{Aff}_{\mathrm{n}}(\mathrm{K})=\left\{\tau_{\mathrm{b}} \vartheta_{\mathrm{A}} \mid \mathrm{A} \in \mathrm{GL}_{\mathrm{n}}(\mathrm{K}), \mathrm{b} \in \mathrm{K}^{\mathrm{n}}\right\}$, elements of $\operatorname{Aff}_{\mathrm{n}}(\mathrm{K})$ are called affine maps.

Observation. Let $K \leq L, A, B \in K^{n \times n}, b, c \in K^{n}$. Then
(1) $\tau_{b} \tau_{c}=\tau_{b+c}, \vartheta_{A} \vartheta_{B}=\vartheta_{A B}, \vartheta_{A} \tau_{b}=\tau_{\vartheta_{A}(b)} \vartheta_{A}$,
(2) $\tau_{b} \vartheta_{A}$ is a bijection $\Leftrightarrow A \in G L_{n}(K)$,
(3) $\operatorname{Aff}_{\mathrm{n}}(\mathrm{K})$ is a subgroup of the permutation group $S\left(K^{n}\right)$,
(4) $\operatorname{Aff}_{\mathrm{n}}(\mathrm{K})$ is a subgroup of $\operatorname{Aff}_{n}(L)$, where we identify $\tau_{b} \vartheta_{A}$ on K^{n} and L^{n}.
$\mathbf{T} \& \mathbf{N}$. Let $\sigma \in \operatorname{Aff}_{\mathrm{n}}(\mathrm{K})$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Define $\sigma^{*} \in \operatorname{End}_{K}(K[\mathbf{x}])$ by

$$
\sigma^{*}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=f\left(\sigma\left(\left(x_{1}, \ldots, x_{n}\right)\right)\right)
$$

where σ is viewed as an element of $\operatorname{Aff}_{n}(K(\mathbf{x}))$. Elements of $\operatorname{Aff}_{n}^{*}(K)=\left\{\sigma^{*} \mid \sigma \in\right.$ $\left.\mathrm{Aff}_{\mathrm{n}}(\mathrm{K})\right\}$ are said to be affine automorphisms.

Observation. Let $\sigma, \rho \in \operatorname{Aff}_{\mathrm{n}}(\mathrm{K}), \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $f \in K[\mathbf{x}]$
(1) $\rho^{*} \sigma^{*}(f(\mathbf{x}))=\rho^{*}(f(\sigma(\mathbf{x})))=f(\sigma \rho(\mathbf{x}))=(\sigma \rho)^{*}(f(\mathbf{x}))$,
(2) $\operatorname{id}_{K^{n}}^{*}=\operatorname{id}_{K[\mathbf{x}]},\left(\sigma^{-1}\right)^{*}=\left(\sigma^{*}\right)^{-1}$,
(3) $\mathrm{Aff}_{n}^{*}(K)$ is a subgroup of $\operatorname{Aut}(K[\mathbf{x}])$.

T\&N. Denote

- $T_{n}(K)=\left\{\left(d_{i j}\right) \in K^{n \times n} \mid d_{i i} \neq 0 \forall i, d_{i j}=0 \forall i<j\right\}$,
- $U_{n}(K)=\left\{\left(d_{i j}\right) \in T_{n}(K) \mid d_{i i}=1 \forall i\right\}$,
- $D_{n}(K)=\left\{\left(d_{i j}\right) \in T_{n}(K) \mid d_{i j}=0 \forall i \neq j\right\}$.

Observation. $T_{n}(K), U_{n}(K)$ a $D_{n}(K)$ are subgroups of $G L_{n}(K)$ and it holds that $T_{n}(K)=U_{n}(K) D_{n}(K)=D_{n}(K) U_{n}(K)$.

Definition. Let $f, g \in K[x]$ such that $\operatorname{deg} g \leq 1, \operatorname{deg} f=3, l c(f)=1$. Then the equation of the form $y^{2}+y g(x)=f(x)$ is called a Weierstrass equation (WE), any polynomial $y^{2}+y g(x)-f(x) \in K[x, y]$ is said to be a Weierstrass (equation) polynomial (WEP).

Observation. Let $\left.w=y^{2}+y g(x)-f(x)\right) \in K[x, y]$ be a WEP, $A=\left(\begin{array}{cc}1 & 0 \\ u & 1\end{array}\right) \in U_{2}(K)$, $b=\binom{b_{1}}{b_{2}} \in K^{2}$.
(1) $\tau_{b}^{*}(w)=\left(y+b_{2}\right)^{2}+\left(y+b_{2}\right) g\left(x+b_{1}\right)-f\left(x+b_{1}\right)=y^{2}+y\left(2 b_{2}+g\left(x+b_{1}\right)\right)-(f(x+$ $\left.\left.b_{1}\right)-b_{2}^{2}-b_{2} g\left(x+b_{1}\right)\right)$ is a WEP,
(2) $\vartheta_{A}^{*}(w)=(y+u x)^{2}+(y+u x) g(x)-f(x)=y^{2}+y(2 u x+g(x))-\left(f(x)-u^{2} x^{2}-u x g(x)\right)$ is a WEP,
(3) $U^{*}=\left\{\left(\tau_{c} \vartheta_{B}\right)^{*} \mid c \in K^{2}, B \in U_{2}(K)\right\}$ is a subgroup of $\operatorname{Aff}_{2}(\mathrm{~K})$ and $\sigma^{*}(w)$ is a WEP for each $\sigma^{*} \in U^{*}$.

Lemma 5.1. If char $K \neq 2$ and $\in K[x, y]$ is a WEP, then $\exists A \in U_{2}(K)$ and $\exists b \in K^{2}$ such that $\left(\tau_{b} \vartheta_{A}\right)^{*}(w)=y^{2}-h(x)$ for some $h \in K[x], \operatorname{deg} h=3$ and $l c(h)=1$, hence $y^{2}-h(x)$ is a WEP as well.
$\mathbf{T} \& \mathbf{N}$. A WEP is said to be short, if $\exists a_{2}, a_{4}, a_{6} \in K$ such that it is of the form (SH1) $y^{2}-\left(x^{3}+a_{4} x+a_{6}\right)$ if char $K \neq 2,3$,
(SH2) $y^{2}-\left(x^{3}+a_{4} x+a_{6}\right)$ or $y^{2}+x y-\left(x^{3}+a_{4} x+a_{6}\right)$ if char $K=2$,
(SH3) $y^{2}-\left(x^{3}+a_{4} x+a_{6}\right)$ or $y^{2}-\left(x^{3}+a_{2} x^{2}+a_{6}\right)$ if char $K=3$.
By a better choice of b in 5.1 it could be shown the next observation.
Observation. If char $K \neq 2,3$ and $\in K[x, y]$ is a WEP, then there exists $\sigma \in \operatorname{Aff}_{\mathrm{n}}(\mathrm{K})$ such that $\sigma^{*}(w)$ is a short WEP.

Lemma 5.2. Let $\lambda \in K^{*}, w$ be a WEP and $\sigma \in \operatorname{Aff}_{2}(\mathrm{~K})$. Then \exists WEP \tilde{w} for which $\sigma^{*}(w)=\lambda \tilde{w} \Leftrightarrow w \exists \alpha, \delta, \gamma \in K$ a $\exists b \in K^{2}$ such that $\alpha^{3}=\delta^{2}=\lambda, A=\left(\begin{array}{ll}\alpha & 0 \\ \gamma & \delta\end{array}\right)$ and $\sigma=\tau_{b} \vartheta_{A}$.

If we consider $c=\delta \alpha^{-1}$, we get the following easy result:
Observation. Let $\alpha, \delta \in K^{*}$. Then $\alpha^{3}=\delta^{2} \Leftrightarrow \exists c \in K^{*}$ satisfying $\delta=c^{3}$ a $\alpha=c^{2}$.
Proposition 5.3. Let $w \in K[x, y]$ be a WEP and $\sigma \in \mathrm{Aff}_{2}(\mathrm{~K})$. Then the following conditions are equivalent:
(1) there exists $\lambda \in K^{*}$ such that $\lambda \sigma^{*}(w)$ is a WEP,
(2) there exists a WEP \tilde{w} such that $\left(\sigma^{*}(w)\right)=(\tilde{w})$,
(3) there exists $c \in K^{*}, d \in K$ and $b \in \mathbb{A}^{2}(K)$ such that $A=\left(\begin{array}{cc}c^{2} & 0 \\ d & c^{3}\end{array}\right)$ and $\sigma=\tau_{b} \vartheta_{A}$.
$\mathbf{T} \& \mathbf{N}$. We say that two WEPs $w, \tilde{w} \in K[x, y]$ are K-equivalent provided $\exists \sigma \in \mathrm{Aff}_{2}(\mathrm{~K})$ satisfying $\left(\sigma^{*}(w)\right)=(\tilde{w})$ as ideals of $K[x, y]$.

Corollary 5.4. The following conditions are equivalent for two WEPs $w, \tilde{w} \in K[x, y]$:
(1) w and \tilde{w} are K-equivalent,
(2) $\exists c \in K^{*}, d \in K$ and $b \in K^{2}$ such that $\left(\tau_{b}^{*} \vartheta_{A}^{*}(w)\right)=(\tilde{w})$ for $A=\left(\begin{array}{cc}c^{2} & 0 \\ d & c^{3}\end{array}\right)$,
(3) $\exists c \in K^{*}$ and $d, b_{1}, b_{2} \in K$ such that $\tilde{w}=c^{-6} w\left(c^{2} x+b_{1}, c^{3} y+d x+b_{2}\right)$.

Example 5.5. (1) Let $w=y^{2}+y(2 x+2)-\left(x^{3}-4 x^{2}+1\right) \in \mathbb{R}[x, y]$. Then w is a WEP. We find a short WEP which is \mathbb{R}-equivalent to w. Applying linear algebra machinery we remove the term 2xy: $A=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right) \in U_{2}(\mathbb{R})$:

$$
\vartheta_{A}^{*}(w)=(y-x)^{2}+(y-x)(2 x+2)-\left(x^{3}-4 x^{2}+1\right)=y^{2}+2 y-\left(x^{3}-3 x^{2}+2 x+1\right)
$$

then we use $b=(1,-1)$ to exclude monomials y and x^{2} :
$\tau_{b}^{*} \vartheta_{A}^{*}(w)=(y-1)^{2}+2(y-1)-\left((x+1)^{3}-3(x+1)^{2}+2(x+1)+1\right)=y^{2}-\left(x^{3}-x+2\right)$.
(2) The polynomial $\tilde{w}=y^{2}-\left(x^{3}-x+2\right)$ is
(a) \mathbb{R}-equivalent for example to the polynomial $y^{2}-\left(x^{3}-\frac{1}{16} x+\frac{1}{32}\right)$ since $\vartheta_{A_{1}}^{*}(\tilde{w})=$ $64 y^{2}-64\left(x^{3}-\frac{1}{16} x+\frac{1}{32}\right)$ for $A_{1}=\left(\begin{array}{ll}4 & 0 \\ 0 & 8\end{array}\right)$,
(b) \mathbb{C}-equivalent to $y^{2}-\left(x^{3}-x-2\right)$, because $\vartheta_{A_{2}}^{*}(\tilde{w})=-y^{2}-\left(-x^{3}+x+2\right)$ for $A_{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & i\end{array}\right)$.

6. Singularities

\bar{K} denotes the algebraic closure of a field K and $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$ in this section.
$\mathbf{T \& N}$. Let $K \leq L \leq \bar{K}$. Let us denote the affine spaces

- $\mathbb{A}^{n}:=\bar{K}^{n}$ over a field \bar{K} and
- $\mathbb{A}^{n}(L):=L^{n}$ over a field $L\left(L\right.$-rational points of $\left.\mathbb{A}^{n}\right)$.

For $a \in K[\mathbf{x}], M \subset K[\mathbf{x}]$ we will denote:

- $V_{M}=\left\{\alpha \in \mathbb{A}^{n} \mid a(\alpha)=0 \forall a \in M\right\}$ (variety),
- $V_{M}(L)=V_{M} \cap \mathbb{A}^{n}(L), V_{a}=V_{\{a\}}, V_{a}(L)=V_{\{a\}}(L)$.

If $a \in K[x, y]$ and $\operatorname{deg} a \geq 1$, then V_{a} is said to be an affine (planar) curve.
Recall that it is well known that $V_{M}=V_{(M)}$ for each $M \subset K[\mathbf{x}]$.
Observation. Let $a \in K[\mathbf{x}]$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{A}^{n}$. Then mult $\tau_{\beta}^{*}(a) \geq 1 \Leftrightarrow$ mult $a\left(x_{1}+\beta_{1}, \ldots, x_{n}+\beta_{n}\right) \geq 1 \Leftrightarrow a\left(\beta_{1}, \ldots, \beta_{n}\right)=0 \Leftrightarrow \beta \in V_{a}$.
$\mathbf{T} \& \mathbf{N}$. Let $a=\sum_{i_{1} \ldots i_{n}} a_{i_{1} \ldots i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}=\sum_{j} b_{j} x_{i}^{j} \in K[\mathbf{x}]$, where $b_{j} \in K\left[\mathbf{x} \backslash\left\{x_{i}\right\}\right]$. Then

$$
L(a)=\sum_{i_{1} \ldots i_{n}: \sum_{j} i_{j}=1} a_{i_{1} \ldots i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}=\sum_{j=1}^{n} a_{\delta_{1 j} \ldots \delta_{n j}} x_{j}
$$

is called the linear part of a polynomial a and
$\frac{\partial a}{\partial x_{i}}=\sum_{j}(j+1) b_{j+1} x_{i}^{j}$ is a (partial) derivative of a polynomial a in a variable x_{i}.
If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in V_{a}$ and $c_{i}:=\frac{\partial a}{\partial x_{i}}(\alpha)$. Then $t_{\alpha}(a):=\sum_{i} c_{i} x_{i}-\sum_{i} c_{i} \alpha_{i}=\sum_{i} c_{i}\left(x_{i}-\right.$ α_{i}) is called a tangent of a (or V_{a}) at the point α, and we say that a (or V_{a}) is smooth at α if $t_{\alpha}(a) \neq 0$, and singular at α if $t_{\alpha}(a)=0$.

Definition. Polynomial a (or variety V_{a}) is

- smooth if it is smooth at all points $\alpha \in V_{a}$ and
- singular if \exists a singular point $\alpha \in V_{a}$ (such an α is called a singularity of V_{a}).

Observation. If $a \in K[\mathbf{x}]$ and $\alpha \in V_{a}$, then
(1) a is smooth at $\alpha \Leftrightarrow \exists i \frac{\partial a}{\partial x_{i}}(\alpha) \neq 0$,
(2) $\alpha \in V_{t_{\alpha}(a)}$.

Example 6.1. Let $w=y^{2}-\left(x^{3}+x-2\right) \in \mathbb{R}[x, y]$ be a short WEP. Then $L(w)=-x$, $\frac{\partial w}{\partial x}=-3 x^{2}-1, \frac{\partial w}{\partial y}=2 y$.

For $\alpha=(1,0) \in V_{w}$ we get $t_{\alpha}(w)=-4(x-1)$.
Lemma 6.2. Let $a \in \bar{K}[\mathbf{x}], \alpha \in \mathbb{A}^{n}$, and $\sigma \in \operatorname{Aff}_{\mathrm{n}}(\overline{\mathrm{K}})$. Then
(1) $t_{\alpha}(a)=\tau_{-\alpha}^{*}\left(L\left(\tau_{\alpha}^{*}(a)\right)\right)$, whenever $\alpha \in V_{a}$,
(2) $\alpha \in V_{\sigma *(a)} \Leftrightarrow \sigma(\alpha) \in V_{a}$; in such a case $t_{\alpha}\left(\sigma^{*}(a)\right)=\sigma^{*}\left(t_{\sigma(\alpha)}(a)\right)$,
(3) $\sigma\left(V_{\sigma *(a)}\right)=V_{a}$,
(4) $\sigma^{*}(a)$ is singular at $\alpha \in V_{\sigma *(a)} \Leftrightarrow a$ is singular at $\sigma(\alpha) \in V_{a}$.

Corollary 6.3. Let $w, \tilde{w} \in K[x, y]$ be K-equivalent WEPs. Then w is smooth $\Leftrightarrow \tilde{w}$ is smooth.

Recall that a polynomial is separable if all its rots in its splitting field are simple and the field is perfect, provided all its irreducible polynomials separable.

Proposition 6.4. If $w=y^{2}-f(x)$ is a WEP for $f(x) \in K[x]$, then w has at most 1 singularity. If, furthermore, char $K \neq 2$, then
(1) w is smooth $\Leftrightarrow f$ is separable,
(2) a singularity is K-rational whenever K is perfect.

Example 6.5. (1) $y^{2}-\left(x^{3}+1\right) \in \mathbb{R}[x, y]$ is a smooth short WEP,
(2) $(y+1)^{2}-\left(x^{3}+1\right) \in \mathbb{F}_{3}[x, y]$ is a singular WEP with the singularity $(2,2)$,
(3) $y^{2}-\left(x^{3}-x^{2}-x+1\right) \in \mathbb{R}[x, y]$ is a singular WEP with the singularity $(1,0)$.

7. Coordinate rings

Let us denote $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$ and \mathbb{A}^{n} is an affine space over \bar{K}.
$\mathbf{T} \& \mathbf{N}$. Let $U \subseteq \mathbb{A}^{n}$ and $\alpha \in \mathbb{A}^{n}$. Then

$$
I_{U}=\{a \in K[\mathbf{x}] \mid a(\alpha)=0 \forall \alpha \in U\}, \bar{I}_{U}=\{a \in \bar{K}[\mathbf{x} \mid a(\alpha)=0 \forall \alpha \in U\}
$$

and $I_{\alpha}=I_{\{\alpha\}}, \bar{I}_{\alpha}=\bar{I}_{\{\alpha\}}$.
Observation. (1) If I is an ideal of $K[\mathbf{x}]$ such that $I \cap K\left[x_{i}\right]=\left(a_{i}\right) \neq 0 \forall i$, then $K[\mathbf{x}] / I$ is generated as a K-space by the set $\left\{\prod_{i} x_{i}^{j_{i}} \mid j_{i}<\operatorname{deg}\left(a_{i}\right)\right\}$, hence $\operatorname{dim}_{K} K[\mathbf{x}] / I \leq$ $\prod_{i} \operatorname{deg}\left(a_{i}\right)<\infty$.
(2) If R is a domain and a K-algebra satisfying $\operatorname{dim}_{K} R<\infty$, then $K[\alpha]$ is a field for every $\alpha \in R$, thus R is a field as well.

Lemma 7.1. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{A}^{n}$
(1) I_{α} is a maximal ideal,
(2) $\alpha \in \mathbb{A}^{n}(K) \Leftrightarrow K+I_{\alpha}=K[\mathbf{x}] \Leftrightarrow I_{\alpha}=\left(x_{1}-\alpha_{1}, \ldots, x_{n}-\alpha_{n}\right)$.

Lemma 7.2. Let $K \leq L$ be an extension such that $[L: K]<\infty$ and I an ideal of $K[\mathbf{x}]$.
(1) $(I L[\mathbf{x}]) \cap K[\mathbf{x}]=I$,
(2) if I is prime with $I \cap K\left[x_{i}\right] \neq 0$ for all $i=1, \ldots n$, then there exists $\alpha \in \mathbb{A}^{n}$ for which $I=I_{\alpha}$.

Lemma 7.3. If $a, b \in K[x, y] \backslash K$ are coprime, then $(a, b) \cap K[x] \neq 0 \neq(a, b) \cap K[y]$.
Theorem 7.4. Let P be a nonzero prime ideal of $K[x, y]$. Then
(1) either P is maximal, then it is not principal and there exists $\gamma \in \mathbb{A}^{2}$ for which $P=I_{\gamma}$,
(2) or $P=(p)$ for some irreducible $p \in K[x, y]$.

Note that V_{P} is finite for P maximal, and if $p, q \in K[x, y]$ are non-associated irreducible, $V_{(p)}$ is infinite and $V_{\{p, q\}}=V_{p} \cap V_{q}$ finite.
Example 7.5. For a WEP $w=y^{2}-\left(x^{3}+1\right) \in \mathbb{R}[x, y]$ for example ideals

$$
(w) \subseteq(y, x+1)=I_{(-1,0)}, \quad\left(y, x^{2}-x+1\right)=I_{u}, \quad\left(y^{2}+1, x+\sqrt[3]{2}\right)=I_{(-\sqrt[3]{2}, i)}
$$

$u=\left(e^{\frac{\pi}{3} i}, 0\right)$, are prime.
$\mathbf{T \& N}$. Let $C=V_{a}$ be an affine planar curve for $a \in K[x, y]$ such that $I_{C}=(a)$. Then $K[C]=K[x, y] / I_{C}=K[x, y] /(a)$ is a coordinate ring of the curve C. The curve C is said to be irreducible if $K[C]$ is a domain and an element $p(x, y)+I_{C}$ is called a polynomial at C for any $p \in K[x, y]$.
If w is a WEP, then V_{w} is called a Weierstrass curve.
Observation. Let $a \in K[x, y]$ be irreducible, $C=V_{a}$ and $I_{C}=(a)$.
(1) C is irreducible $\Leftrightarrow I_{C}=(a)$ is prime $\Leftrightarrow a$ is irreducible,
(2) the map $\iota: K[C] \rightarrow \bar{K}^{C}$ given by the rule $\iota(p+(a))(\alpha)=p(\alpha)$ for each $\alpha \in C$ is a well-defined injective map.
$\mathbf{T} \& \mathbf{N}$. If $a \in K[x, y]$ is irreducible and $C=V_{a}$, then the field of fractions

$$
K(C)=\left\{\left.\frac{n+(a)}{d+(a)} \right\rvert\, n \in K[x, y], d \in K[x, y] \backslash(a)\right\}
$$

of $K[C]$ is said to be a function field of the irreducible curve C.
Proposition 7.6. Let $a \in K[x, y]$ be irreducible, $C=V_{a}, \alpha=x+(a), \beta=y+(a) \in$ $K[C]$. Then $K(C)=K(\alpha, \beta)$ is an AFF over K and α is transcendental over $K \Leftrightarrow$ $[K(C): K(\alpha)]=\operatorname{deg}_{y} a>0$.
Corollary 7.7. Let $K \leq L$. Then $\exists \alpha, \beta \in L$ such that $L=K(\alpha, \beta)$ is an AFF over K $\Leftrightarrow \exists$ an irreducible affine curve $C \subset \mathbb{A}^{2}$ satisfying $L \cong_{K} K(C)$.
$\mathbf{T} \& \mathbf{N}$. Let $w \in K[x, y], L$ is an AFF over K and $\alpha, \beta \in L$. We say that an AFF L is given by (the equation) $w(\alpha, \beta)=0$ (over K), if
(1) $L=K(\alpha, \beta)$,
(2) w is irreducible,
(3) $w(\alpha, \beta)=0$.

Example 7.8. If $w \in K[x, y]$ is irreducible and $\alpha=x+(w), \beta=y+(w)$, then $K\left(V_{w}\right)$ is given by $w(\alpha, \beta)=0$ over K.

8. Absolutely irreducible polynomials

T\&N. $f \in K[x, y]$ is called absolutely irreducible, if f is irreducible in the domain $\bar{K}[x, y]$.
Example 8.1. The polynomial $x^{2}+y^{2}$ is irreducible but not absolutely irreducible in $\mathbb{R}[x, y]\left(\mathbb{F}_{3}[x, y]\right)$, since $x^{2}+y^{2}=(x+i y)(x-i y)$ in $\mathbb{C}[x, y]$ (i stands for an element of the order 4 in $\left.\mathbb{F}_{9}^{*} \subset \overline{\mathbb{F}}_{3}\right)$.

Polynomial $x^{2}+y$ is absolutely irreducible in $\mathbb{R}[x, y]\left(\mathbb{F}_{3}[x, y]\right)$.
Lemma 8.2. If for $f, g \in K[x]$ holds true that $\operatorname{deg} g \leq 1$ and $\operatorname{deg} f \geq 3$ is odd, then $w=y^{2}+y g(x)-f(x)$ is absolutely irreducible in $K[x, y]$.
Proposition 8.3. Let $w \in K[x, y]$ be irreducible and \tilde{K} be the field of constants of the AFF $K\left(V_{w}\right)$ over K. Then $K=\tilde{K} \Leftrightarrow w$ is irreducible in $\tilde{K}[x, y]$.

Corollary 8.4. If $w \in K[x, y]$ is a WEP and $C=V_{w}$ is a Weierstrass curve, then w is absolutely irreducible and all elements $K(C) \backslash K$ are transcendental over K.

Example 8.5. Let $w=y^{2}+y x+x^{3}+1 \in \mathbb{F}_{2}[x, y]$ be a WEP and denote L the fraction field of $\mathbb{F}_{2}[x, y] /(w)$, hence L is the function field of the curve V_{w}, which is an AFF over \mathbb{F}_{2} by 7.6. Since w is absolutely irreducible by 8.2 , we can compute the field of constants $\tilde{\mathbb{F}}_{2}=\mathbb{F}_{2}$ using 8.3. Since for example polynomials $x^{2}+x+1$ and $x^{3}+x+1$ has no root in \mathbb{F}_{2} they have no root in L, so both are irreducible over L.

9. Places determined by a pair

In this section, L denotes an AFF over K given by $w(\alpha, \beta)=0$ with $\operatorname{deg}(w) \geq 2$.
Observation. Let $a \in K[x, y] \subseteq L[x, y], \sigma \in \operatorname{Aff}_{2}(\mathrm{~K})$, and $\tilde{\alpha}, \tilde{\beta} \in L$. Denote by $\bar{\sigma} \in \operatorname{Aff}_{2}(\mathrm{~L})$ the unique extension of σ and put $u=\sigma^{*}(x)(\tilde{\alpha}, \tilde{\beta}), v=\sigma^{*}(y)(\tilde{\alpha}, \tilde{\beta})$. Then
(1) $\left(\sigma^{-1}\right)^{*}\left(a\left(\sigma^{*}(x), \sigma^{*}(y)\right)\right)=a(x, y)$,
(2) $w(x, y)=a\left(\sigma^{*}(x), \sigma^{*}(y)\right) \Leftrightarrow a=\left(\sigma^{-1}\right)^{*}(w)$,
(3) $\bar{\sigma}^{*}(a)=\sigma^{*}(a) \in K[x, y]$.
(4) $(u, v)=\left(\sigma^{*}(x)(\tilde{\alpha}, \tilde{\beta}), \sigma^{*}(y)(\tilde{\alpha}, \tilde{\beta})\right)=\bar{\sigma}(\tilde{\alpha}, \tilde{\beta})$,
(5) $(\tilde{\alpha}, \tilde{\beta})=\bar{\sigma}^{-1}(u, v)$, hence $K(\tilde{\alpha}, \tilde{\beta})=K(u, v)$
(6) $\left(\sigma^{-1}\right)^{*}(w)(u, v)=w\left(\bar{\sigma}^{-1}(u, v)\right)=w(\tilde{\alpha}, \tilde{\beta})$.

We will use notation $\bar{\sigma}$ from the last observation in the sequel. Put mult $(0)=\infty$.
Lemma 9.1. Let w be smooth at $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K), A \in \mathrm{GL}_{2}(K), \sigma:=\vartheta_{A} \tau_{-\gamma}$ and put $(u, v)=\bar{\sigma}(\alpha, \beta)$ and $f_{\sigma}=\left(\sigma^{-1}\right)^{*}(w)$. Then
(1) L is an AFF over K given by $f_{\sigma}(u, v)=0$,
(2) \exists a matrix A such that $f_{\sigma}=y g(x, y)+h(x)+y$ where $h \in K[x] \backslash\{0\}, g \in K[x, y]$, $\operatorname{mult}(h) \geq 2, \operatorname{mult}(g) \geq 1$,
(3) if $t_{\gamma}(f)=a_{1}\left(x-\gamma_{1}\right)+a_{2}\left(y-\gamma_{2}\right)$, then A is a matrix from (2) $\Leftrightarrow A=\binom{b_{1}, b_{2}}{a_{1}, a_{2}}$ for $\left(b_{1}, b_{2}\right) \in K^{2} \backslash \operatorname{Span}_{K}\left(\left(a_{1}, a_{2}\right)\right)$.

Let us suppose that L is an AFF over K given by $w(\alpha, \beta)=0$ with $\operatorname{deg}(w) \geq 2$ and simultaneously by $f(u, v)=0$, where $f=y g(x, y)+h(x)+y \in K[x, y], h \in K[x] \backslash\{0\}$, $g \in K[x, y]$, $\operatorname{mult}(h) \geq 2, \operatorname{mult}(g) \geq 1$.

Put $m:=\operatorname{mult}(h)($ which is finite by 9.1).
$\mathbf{T} \& \mathbf{N}$. Let $a=\sum_{i, j \geq 0} a_{i j} x^{i} y^{j} \in K[x, y] \backslash\{0\}$, then define:

$$
\begin{aligned}
& \mu(a):=\operatorname{mult}\left(a\left(x, y^{m}\right)\right) \\
& s(a):=\left\{(i, j) \in \mathbb{Z}^{2} \mid i, j \geq 0, i+j m=\mu(a)\right\}, \\
& S(a):=\sum_{(i, j) \in s(a)} a_{i j} x^{i} y^{j} .
\end{aligned}
$$

Observation. Let $a, b=\sum_{i, j} b_{i j} x^{i} y^{j} \in K[x, y] \backslash\{0\}$ and $i, j, k, l \geq 0$. Then
(1) $\operatorname{mult}(a \cdot b)=\operatorname{mult}(a)+\operatorname{mult}(b)$,
and if $\operatorname{mult}(a)<\operatorname{mult}(b)$, then $\operatorname{mult}(a+b)=\operatorname{mult}(a)$,
(2) $\mu(a \cdot b)=\operatorname{mult}\left(a\left(x, y^{m}\right) \cdot b\left(x, y^{m}\right)\right)=\operatorname{mult}\left(a\left(x, y^{m}\right)\right)+\operatorname{mult}\left(b\left(x, y^{m}\right)\right)=\mu(a)+\mu(b)$, and if $\mu(a)<\mu(b)$, then $\mu(a+b)=\mu(a) \geq \operatorname{mult}(a)$,
(3) If $(i+j m)+(k+l m)=\mu(a)+\mu(b)=\mu(a b)$ and $(i+j m)>\mu(a) \Rightarrow(k+l m)<\mu(b)$ $\Rightarrow b_{k l}=0$, hence
$S(a) S(b)=\sum_{(i, j) \in s(a)} \sum_{(k, l) \in s(b)} a_{i j} b_{k l} x^{i+k} y^{j+l}=\sum_{(q, r) \in s(a b)} x^{q} y^{r} \sum_{(i, j)+(k, l)=(q, r)} a_{i j} b_{k l}=S(a b)$,
(4) $\mu(a)=\mu(S(a))$, and if $\mu(a)<\mu(b)$, then $S(a+b)=S(a)$.
$\mathbf{T \& N}$. Denote by Λ the K-endomorphism of $K[x, y]$ defined for each $a \in K[x, y]$ by the rule

$$
\Lambda(a(x, y)):=a(x,-h(x)-y g(x, y)) .
$$

Lemma 9.2. $\mu\left(\Lambda\left(x^{i} y^{j}\right)\right)=i+j m$ and there exists $\lambda \in K \backslash\{0\}$ such that $S\left(\Lambda\left(x^{i} y^{j}\right)\right)=$ $\lambda x^{i+j m}$ for each $i, j \geq 0$.
Example 9.3. Let $w=(y+x+1)^{2}-\left(x^{3}+2 x+1\right) \in \mathbb{R}[x, y]$.
Since $\operatorname{gcd}\left(x^{3}+2 x+1,3 x^{2}+2\right)=1$, the polynomial w is a smooth WEP and it holds that $f=\frac{1}{2} w=\frac{1}{2}\left(y^{2}+x^{2}+2 y x+2 y-x^{3}\right)=y\left(x+\frac{1}{2} y\right)+\frac{1}{2}\left(x^{2}-x^{3}\right)+y$. so $f=y g(x, y)+h(x)+y$ for $g=x+\frac{1}{2} y$ and $h=\frac{1}{2}\left(x^{2}-x^{3}\right)$. Note that $\operatorname{mult}(g)=1$ and $m=\operatorname{mult}(h)=2$. Then compute

$$
\begin{aligned}
& \mu(g)=\operatorname{mult}\left(x+\frac{1}{2} y^{2}\right)=1, S(g)=x \\
& \mu(h)=\operatorname{mult}(h)=2, S(h)=\frac{1}{2} x^{2}, \\
& \mu\left(x^{3} y^{2}\right)=3+2 \cdot 2=7, \mu\left(x^{2} y^{3}\right)=2+3 \cdot 2=8 \Rightarrow \mu\left(x^{3} y^{2}+x^{2} y^{3}\right)=7, \\
& S\left(\Lambda\left(x^{3} y^{2}+x^{2} y^{3}\right)\right)=S\left(\Lambda\left(x^{3} y^{2}\right)\right)=\frac{1}{4} x^{7} \text { by } 9.2 .
\end{aligned}
$$

Observation. Let $a=\sum_{i j} a_{i j} x^{i} y^{j} \in K[x, y] \backslash\{0\}, u, v \in P \in \mathbb{P}_{L / K}$ and $t=a(u, v)$.
(1) $\Lambda(a)(u, v)=a(u,-h(u)-v g(u, v))=a(u, v)$,
(2) $m \nu_{P}(u)=\nu_{P}(h(u))=\nu_{P}(v(-g(u, v)-1))=\nu_{P}(v)+\nu_{P}(-g(u, v)-1)=\nu_{P}(v)$ by 4.9,
(3) $\nu_{P}(t) \geq \min \left\{\nu_{P}\left(u^{i} v^{j}\right) \mid a_{i j} \neq 0\right\}=\min \left\{(i+m j) \nu_{P}(u) \mid a_{i j} \neq 0\right\}=\mu(a) \nu_{P}(u)$, hence $\mu(a) \leq \frac{\nu_{P}(t)}{\nu_{P}(u)}$.
$\mathbf{T \& N}$. Put $\mu(t)=\max \{\mu(a) \mid a \in K[x, y]: a(u, v)=t\}$ for each $t \in K[u, v]$.

Lemma 9.4. Let $t \in K[u, v] \backslash\{0\}$ and $k:=\mu(t)$. Then there exist $\lambda \in K^{*}$ and $b \in K[x, y]$ satisfying $\mu(b)>k$ and $t=\lambda u^{k}+b(u, v)$.
Theorem 9.5. There exists a unique $P \in \mathbb{P}_{L / K}$ such that $u, v \in P$. Furthermore, it holds true that $\nu_{P}(u)=1, \nu_{P}(v)=m$ and $\nu_{P}\left(r \cdot s^{-1}\right)=\mu(r)-\mu(s)$ for each $r, s \in K[u, v] \backslash\{0\}$.
Example 9.6. Consider a polynomial $f=y\left(x+\frac{1}{2} y\right)+\frac{1}{2}\left(x^{2}-x^{3}\right)+y$ from 9.3. Then $L=\mathbb{R}(u, v)$ for $u=x+(f), v=y+(f)$ and let P be the uniquely determined place from 9.5 Then $\nu_{P}(u)=1$ and $\nu_{P}(v)=\operatorname{mult}(h)=2$. Let us compute $\nu_{P}\left(u^{2}+v\right)$ and $\nu_{P}\left(u^{2}+2 v\right)$:
$f(u, v)=0 \Rightarrow v=-v\left(u+\frac{1}{2} v\right)+\frac{1}{2}\left(u^{3}-u^{2}\right)$, hence
$\nu_{P}\left(u^{2}+v\right)=\nu_{P}\left(\frac{1}{2} u^{2}-v u-\frac{1}{2} v^{2}+\frac{1}{2} u^{3}\right)=\min (2,3,4,3)=2$ and
$\nu_{P}\left(u^{2}+2 v\right)=\nu_{P}\left(u^{3}-2 v u-v^{2}\right)=\nu_{P}\left(u\left(u^{3}-2 v\right)-v^{2}\right)=\min (3,4)=3$ since $\nu_{P}\left(u^{2}-2 v\right)=$ $\nu_{P}\left(-u^{3}+2 v u+v^{2}+2 u^{2}\right)=\min (2,3,4,3)=2$ and so $\nu_{P}\left(u\left(u^{3}-2 v\right)\right)=3$.
Theorem 9.7. Let w be smooth at $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K)$.
(1) There exists a unique $P \in \mathbb{P}_{L / K}$ satisfying $\nu_{P}\left(\alpha-\gamma_{1}\right)>0$ and $\nu_{P}\left(\beta-\gamma_{2}\right)>0$.
(2) If $l=l_{0}+l_{1} x+l_{2} y \in K[x, y]$ where $l_{0}, l_{1}, l_{2} \in K$ then it holds for P from (1):

$$
\nu_{P}(l(\alpha, \beta)) \begin{cases}=0 & \text { if } l(\gamma) \neq 0 \\ =1 & \text { if } l(\gamma)=0 \text { and } l \notin\left(t_{\gamma}(w)\right) \\ \geq 2 & \text { if } l(\gamma)=0 \text { and } l \in\left(t_{\gamma}(w)\right)\end{cases}
$$

$\mathbf{T \& N}$. If $p \in K[x]$ and $\gamma \in K$, denote by $\operatorname{mult}_{\gamma}(p)=\operatorname{mult}\left(\tau_{-\gamma}^{*}(p)\right)$ the multiplicity of a root γ of p, i.e the non-negative integer k satisfying $(x-\gamma)^{k} \mid p$ and $(x-\gamma)^{k+1} \nmid p$..
Observation. If $p, s \in K[x], g \in K[x, y], \gamma \in K$ is a root of $s, \operatorname{mult}_{\gamma}(g(x-\gamma, s(x))) \geq$ mult (g).

This year we omit the proof of the following fact:
Proposition 9.8. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K), \frac{\partial w}{\partial y}(\gamma) \neq 0, \lambda, \mu \in K$ satisfy $l=y-\lambda x-\mu$ and $l(\gamma)=0$, and $\left(\alpha-\gamma_{1}, \beta-\gamma_{2}\right) \subset P \in \mathbb{P}_{L / K}$. Then $\nu_{P}(l(\alpha, \beta))=\operatorname{mult}_{\gamma_{1}}(w(x, \lambda x+\mu))$.
Example 9.9. Let $f=y^{2}+x y+x^{5}+32 \in \mathbb{R}[x, y]$, then f is an absolutely irreducible by 8.2. Denote by L the AFF over \mathbb{R} given by $f(\alpha, \beta)=0$ for $\alpha=x+(f)$ and $\beta=y+(f) \in$ $\mathbb{R}[x, y] /(f)$. Since $(-2,2) \in V_{f}$ and $\frac{\partial f}{\partial x}=y+5 x^{4}, \frac{\partial f}{\partial y}=2 y+x$, we get $\frac{\partial f}{\partial x}(-2,2)=82$, $\frac{\partial f}{\partial y}(-2,2)=2$ and $t=t_{(-2,2)}(f)=82 x+2 y+160$.

By 9.7 there exists the unique $P \in \mathbb{P}_{L / K}$ containing $\alpha+2, \beta-2$.
For $u=\beta+41 \alpha+80=\frac{1}{2} t(\alpha, \beta)$ we determine the value $\nu_{P}(u)$ by applying 9.8:
$\hat{f}=f(x,-41 x-80)=x^{5}+40 \cdot 41 x^{2}-80 \cdot 81+80^{2}+32$.
Since $0=\hat{f}(-2)=\hat{f}^{\prime}(-2) \neq \hat{f}^{\prime \prime}(-2)$ we get $\nu_{P}(u)=2$.

10. Localization in a coordinate ring

Let us suppose again that L is an AFF over K given by $w(\alpha, \beta)=0$ with $\operatorname{deg}(w) \geq 2$ and by $f(u, v)=0$, where $f=y g(x, y)+h(x)+y \in K[x, y], h \in K[x] \backslash\{0\}, g \in K[x, y]$, $m=\operatorname{mult}(h) \geq 2, \operatorname{mult}(g) \geq 1$.
$\mathbf{T \& N}$. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K) \subset \mathbb{A}^{2}(K)$. Then $(w) \subseteq I_{\gamma}=\left(x-\gamma_{1}, y-\gamma_{2}\right)$. Denote by

$$
R_{\gamma}:=K[x, y]_{\left(I_{\gamma}\right)}=\left\{\left.\frac{a}{b} \in K(x, y) \right\rvert\, a, b \in K[x, y]: b(\gamma) \neq 0\right\}
$$

the localization of $K[x, y]$ in the maximal ideal $I_{\gamma},\left(I_{\gamma}\right)=\left\{\left.\frac{a}{b} \in R_{\gamma} \right\rvert\, a \in I_{\gamma}, b(\gamma) \neq 0\right\}$ denotes the (unique) maximal ideal of R_{γ} and $\omega_{\gamma}: R_{\gamma} \rightarrow L$ is a ring homomorphism defined by the rule $\omega_{\gamma}\left(\frac{a}{b}\right)=\frac{a(\alpha, \beta)}{b(\alpha, \beta)}$. Then let us denote

$$
\begin{aligned}
& { }_{w} \mathcal{O}_{\gamma}=\omega_{\gamma}\left(R_{\gamma}\right)=\left\{\rho \in L \mid \exists r \in R_{\gamma}: \omega_{\gamma}(r)=\rho\right\}, \\
& { }_{w} P_{\gamma}=\omega_{\gamma}\left(\left(I_{\gamma}\right)\right)=\left\{\rho \in L \mid \exists r \in\left(I_{\gamma}\right): \omega_{\gamma}(r)=\rho\right\} .
\end{aligned}
$$

If w is fixed we will write \mathcal{O}_{γ} instead ${ }_{w} \mathcal{O}_{\gamma}$ and P_{γ} instead ${ }_{w} P_{\gamma}$.
Observation. If $\gamma \in V_{w}(K), \sigma \in \mathrm{Aff}_{2}(\mathrm{~K})$ such that $f=\left(\sigma^{-1}\right)^{*}(w)$ and $\sigma(\gamma)=(0,0)$ and denote $\mathcal{O}_{\gamma}={ }_{w} \mathcal{O}_{\gamma}, P_{\gamma}={ }_{w} P_{\gamma}$, then
(1) \mathcal{O}_{γ} is a local ring with the maximal ideal P_{γ},
(2) $\mathcal{O}_{\gamma}=K+P_{\gamma}$, hence $\operatorname{dim}_{K}\left(\mathcal{O}_{\gamma} / P_{\gamma}\right)=1$,
(3) $\mathcal{O}_{\gamma}={ }_{f} \mathcal{O}_{(0,0)}$ a $P_{\gamma}={ }_{f} P_{(0,0)}$.

Lemma 10.1. If w is singular at $\gamma \in V_{w}(K)$, then \mathcal{O}_{γ} is not a valuation ring.
Example 10.2. Let $w=(y+1)^{2}-(x+2)^{3}$ and L be an AFF over \mathbb{F}_{5} given by $w(\alpha, \beta)=0$ for $\alpha=x+(w)$ and $\beta=y+(w) \in K[x, y] /(w)$ (cf. 7.8). Then $(3,4) \in V_{w}\left(\mathbb{F}_{5}\right)$ is a singularity of w and by the proof of $10.1 \frac{\alpha+2}{\beta+1} \notin{ }_{w} O_{(3,4)}$ and $\frac{\beta+1}{\alpha+2} \notin{ }_{w} O_{(3,4)}$.
Lemma 10.3. Let $u, v \in P \in \mathbb{P}_{L / K}$ and $z \in K[u, v] \backslash\{0\}$. Then $\exists a, b \in K[x, y] \backslash I_{(0,0)}$ (i.e. $\operatorname{mult}(a)=\operatorname{mult}(b)=0$) such that $\frac{z}{u^{\nu} P^{(z)}}=\frac{a(u, v)}{b(u, v)} \in{ }_{f} \mathcal{O}_{(0,0)}^{*}={ }_{f} \mathcal{O}_{(0,0)} \backslash{ }_{f} P_{(0,0)}$.

Proposition 10.4. Let w be smooth at $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K)$, and $\left(\alpha-\gamma_{1}, \beta-\gamma_{2}\right) \subseteq$ $P \in \mathbb{P}_{L / K}$. Then
(1) $\exists \tilde{u} \in P_{\gamma}$ such that $\nu_{P}(\tilde{u})=1$ and $z \tilde{u}^{-\nu_{P}(z)} \in \mathcal{O}_{\gamma}^{*}$ for each $z \in K[\alpha, \beta] \backslash\{0\}$,
(2) $P=P_{\gamma}$,
(3) $\mathcal{O}_{P}=\mathcal{O}_{\gamma}$.

Example 10.5. Consider $f=y^{2}+x y+x^{5}+32 \in \mathbb{R}[x, y]$ from 9.9 , where L is an AFF over \mathbb{R} given by $f(\alpha, \beta)=0$. Put $t=t_{(-2,2)}(f)=82 x+2 y+160$ and compute $P=P_{(-2,2)} \in \mathbb{P}_{L / \mathbb{R}}$. Since $(-2,2)$ is a zero of both lines $x+2, x+y$, and $x+2, x+y \notin(t)$, 9.7 implies that $\nu_{P}(\alpha+2)=\nu_{P}(\alpha+\beta)=1$.

Hence $P_{(-2,2)}=(\alpha+2)=\left\{\left.(\alpha+2) \frac{p(\alpha, \beta)}{q(\alpha, \beta)} \right\rvert\, q(-2,2) \neq 0\right\}$.
Observation. Let $0 \neq M \subsetneq K[\alpha, \beta]$ be a prime ideal and $\hat{K}=K[\alpha, \beta] / M$. Then
(1) M a maximal ideal of $K[\alpha, \beta]$ and $\hat{K}=K[x, y] / I_{\gamma}$ for some $\exists \gamma \in V_{w}$ by 7.4,
(2) $\hat{K}=K[\alpha+M, \beta+M]$ is a field and $[\hat{K}: K]<\infty$,
(3) $\alpha+M, \beta+M$ are algebraic over K,
(4) $[\hat{K}: K]=1 \Leftrightarrow \exists\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K)$ such that $M=\left(\alpha-\gamma_{1}, \beta-\gamma_{2}\right)$ by 7.1(2) and (1).

Lemma 10.6. Let $P \in \mathbb{P}_{L / K}$ and $\tilde{P}=P \cap K[\alpha, \beta]$.
(1) If $K[\alpha, \beta] \subseteq \mathcal{O}_{P}$, then \tilde{P} is a maximal ideal of $K[\alpha, \beta], \operatorname{dim}_{K}(K[\alpha, \beta] / \tilde{P})<\infty$, $\nu_{P}(\alpha) \geq 0$, and $\nu_{P}(\beta) \geq 0$.
(2) If $K[\alpha, \beta] \nsubseteq \mathcal{O}_{P}$, then $\tilde{P}=0$ and either $\nu_{P}(\alpha)<0$ or $\nu_{P}(\beta)<0$.
(3) If $K[\alpha, \beta] \nsubseteq \mathcal{O}_{P}$ and w is a WEP, then $3 \nu_{P}(\alpha)=2 \nu_{P}(\beta)<0$.
$\mathbf{T} \& \mathbf{N}$. Denote $\mathbb{P}_{L / K}^{(1)}:=\left\{P \in \mathbb{P}_{L / K} \mid \operatorname{deg} P=1\right\}$.
Theorem 10.7. Let $P \in \mathbb{P}_{L / K}^{(1)}$ and a polynomial w be smooth at all points of $\gamma \in V_{w}(K)$. Then the following conditions are equivalent:
(1) $K[\alpha, \beta] \subseteq \mathcal{O}_{P}$,
(2) \exists a unique $\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K)$ for which $\nu_{P}\left(\alpha-\gamma_{1}\right)>0$ and $\nu_{P}\left(\beta-\gamma_{2}\right)>0$,
(3) \exists a unique $\gamma \in V_{w}(K)$ for which $P=P_{\gamma}$.

Corollary 10.8. If a WEP w is smooth at all points $\gamma \in V_{w}(K)$ and $P \in \mathbb{P}_{L / K}^{(1)}$ then either $\exists \gamma \in V_{w}(K)$ for which $P=P_{\gamma}$ or $\alpha^{-1}, \beta^{-1} \in P$.

11. Weak Approximation Theorem

L is an AFF over K with the field of constants \tilde{K}.
Observation. Let $a, b \in L$.
(1) If $a \notin \tilde{K}$, then $\exists P \in \mathbb{P}_{L / K}$ such that $\nu_{P}(a)>0$ by 3.6,
(2) $\tilde{K}^{*}=\left\{s \in L \mid \nu_{P}(s)=0 \forall P \in \mathbb{P}_{L / K}\right\}$ by (1) and 4.8,
(3) if $P \in \mathbb{P}_{L / K}$ satisfies $\nu_{P}(a) \neq 0 \neq \nu_{P}(b)$, then $\nu_{P}\left(a+b^{k}\right)=\min \left(\nu_{P}(a), k \nu_{P}(b)\right)$ for all but one k by 4.6, hence $\exists k_{0}$ such that the equality holds $\forall k \geq k_{0}$.

Lemma 11.1. Let $n \geq 1$ and $P_{1}, \ldots, P_{n} \in \mathbb{P}_{L / K}$ be pairwisely distinct places. If $\nu_{i}:=\nu_{P_{i}}$ for all $i, a_{1}, \ldots a_{n} \in L$ and $z \in \mathbb{Z}$, then
(1) $\exists s \in L^{*}$ such that $\nu_{1}(s)>0$ and $\nu_{i}(s)<0$ for each $i=2, \ldots, n$,
(2) $\exists t \in L$ such that $\nu_{i}\left(t-a_{i}\right)>z$ for each $i=1, \ldots, n$.

Theorem 11.2 (Weak Approximation Theorem). Let $n \geq 1$ and $P_{1}, \ldots, P_{n} \in \mathbb{P}_{L / K}$ be pairwise distinct places. If $a_{1}, \ldots a_{n} \in L$ and $z_{1}, \ldots, z_{n} \in \mathbb{Z}$, then there exists $s \in L$ such that $\nu_{P_{i}}\left(s-a_{i}\right)=z_{i}$ for all $i=1, \ldots, n$.
Corollary 11.3. $\mathbb{P}_{L / K}$ is infinite.
$\mathbf{T} \& \mathbf{N}$. If W is a subspace of a K-space V, we say that B is linearly independent/LI (a basis) of V modulo W if $\{b+W \mid b \in B\}$ forms a linearly independent set (a basis) of the factor V / W.

Corollary 11.4. If $n \geq 1, e \geq 0$ and P, P_{1}, \ldots, P_{n} are pairwise distinct, then \exists a basis B of the K-algebra \mathcal{O}_{P} modulo P such that $B \subset P_{j}^{e} \backslash P_{j}^{e+1} \forall j=1, \ldots, n$.
Observation. Let $P \in \mathbb{P}_{L / K}$ and $b_{1}, \ldots, b_{n} \in \mathcal{O}_{P}$ is linearly independent modulo P over $K, t \in P, \nu_{P}(t)=1, \lambda_{i}, \lambda_{i j} \in K$ for $i=1, \ldots, n, j=0, \ldots, e-1$ and $\exists i: \lambda_{i} \neq 0$ and $\exists(i, j): \lambda_{i j} \neq 0$. Then
(1) $\nu_{P}\left(\sum_{i} \lambda_{i} b_{i}\right)=0$, since $\sum_{i} \lambda_{i} b_{i} \notin P$,
(2) $\nu_{P}\left(\sum_{i} \lambda_{i} b_{i} t^{j}\right)=\nu_{P}\left(\sum_{i} \lambda_{i} b_{i}\right)+\nu_{P}\left(t^{j}\right)=j$,
(3) $\nu_{P}\left(\sum_{i j} \lambda_{i j} b_{i} t^{j}\right)=\min \left\{j \mid \exists i: \lambda_{i j} \neq 0\right\}$ by 4.6 ,
(4) $\left\{b_{i} t^{j} \mid i=1, \ldots, n, j=0, \ldots, e-1\right\}$ is linearly independent modulo P^{e}.

Proposition 11.5. Let $P_{1}, \ldots, P_{n} \in \mathbb{P}_{L / K}$ be pairwise distinct places for $n \geq 1$. If $s \in \bigcap_{i=1}^{n} P_{i}$, then $[L: K(s)] \geq \sum_{i=1}^{n} \nu_{P_{i}}(s) \operatorname{deg} P_{i}$.
Corollary 11.6. If $s \in L^{*}$, then the set $\left\{P \in \mathbb{P}_{L / K} \mid \nu_{P}(s) \neq 0\right\}$ is finite.
Corollary 11.7. If w is a WEP and L is given by $w(\alpha, \beta)=0$, then there exists unique $P_{\infty} \in \mathbb{P}_{L / K}$ such that $\alpha^{-1} \in P_{\infty}$ or $\beta^{-1} \in P_{\infty}$. Furthermore, $P_{\infty} \in \mathbb{P}_{L / K}^{(1)}, \nu_{P_{\infty}}(\alpha)=-2$ and $\nu_{P_{\infty}}(\beta)=-3$.
$\mathbf{T} \& \mathbf{N}$. The uniquely determined place from 11.7 is denoted by P_{∞}.
Proposition 11.8. If w is a smooth WEP at $V_{w}(K)$, then

$$
\mathbb{P}_{L / K}^{(1)}=\left\{P_{\infty}\right\} \cup\left\{P_{\gamma} \mid \gamma \in V_{w}(K)\right\}
$$

Example 11.9. Let $f=y^{2}+y-\left(x^{3}+1\right)=y^{2}+y+x^{3}+1 \in \mathbb{F}_{2}[x, y]$ and $\alpha:=x+(f)$, $\beta:=y+(f) \in \mathbb{F}_{2}[x, y] /(f)$. Then f is a Weierstrass equation polynomial and $L=\mathbb{F}_{2}(\alpha, \beta)$ is an AFF over \mathbb{F}_{2} given by $f(\alpha, \beta)=0$.

Let $P \in \mathbb{P}_{L / K}$ of degree 1 . Then $\mathbb{P}_{L / K}^{(1)}=\left\{P_{(1,0)}, P_{(1,1)}, P_{\infty}\right\}$ by 11.8, since $V_{f}\left(\mathbb{F}_{2}\right)=$ $\{(1,0),(1,1)\}$.

By $11.3 \mathbb{P}_{L / K}$ is infinite, hence other places are of degree greater than 1 , for example for each irreducible $m \in \mathbb{F}_{2}[x]$ of degree greater than 1 , there exists $P_{m} \in \mathbb{P}_{L / K}$ such that $m(\alpha) \in P_{m}$, thus $\operatorname{deg} P_{m} \geq \operatorname{deg}(m)>1$.

12. Divisors

Let L be an AFF over K and \tilde{K} its field of constants in this section.
Definition. Let $\operatorname{Div}(\mathrm{L} / \mathrm{K})=\left\{\sum_{P \in \mathbb{P}_{L / K}} a_{p} P \mid a_{p} \in \mathbb{Z}\right\}$ denote the free abelian group with the free basis $\mathbb{P}_{L / K}$ (hence only finitely many a_{p} 's are non-zero) and operations

$$
\sum_{P \in \mathbb{P}_{L / K}} a_{p} P \pm \sum_{P \in \mathbb{P}_{L / K}} b_{p} P=\sum_{P \in \mathbb{P}_{L / K}}\left(a_{p} \pm b_{p}\right) P, \quad \underline{0}=\sum_{P \in \mathbb{P}_{L / K}} 0 P .
$$

A formal sum $\sum_{P \in \mathbb{P}_{L / K}} a_{p} P$ is called a divisor (of the AFF L over K). Degree of a divisor is defined by $\operatorname{deg}_{K}\left(\sum_{P \in \mathbb{P}_{L / K}} a_{p} P\right):=\sum_{P \in \mathbb{P}_{L / K}} a_{p} \operatorname{deg}_{K}(P)$.
Example 12.1. $\sum_{P \in \mathbb{P}_{L / K}} \nu_{p}(r) P$ is a divisor by 11.6 for each $r \in L^{*}$ and note that $\sum_{P \in \mathbb{P}_{L / K}} \nu_{P}(a) P=\underline{0} \Leftrightarrow \nu_{P}(a)=0 \forall P \in \mathbb{P}_{L / K} \Leftrightarrow a \in \tilde{K}$.
$\mathbf{T \& N}$. A divisor $\sum_{P \in \mathbb{P}_{L / K}} \nu_{p}(r) P$ for $r \in L^{*}$ is called principal divisor and it is denoted by (r) and let $\operatorname{Princ}(\mathrm{L} / \mathrm{K}):=\left\{(r) \mid r \in L^{*}\right\}$ be the set of all principal divisors of L over K.
Observation. Put $k=[\tilde{K}: K]<\infty, P \in \mathbb{P}_{L / K}, A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$.
(A1) $\mathbb{P}_{L / \tilde{K}}=\mathbb{P}_{L / K}$ and $\operatorname{Div}(\mathrm{L} / \tilde{\mathrm{K}})=\operatorname{Div}(\mathrm{L} / \mathrm{K})$,
(A2) $\operatorname{deg}_{K} P=\operatorname{dim}_{K} \mathcal{O}_{P} / P=k \cdot \operatorname{deg}_{\tilde{K}} P$ and $\operatorname{deg}_{K}(A)=k \cdot \operatorname{deg}_{\tilde{K}}(A)$,
(A3) $\operatorname{deg}_{K}: \operatorname{Div}(\mathrm{L} / \mathrm{K}) \rightarrow \mathbb{Z}$ is a group homomorphism,
(A4) the map $r \rightarrow(r)$ forms a homomorphism of $\left(L^{*}, \cdot,{ }^{-1}, 1\right)$ and $(\operatorname{Div}(\mathrm{L} / \mathrm{K}),+,-, \underline{0})$ since $(r s)=\sum_{P \in \mathbb{P}_{L / K}} \nu_{p}(r s) P=\sum_{P \in \mathbb{P}_{L / K}}\left(\nu_{p}(r)+\nu_{p}(s)\right) P=(r)+(s)$,
(A5) $\operatorname{Princ}(\mathrm{L} / \mathrm{K})$ is a subgroup of $\operatorname{Div}(\mathrm{L} / \mathrm{K})$ where $-(r)=\left(r^{-1}\right)$ and $\underline{0}=(1)$, furthermore, $(r)=(s) \Leftrightarrow \exists \lambda \in \tilde{K}^{*}$ satisfying $r=\lambda s$.
$\mathbf{T \& N}$. Let $A=\sum_{P \in \mathbb{P}_{L / K}} a_{p} P, B=\sum_{P \in \mathbb{P}_{L / K}} b_{p} P \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$. Then let us denote:

$$
\max (A, B):=\sum_{P \in \mathbb{P}_{L / K}} \max \left(a_{p}, b_{p}\right) P, \quad \min (A, B):=\sum_{P \in \mathbb{P}_{L / K}} \min \left(a_{p}, b_{p}\right) P,
$$

$A_{+}:=\max (A, \underline{0}), A_{-}:=-\min (A, \underline{0})=(-A)_{+}$, and A is called positive if $A=A_{+}$.
Define relations \leq and \sim on $\operatorname{Div}(\mathrm{L} / \mathrm{K}): A \leq B$ if $a_{p} \leq b_{p} \forall P \in \mathbb{P}_{L / K}, A \sim B$ if $A-B \in \operatorname{Princ}(\mathrm{~L} / \mathrm{K}) . \geq$ denotes the opposite relation.

Denote $\mathcal{L}(A):=\left\{r \in L^{*} \mid(r)+A \geq \underline{0}\right\} \cup\{0\}$.
Observation. Let $r \in L^{*}$ and $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$.
(B1) \sim is a congruence on $\operatorname{Div}(\mathrm{L} / \mathrm{K})$ and \leq is an ordering on $\operatorname{Div}(\mathrm{L} / \mathrm{K})$ compatible with the operation + (i.e. $A \leq B, C \leq D \Rightarrow A+C \leq B+D$ for $A, B, C, D \in \mathbb{P}_{L / K}$),
(B2) if $r \in L \backslash \tilde{K}$, then $(r) \nsupseteq \underline{0}$ by Lemma 4.9(1),
(B3) $\mathcal{L}(A)$ is a \tilde{K}-space and so K-space and

$$
\mathcal{L}(\underline{0}):=\left\{r \in L^{*} \mid(r)+(1) \geq \underline{0}\right\} \cup\{0\}=\tilde{K} .
$$

$\mathbf{T} \& \mathrm{~N} . \operatorname{Cl}(\mathrm{L} / \mathrm{K}):=\operatorname{Div}(\mathrm{L} / \mathrm{K}) / \operatorname{Princ}(\mathrm{L} / \mathrm{K})$ is called the class group of the AFF L over K.
If $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, then $\mathcal{L}(A)$ is said to be Riemann-Roch space of the divisor A and $l(A)=\operatorname{dim}_{L / K} A:=\operatorname{dim}_{K} \mathcal{L}(A)$.

If $K=\tilde{K}$, then L is a full constant AFF.
Observation. Let $i \leq j \in \mathbb{Z},(p)=P \in \mathbb{P}_{L / K}$ and denote $P^{i}=p^{i} \mathcal{O}_{P}$.
(C1) The map $\psi_{j}: \mathcal{O}_{P} / P \rightarrow P^{j-1} / P^{j}$ determined by the rule $\psi_{j}(a+P)=a p^{j-1}+P^{j}$ is an isomorphism of K-spaces,
(C2) $\operatorname{deg} P=\operatorname{dim}_{K} \mathcal{O}_{P} / P=\operatorname{dim}_{K} P^{j-1} / P^{j}$,
(C3) $\operatorname{dim}_{K}\left(P^{i} / P^{j}\right)=\sum_{k=i+1}^{j} \operatorname{dim}\left(P^{k-1} / P^{k}\right)=(j-i) \operatorname{deg} P$.
Lemma 12.2. If $A, B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ such that $A \leq B$, then $\mathcal{L}(A)$ is a subspace of $\mathcal{L}(B)$ and $\operatorname{dim}_{K}(\mathcal{L}(B) / \mathcal{L}(A)) \leq \operatorname{deg}_{K}(B-A)$.
Lemma 12.3. If $\mathbb{P}_{L / K}^{(1)} \neq \emptyset$, then $K=\tilde{K}$
We will suppose in the rest of the lecture that $K=\tilde{K}$, i.e. L is a full constant AFF.
Proposition 12.4. If $A, B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, then
(D1) $1 \leq l(A) \leq \operatorname{deg} A+1$ if $A \geq \underline{0}$,
(D2) $l(A)=0$, if $A<\underline{0}$,
(D3) $l(A) \leq l\left(A_{+}\right)<\infty$,
(D4) $\operatorname{deg} A-l(A) \leq \operatorname{deg} B-l(B)$, if $A \leq B$.
Lemma 12.5. If $s \in L \backslash K$, then $\exists B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ such that $B \geq \underline{0}$ and for each $k \geq 0$:
(1) $(k+1)[L: K(s)] \leq l\left(k \cdot(s)_{-}+B\right)$,
(2) $(k+1)[L: K(s)] \leq k \cdot \operatorname{deg}\left((s)_{-}\right)+\operatorname{deg} B+1$,
(3) $k[L: K(s)]-l\left(k \cdot(s)_{-}\right) \leq \operatorname{deg} B-[L: K(s)]$.

Theorem 12.6. If $s \in L \backslash K$ then $\operatorname{deg}\left((s)_{-}\right)=\operatorname{deg}\left((s)_{+}\right)=[L: K(s)]$ and $\operatorname{deg}((s))=0$.
Corollary 12.7. If $A \sim B$, then $\operatorname{deg} A=\operatorname{deg} B$ and $\operatorname{dim}_{L / K} A=\operatorname{dim}_{L / K} B$.
Example 12.8. Let L be an AFF over \mathbb{F}_{2} given by $w(\alpha, \beta)=0$ for $w=y^{2}+y-\left(x^{3}+1\right) \in$ $\mathbb{F}_{2}[x, y]$ as in 11.9. We will compute principal divisors $(\alpha+1)$ and (α).
(a) By 12.6

$$
\operatorname{deg}\left((\alpha+1)_{+}\right)=\sum_{P: \alpha+1 \in P} \nu_{P}(\alpha+1) \operatorname{deg} P=\left[L: \mathbb{F}_{2}(\alpha+1)\right]=\left[L: \mathbb{F}_{2}(\alpha)\right]=2 .
$$

Since $\alpha+1 \in P_{(1,0)} \cap P_{(1,1)}$ and $\nu_{P_{\infty}}(\alpha+1)=\nu_{P_{\infty}}(\alpha)=-2$ by 11.7, we get

$$
(\alpha+1)=1 \cdot P_{(1,0)}+1 \cdot P_{(1,1)}-2 \cdot P_{\infty}
$$

(b) Again by 12.6 is $\operatorname{deg}\left((\alpha)_{+}\right)=\sum_{P: \alpha \in P} \nu_{P}(\alpha) \operatorname{deg} P=\left[L: \mathbb{F}_{2}(\alpha)\right]=2$ and $\alpha \notin P$ for all $P \in \mathbb{P}_{L / K}{ }^{(1)}$, hence there exists a unique P such that $\alpha \in P$ and $\operatorname{deg} P=2$, which means that

$$
(\alpha)=1 \cdot P-2 \cdot P_{\infty} .
$$

Observation. For $A, B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ it holds:
(D5) $l(A) \geq 1 \Leftrightarrow \exists s \in L^{*}$ such that $s \in \mathcal{L}(A) \Leftrightarrow \exists s \in L^{*}$ such that $A+(s) \geq \underline{0}$,
(D6) $l(B-A) \geq 1 \Leftrightarrow \exists s \in L^{*}$ such that $A-(s) \leq B \Leftrightarrow \exists A^{\prime} \in \operatorname{Div}(\mathrm{L} / \mathrm{K})$ such that $A \sim A^{\prime} \leq B$,
(D7) if $l(B-A) \geq 1$, then $\operatorname{deg} A-l(A) \leq \operatorname{deg} A^{\prime}-l\left(A^{\prime}\right) \leq \operatorname{deg} B-l(B)$ for A^{\prime} from (D6) by (D4),
(D8) if $\operatorname{deg} A<0$, then $\operatorname{deg}(A+(s))=\operatorname{deg} A<0 \forall s \in L^{*}$, hence $l(A)=0$,
(D9) $\mathcal{L}((s))=\left\{r \in L^{*} \mid(r s) \geq \underline{0}\right\} \cup\{0\}=K s^{-1}\left(=\left\{k s^{-1} \mid k \in K\right\}\right) \forall s \in L^{*}$.
Lemma 12.9. If $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ such that $\operatorname{deg} A=0$, then
(1) $l(A) \in\{0,1\}$,
(2) $l(A)=1 \Leftrightarrow A \in \operatorname{Princ}(\mathrm{~L} / \mathrm{K})$.

Theorem 12.10 (Riemann). There exists an integer γ such that for each $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$

$$
\operatorname{deg}(A)-l(A)<\gamma
$$

Definition. The minimal possible γ such that $\operatorname{deg}(A)-l(A)<\gamma$ for each $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, which exists by Theorem 12.10, is called the genus of the AFF L over \tilde{K}. Furthermore, $i(A):=g-1-\operatorname{deg}(A)+l(A) \geq 0$ is said to be the index of specialty of $A(A$ is called special if $i(A)>0$ and A is called nonspecial if $i(A)=0$).

Corollary 12.11. Let $A, D \in \operatorname{Div}(\mathrm{~L} / \mathrm{K}))$ and suppose $\operatorname{deg}(D)-l(D)=g-1$ for the genus g.
(E1) $g>\operatorname{deg}(\underline{0})-l(\underline{0})=-1$, hence $g \geq 0$,
(E2) $\operatorname{deg}(A-D)-l(A-D) \leq g-1$, hence $l(A-D) \geq \operatorname{deg}(A)-\operatorname{deg}(D)-g+1$,
(E3) if $\operatorname{deg}(A) \geq \operatorname{deg}(D)+g$, then $l(A-D) \geq 1$ by (E2),
(E4) if either $l(A-D) \geq 1$ or $D \leq A$ then by (D4) and (D6) $g-1=\operatorname{deg}(D)-l(D) \leq$ $\operatorname{deg}(A)-l(A) \leq g-1$, hence $\operatorname{deg}(A)-l(A)=g-1$ and $i(A)=0$,
(E5) if $\operatorname{deg}(D)+g \leq \operatorname{deg}(A)$, then $l(A-D) \geq 1$ by (E3), thus $l(A)=\operatorname{deg}(A)-g+1$ and $i(A)=0$ by (E4).

13. Adèles and Weil differentials

We suppose that L is a full constant AFF over $K=\tilde{K}$ of genus g.
$\mathbf{T \& N}$. Let $\mathbb{P}:=\mathbb{P}_{L / K}$ and consider the Cartesian power $L^{\mathbb{P}}$ as an L-algebra with component-wise defined operations where $l \rightarrow l \cdot 1 \in L^{\mathbb{P}}$ identifies elements of L with constants of $L^{\mathbb{P}}$. Let $A=\sum_{P \in \mathbb{P}_{L / K}} a_{p} P \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$. Then

$$
\mathcal{A}_{L / K}(A):=\left\{f \in L^{\mathbb{P}} \mid \nu_{P}(f(P))+a_{P} \geq 0 \forall P \in \mathbb{P}\right\}
$$

An element of $\mathcal{A}_{L / K}=\bigcup_{B \in \operatorname{Div}(\mathrm{~L} / K)} \mathcal{A}_{L / K}(B)$ is called adèle.
If $P=(p) \in \mathbb{P}_{L / K}$, then $P^{k}=p^{k} \mathcal{O}_{P}=\left\{r \in L \mid \nu_{P}(r) \geq k\right\}$ for each $k \in \mathbb{Z}$.
Observation. Let $r \in L, f \in L^{\mathbb{P}_{L / K}}, A=\sum_{P \in \mathbb{P}_{L / K}} a_{p} P \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ and $s \in L^{*}$.
(1) $f \in \mathcal{A}_{L / K} \Leftrightarrow\left\{P \in \mathbb{P} \mid \nu_{P}(f(P))<0\right\}$ is finite, hence $r \in \mathcal{A}_{L / K}$ by 11.6,
(2) $\mathcal{A}_{L / K}$ is a subalgebra of the L-algebra $L^{\mathbb{P}_{L / K}}$,
(3) $\mathcal{A}_{L / K}(A)=\prod_{P \in \mathbb{P}_{L / K}} P^{-a_{P}}$ is a subspace of the K-space $\mathcal{A}_{L / K}$ and $\mathcal{A}_{L / K}(A) \cap L=$ $\mathcal{L}(A)$.
Lemma 13.1. Let $A=\sum_{P \in \mathbb{P}_{L / K}} a_{p} P, B=\sum_{P \in \mathbb{P}_{L / K}} b_{p} P \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ and $s \in L^{*}$.
(1) $A \leq B \Rightarrow \mathcal{A}_{L / K}(A) \subseteq \mathcal{A}_{L / K}(B)$ and $\operatorname{dim}_{K}\left(\mathcal{A}_{L / K}(B) / \mathcal{A}_{L / K}(A)\right)=\operatorname{deg}(B-A)$,
(2) $A \leq B \Rightarrow \operatorname{dim}_{K}\left(\left(\mathcal{A}_{L / K}(B)+L\right) /\left(\mathcal{A}_{L / K}(A)+L\right)\right)=i(A)-i(B)$,
(3) $\mathcal{A}_{L / K}(A) \cap \mathcal{A}_{L / K}(B)=\mathcal{A}_{L / K}(\min (A, B))$, $\mathcal{A}_{L / K}(A)+\mathcal{A}_{L / K}(B)=\mathcal{A}_{L / K}(\max (A, B))$,
(4) $\operatorname{dim}_{K}\left(\mathcal{A}_{L / K} /\left(\mathcal{A}_{L / K}(A)+L\right)\right)=i(A)$,
(5) $\mathcal{A}_{L / K}=\mathcal{A}_{L / K}(A)+L \Leftrightarrow i(A)=0$,
(6) $s \mathcal{A}_{L / K}(A)=\mathcal{A}_{L / K}(A-(s))$.
$\mathbf{T} \& \mathbf{N}$. Let $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$. Then
$\Omega_{L / K}(A):=\left(\mathcal{A}_{L / K}(A)+L\right)_{K}^{o}=\left\{\omega \in \mathcal{A}_{L / K}{ }^{*} \mid \omega\left(\mathcal{A}_{L / K}(A)+L\right)=0,\right\}$
$\Omega_{L / K}:=\bigcup_{B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})} \Omega_{L / K}(B)=\left\{\omega \in \mathcal{A}_{L / K}{ }^{*} \mid \omega(L)=0, \exists B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K}): \omega\left(\mathcal{A}_{L / K}(B)\right)=0\right\}$
We define $\forall \omega \in \Omega_{L / K}$ and $\forall s \in L^{*}$ multiplication on $\Omega_{L / K}$ by the rules $(s \cdot \omega)(t)=\omega(s t)$ $\forall s \in L^{*}$ and $0 \cdot \omega=0$. Elements of $\Omega_{L / K}$ are called Weil differentials (of the AFF).
Corollary 13.2. Let $A, B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ a $s \in L^{*}$.
(1) $\operatorname{dim}_{K}(\Omega(A))=\operatorname{dim}\left(\mathcal{A}_{L / K} /\left(\mathcal{A}_{L / K}(A)+L\right)=i(A)\right.$ by 1.4(2), 13.1(4),
(2) $A \leq B \Rightarrow \Omega_{L / K}(B) \subseteq \Omega_{L / K}(A)$ by $1.4(3,13.1(1))$,
(3) $\Omega_{L / K}(A) \cap \Omega_{L / K}(B)=\left(\mathcal{A}_{L / K}(A)+\mathcal{A}_{L / K}(B)+L\right)^{o}=\Omega_{L / K}(\max (A, B))$,
$\Omega_{L / K}(A)+\Omega_{L / K}(B)=\left(\left(\mathcal{A}_{L / K}(A)+L\right) \cap\left(\mathcal{A}_{L / K}(B)+L\right)\right)^{o} \subseteq \Omega_{L / K}(\min (A, B))$
by $1.4(1),(4), 13.1(3)$,
(4) $s \Omega_{L / K}(A)=\left(s^{-1}\left(\mathcal{A}_{L / K}(A)\right)^{o}=\underset{20}{\Omega_{L / K}}(A+(s)\right.$ by 1.5(3), 13.1(6),
(5) $\Omega_{L / K}$ forms an L-space by 1.5 , (3) a (4).

Lemma 13.3. If $\omega \in \Omega_{L / K} \backslash\{0\}$, then there exists a unique $W \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ such that $\omega\left(\mathcal{A}_{L / K}(W)\right)=0$ and each $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ satisfies $A \leq W$ whenever $\omega\left(\mathcal{A}_{L / K}(A)\right)=0$.
$\mathbf{T} \& \mathbf{N}$. Let $\omega \in \Omega_{L / K} \backslash\{0\}$. The divisor W from 13.3 uniquely determined by ω is called the canonical divisor of ω and it is denoted by (ω).

Let us define a map $\Psi_{\omega}: L \rightarrow \Omega_{L / K}$ by $\Psi_{\omega}(s)=s \cdot \omega \forall s \in L$.
Lemma 13.4. Let $\omega, \tilde{\omega} \in \Omega_{L / K} \backslash\{0\}$ and $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$. Then
(1) $(s \omega)=(s)+(\omega) \forall s \in L^{*}$,
(2) Ψ_{ω} is L-linear and so K-linear embedding and $\Psi_{\omega}(\mathcal{L}((\omega)-A)) \subseteq \Omega_{L / K}(A)$,
(3) $\exists B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ such that $\Psi_{\omega}(\mathcal{L}((\omega)-B)) \cap \Psi_{\tilde{\omega}}(\mathcal{L}((\tilde{\omega})-B)) \neq 0$.

Theorem 13.5. Let $\omega \in \Omega_{L / K} \backslash\{0\}$ and $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, then
(1) $\operatorname{dim}_{L}\left(\Omega_{L / K}\right)=1$,
(2) Ψ_{ω} induces a K-isomorphism $\mathcal{L}((\omega)-A) \rightarrow \Omega_{L / K}(A)$.

As a consequence we can easily see that all the canonical divisors form exactly one coset modulo Princ(L/K).

The following two results will be skipped this year.
Lemma 13.6. Let $\mathcal{S} \varsubsetneqq \mathbb{P}_{L / K},, P_{1}, \ldots, P_{n} \in \mathcal{S}$ be pairwise distinct places, $a_{1}, \ldots a_{n} \in L$ and $z \in \mathbb{Z}$. Then there exists $t \in L$ such that $\nu_{P_{i}}\left(t-a_{i}\right)>z \forall i=1, \ldots, n$ and $\nu_{P}(t) \geq 0$ $\forall P \in \mathcal{S} \backslash\left\{P_{1} \ldots, P_{n}\right\}$.

Theorem 13.7 (Strong Approximation Theorem). Let $\mathcal{S} \varsubsetneqq \mathbb{P}_{L / K},, P_{1}, \ldots, P_{n} \in \mathcal{S}$ be pairwise distinct places. If $a_{1}, \ldots a_{n} \in L$ and $z_{1}, \ldots, z_{n} \in \mathbb{Z}$, then $\exists s \in L$ such that $\nu_{P_{i}}\left(s-a_{i}\right)=z_{i}$ for each $i=1, \ldots, n$ and $\nu_{P}(s) \geq 0$ for each $P \in \mathcal{S} \backslash\left\{P_{1} \ldots, P_{n}\right\}$.

14. Riemann-Roch Theorem

L is a full constant AFF over $K=\tilde{K}$ of genus g.
Theorem 14.1 (Riemann-Roch). If W is a canonical divisor and $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, then

$$
l(A)=\operatorname{deg} A+l(W-A)+1-g .
$$

If we put $W=\underline{0}$ and $W=A$, then we get the following consequence:
Corollary 14.2.] If $W \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ is canonical, then $l(W)=g$, $\operatorname{deg} W=2 g-2$, $i(W)=g-1-\operatorname{deg} W+l(W)=1$.

Corollary 14.3 (Main consequence of the Riemann-Roch Theorem). If $\operatorname{deg} A \geq 2 g-1$ for $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, then $l(A)=\operatorname{deg} A+1-g$.

Lemma 14.4. Let $P \in \mathbb{P}_{L / K}^{(1)}, h \in \mathbb{Z}, h \geq 0, s \in L$. Then
(1) $s \in \mathcal{L}(i P) \backslash \mathcal{L}((i-1) P) \Leftrightarrow(s)_{-}=i P$, where $i \geq 1$,
(2) if $\exists k \geq 0$ such that $l(i P) \geq i-h+1$ for each $i \geq k$, then $g \leq h$,
(3) if for each $i \geq h+1$ there exists $s_{i} \in L$ such that $\left(s_{i}\right)_{-}=i P$, then $g \leq h$.

Example 14.5. Recall that the field $K(x)$ is an AFF over K and by 4.7

$$
\mathbb{P}_{K(x) / K}=\left\{P_{p} \mid p \in K[x] \text { is monic irreducible }\right\} \cup\left\{P_{\infty}\right\}
$$

where P_{p} is the maximal ideal of the localization with $\nu_{P_{p}}=\nu_{p}$ and P_{∞} is given by the discrete valuation $\nu_{\infty}\left(\frac{a}{b}\right)=\operatorname{deg}(b)-\operatorname{deg}(a)$. Then $\nu_{p}\left(x^{i}\right) \geq 0$ for each $i \geq 0$ and p is irreducible monic. Furthermore $\nu_{\infty}\left(x^{i}\right)=-i$ for each $i \geq 0$, hence $\left(x^{i}\right)_{-}=i P_{\infty}$. Thus $K(x)$ is of genus 0 by 14.4(3).

For every $s \in K(x)^{*}$ there exist $k \in K^{*}$, irreducible, pairwisely non-associated polynomials $p_{i} \in K[x]$ and exponents $e_{i} \in \mathbb{Z}$, for which $s=k \prod_{i} p_{i}^{e_{i}}$. If we put $d=\sum_{i} e_{i} \operatorname{deg} p_{i}$, then $(s)=\sum_{i} e_{i} P_{p_{i}}-d P_{\infty}$ forms a principal divisor and it holds $e_{i}=\nu_{p_{i}}(s)=\nu_{P_{p_{i}}}(s)$. This presents a way of searching of an element of L determining a divisor of degree 0 , which is in this case necessarily principal.
Proposition 14.6. Let $\mathbb{P}_{L / K}^{(1)} \neq \emptyset$. Then $g=0 \Leftrightarrow$ there exists $s \in L$ such that $L=K(s)$.

15. Elliptic function fields

Let L be an AFF over K of genus g.
Definition. L is called an elliptic function field (EFF) over K, if it is of genus 1 and $\mathbb{P}_{L / K}^{(1)} \neq \emptyset$.
Observation. If L is an EFF over K and $P \in \mathbb{P}_{L / K}^{(1)}$, then is L full constant by 12.3 , and $l(i P)=\operatorname{deg}(i P)=i$ for each $i \geq 1$ by 14.3, hence $K=\mathcal{L}(1 P) \varsubsetneqq \mathcal{L}(2 P) \varsubsetneqq \mathcal{L}(3 P)$.
Proposition 15.1. If L is an EFF over K and $P \in \mathbb{P}_{L / K}^{(1)}$, then $\forall u \in \mathcal{L}(2 P) \backslash \mathcal{L}(1 P)$ and $v \in \forall \mathcal{L}(3 P) \backslash \mathcal{L}(2 P)$ there exists a WEP $w \in K[x, y]$ and $\lambda \in K^{*}$ such that L is given by $w(\lambda u, \lambda v)=0$.
Corollary 15.2. Every EFF is given by a Weierstrass equation (i.e. there are a WEP w and elements α, β such that the EFF is given by $w(\lambda u, \lambda v)=0)$.

Recall that if w is smooth at $V_{w}(K)$, then $\mathbb{P}_{L / K}^{(1)}=\left\{P_{\infty}\right\} \cup\left\{P_{\gamma} \mid \gamma \in V_{w}(K)\right\}$ by 11.8.
Lemma 15.3. If $w \in K[x, y]$ is a WEP and L over K is given by $w(\alpha, \beta)=0$ and it is not an EFF, then $g=0$, and $\exists s \in L$ and $\exists a, b \in K[x]$, for which $L=K(s), \alpha=a(s)$, $\beta=b(s)$ and $\operatorname{deg} a=2, \operatorname{deg} b=3$.
Theorem 15.4. Let L be given by $w(\alpha, \beta)=0$ for a WEP $w \in K[x, y]$. Then L is an $\mathrm{EFF} \Leftrightarrow w$ is smooth at $V_{w}(K)$.
Example 15.5. (1) Let $w=y^{2}+y+x^{3}+1 \in \mathbb{F}_{2}[x, y]$ is a WEP from 11.9. Since it is smooth at rational points $\left.V_{w}\left(\mathbb{F}_{2}\right)=\{(1,0),(1,1))\right\}$, then by 15.4 the genus of $\mathbb{F}_{2}\left(V_{w}\right)$ is 1 , hence it is an EFF and $\mathbb{F}_{2}(s) \varsubsetneqq \mathbb{F}_{2}\left(V_{w}\right)$ for each $s \in \mathbb{F}_{2}\left(V_{w}\right)$.
(2) Let $w=y^{2}+x^{3}+x+1 \in \mathbb{F}_{2}[x, y]$ be a WEP. Since it is singular at $(1,1) \in V_{w}\left(\mathbb{F}_{2}\right)$. Hence by 15.4 it is of genus 0 and there exists $s \in \mathbb{F}_{2}\left(V_{w}\right)$ such that $\mathbb{F}_{2}(s)=\mathbb{F}_{2}\left(V_{w}\right)$. It is easy to compute that e.g. $s=\frac{\beta+1}{\alpha+1}$ for $\alpha=x+(w), \beta=y+(w)$, hence $\mathbb{F}_{2}\left(V_{w}\right)=\mathbb{F}_{2}(\alpha, \beta)$ is given by $w(\alpha, \beta)=0$.

In the rest of the section L is an EFF over K.
$\mathbf{T} \& \mathbf{N}$. The factor group $\operatorname{Pic}^{0}(L / K):=\operatorname{Ker}(\operatorname{deg}) / \operatorname{Princ}(\mathrm{L} / \mathrm{K})$ is called the Picard group and $[A]:=A+\operatorname{Princ}(\mathrm{L} / \mathrm{K})$ denotes the cosets of $\operatorname{Pic}^{0}(L / K)$ and a mapping $\Psi_{Q}: \mathbb{P}_{L / K}^{(1)} \rightarrow$ $\operatorname{Pic}^{0}(L / K)$ is given by the rule

$$
\Psi_{Q}(P):=[P-Q] \text { for } Q \in \mathbb{P}_{L / K}^{(1)} .
$$

Lemma 15.6. Let $P, Q \in \mathbb{P}_{L / K}^{(1)}$, and $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$.
(1) if $P-Q \in \operatorname{Princ}(\mathrm{~L} / \mathrm{K})$, then $P=Q$,
(2) if $\operatorname{deg} A=1$, then there exist a unique place $Q \in \mathbb{P}_{L / K}^{(1)}$ such that $P-A \in$ $\operatorname{Princ}(\mathrm{L} / \mathrm{K})$,
(3) the mapping $\Psi_{Q}: \mathbb{P}_{L / K}^{(1)} \rightarrow \operatorname{Pic}^{0}(L / K)$ is a bijection.
$\mathbf{T} \& \mathbf{N}$. We define for a fixed $Q \in \mathbb{P}_{L / K}^{(1)}$ operations by the rule $P_{1} \oplus P_{2}=\Psi_{Q}^{-1}\left(\Psi_{Q}\left(P_{1}\right)+\right.$ $\left.\Psi_{Q}\left(P_{2}\right)\right)$ and $\ominus P=\Psi_{Q}^{-1}\left(-\Psi_{Q}(P)\right)$.

Corollary 15.7. If $Q, P_{0}, P_{1}, \ldots, P_{n} \in \mathbb{P}_{L / K}^{(1)}$, then
(1) $\left(\mathbb{P}_{L / K}^{(1)}, \oplus, \ominus, Q\right)$ forms an abelian group and Ψ_{Q} is a group isomorphism,
(2) $P_{1} \oplus P_{2}=P_{0} \Leftrightarrow\left[P_{1}+P_{2}\right]=\left[P_{0}+Q\right]$,
(3) $P_{1} \oplus \cdots \oplus P_{n}=P_{0} \Leftrightarrow-P_{0}+(1-n) Q+\sum_{i=1}^{n} P_{i} \in \operatorname{Princ}(\mathrm{~L} / \mathrm{K})$.

In the rest, L denotes an EFF over K given by $w(\alpha, \beta)=0$ for a WEP w.
Definition. Let us consider on $\mathbb{P}_{L / K}^{(1)}=\left\{P_{\infty}\right\} \cup\left\{P_{\gamma} \mid \gamma \in V_{w}(K)\right\}$ (from 11.8) a group structure determined by $\Psi_{P_{\infty}}$, put $E(K)=V_{w}(K) \cup\{\infty\}$ and define operations \oplus, \ominus on $E(K)$:

$$
\begin{gathered}
\gamma \oplus \delta=\eta \Leftrightarrow P_{\gamma} \oplus P_{\delta}=P_{\eta} \Leftrightarrow\left[P_{\gamma}+P_{\delta}\right]=\left[P_{\eta}+P_{\infty}\right], \\
\ominus \gamma=\delta \Leftrightarrow \ominus P_{\gamma}=P_{\delta} \Leftrightarrow\left[P_{\gamma}+P_{\delta}\right]=\left[2 P_{\infty}\right] .
\end{gathered}
$$

Now we formulate a consequence of main results of the course, including 9.7, 11.8 and 12.5:

Proposition 15.8. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K), l_{0}+l_{1} x+l_{2} y \in K[x, y]$ such that $l_{0}, l_{1}, l_{2} \in$ K and $\left(l_{1}, l_{2}\right) \neq(0,0)$, and put $V=V_{w}(K) \cap V_{l}(K)$.
(1) $(E(K), \oplus, \ominus, \infty)$ is an abelian group isomorphic to $\operatorname{Ker}(\operatorname{deg}) / \operatorname{Princ}(\mathrm{L} / \mathrm{K})$,
(2) $\gamma \in V_{l}(K) \Leftrightarrow \nu_{P_{\gamma}}(l(\alpha, \beta)) \geq 1 \Leftrightarrow 1 P_{\gamma} \leq(l(\alpha, \beta))_{+}$,
(3) $\gamma \in V_{l}(K)$ and $l \in\left(t_{\gamma}(w)\right) \Leftrightarrow \nu_{P_{\gamma}}(l(\alpha, \beta)) \geq 2 \Leftrightarrow 2 P_{\gamma} \leq(l(\alpha, \beta))_{+}$,
(4) $(l(\alpha, \beta))_{-}=2 P_{\infty}$ whenever $l_{2}=0$, and $(l(\alpha, \beta))_{-}=3 P_{\infty}$ otherwise,
(5) if $l_{2}=0$, then $l \in\left(x-\gamma_{1}\right)$ and $\exists!\delta \in V$ such that $(l(\alpha, \beta))=P_{\gamma}+P_{\delta}-2 P_{\infty}$, i.e. $\ominus \gamma=\delta$ for $V=\{\gamma, \delta\}$,
(6) if $l_{2} \neq 0$ and $\delta \in V$ such that $P_{\gamma}+P_{\delta} \leq(l(\alpha, \beta))_{+}$then $\exists!\eta \in V$ such that $(l(\alpha, \beta))=P_{\gamma}+P_{\delta}+P_{\eta}-3 P_{\infty}$, i.e. $\gamma \oplus \delta \oplus \eta=\infty$ for $V=\{\gamma, \delta, \eta\}$.

The rest was not presented at the lecture this year.
Corollary 15.9. If $K \subseteq F \subseteq \bar{K}$ is a field extension, then $E(K)$ is a subgroup of $E(F)$.

Denote by $w=y^{2}+a_{1} x y+a_{3} y-\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right) \in K[x, y]$ for a WEP smooth at $V_{w}(K)$.

Theorem 15.10. $(E(K), \oplus, \ominus, \infty)$ is a commutative group and for $\gamma=\left(\gamma_{1}, \gamma_{2}\right), \delta=$ $\left(\delta_{1}, \delta_{2}\right), \eta=\left(\eta_{1}, \eta_{2}\right) \in V_{w}(K)$ it holds:
(1) $\ominus \gamma=\left(\gamma_{1},-\gamma_{2}-a_{1} \gamma_{1}-a_{3}\right)$,
(2) if $\gamma \neq \ominus \delta$ and $\gamma \oplus \delta=\eta$, then $\eta=\left(-\gamma_{1}-\delta_{1}+\lambda^{2}+a_{1} \lambda-a_{2}, \lambda\left(\gamma_{1}-\eta_{1}\right)-\gamma_{2}-a_{1} \eta_{1}-a_{3}\right)$, where (a) $\lambda=\frac{\delta_{2}-\gamma_{2}}{\delta_{1}-\gamma_{1}}$ if $\gamma_{1} \neq \delta_{1}$,
(b) $\lambda=\frac{3 \gamma_{1}^{2}+2 a_{2} \gamma_{1}-a_{1} \gamma_{2}+a_{4}}{2 \gamma_{2}+a_{1} \gamma_{1}+a_{3}}$ if $\gamma_{1}=\delta_{1}$.

Example 15.11. Let $w=y^{2}-x^{3}-1 \in \mathbb{F}_{5}[x]$ be a WEP. Since $\left(x^{3}+1\right)^{\prime}=3 x^{2}$ and 0 is not a root of $x^{3}+1, w$ is smooth.

Since $E\left(\mathbb{F}_{5}\right)=\{(0,1),(0,4),(4,0),(2,2),(2,3), \infty\}$ is a commutative group of the order 6 , we know that $E\left(\mathbb{F}_{5}\right) \cong \mathbb{Z}_{6}$. By applying 15.7 we compute:
$(0,1)=\ominus(0,4)(4,0) \oplus(4,0)=(2,2) \oplus(2,3)=\infty$ and $(0,4) \oplus(4,0)=(2,3)$.

Contents

Motivation 1

1. Algebras over a field 1
2. Algebraic function fields 2
3. Valuation rings 3
4. Discrete valuation rings 5
5. Weierstrass equations 7
6. Singularities 9
7. Coordinate rings 10
8. Absolutely irreducible polynomials 12
9. Places determined by a pair 12
10. Localization in a coordinate ring 14
11. Weak Approximation Theorem 16
12. Divisors 17
13. Adèles and Weil differentials 20
14. Riemann-Roch Theorem 21
15. Elliptic function fields 22
