CURVES AND FUNCTION FIELDS

MoOTIVATION

Objective: to build an (algebraic) apparatus for describing curves over finite fields.
Idea: generalization of geometric theory (with geometrically descriptive analogies)
Key tool: description of the structure of function fields (places > points at a curve)
Key problem: situation R C C easier than F, CF, ([C:R] =2 vs. [F, : F,] = o0)

Lecture structure:

(1) Rings - algebras over a field, valuation rings,
(2) Polynomials - WEP, coordinate rings,

(3) Ideals - places in function fields,

(4) Spaces - divisors, Weil differentials,

(5) Groups - function fields of elliptic curves.

1. ALGEBRAS OVER A FIELD

A ring always means commutative ring with operations +, —, -, 0 and 1 and we will
usually write R instead (R, 4+, —,-,0,1).

T&N. Let K be a field and A a ring containing K as a subring. Then A is called
K-algebra (or algebra over K). If A and B are two K-algebras, then f : A — B is

a homomorphism of K-algebras, if it is a ring homomorphism and f(k) = k for every
keK.

K always denotes a field and R < K means that R a subring of K.

Observation. If A and B are K-algebras and [ is a proper ideal of A, then
(1) A/I is a K-algebra,
(2) Ais a vector space over K and [ is its subspace,
(3) if f: A — B is a homomorphism of K-algebras, then f is K-linear.

T&N. Let R be aring, M C R aa € R. Then (M) denotes the ideal of R generated
by the set M and (a) := ({a}). Rlxi,...,x,] denotes a polynomial ring over R and
K(zq,...,x,) is a field of fractions of K[xq,...,x,].

Example 1.1. (1) K[z], K[z,y], K(z)[y] and K(z,y) are K-algebras.
(2) R, C, Q[v/2] are Q-algebras.
(3) Qla] = Qlr] % Q(7) = Q(x) are Q-algebras.

T&N. If A and B are two vector spaces over K (for short K-spaces), then Homg (A, B)
is an abelian group of all linear maps A — B and C' < A means that C' is a subspace of

A.
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Lemma 1.2. If A a B are two vector spaces over K, [ < A, J < B such that ¢ €
Homp (A, B) satisfies p(I) C J, then ¢(a+ I) = p(a) + J is a well-defined linear map
» € Hom(A/I,B/J) and

(1) ¢ is injective iff =1(J) =1,

(2) ¢ is surjective and J C ¢(A) iff ¢ is surjective.
Lemma 1.3. Let V be a vector space over K such that A, B,C <V, and A <C.

(1) A+ (BNC)=(A+B)nC,

(2) if dim(C/A) < o0, then dim((C+B)/(A+B)) = dim(C/A)—dim((CNB)/(ANDB)).
T&N. If V is a vector space over K A <V, then we denote

V* = Homg(V,K) and A°={f e V" | f(A) = 0}.

Lemma 1.4. Let V be a vector space over K and A, B <V, then

(1) V* is a vector space over K and A°, B® < V*
(2) A2= (V/A),
(3) if dim(V/A) < oo, then A° = V/A,
(4) if A < B, then B° < A°,
(5) (AnB)°=A°+B° (A+ B)° = A°N B°,
Proposition 1.5. Let K C L be an extension of the fields, V an L-space. Then V is a

K-space and we can define multiplication by each [ € L on V* by the rule lp(v) = ¢(lv)
for all p € V* = Homg (V, K) and v € V. Then

(1) lpeV*Vie L peV*

(2) V*is an L-space,

(3) if Ax < Vg and a € L\ {0}, then a1 A° = (aA)°.

2. ALGEBRAIC FUNCTION FIELDS

T&N. Let R be a subring of a field K, and V' a K-space. We say that A C V is linearly
dependent (LD) over R, if 3{a;...,a} € Aa3ry,...,r, € R\{0} such that >, ra; =0,
otherwise A is linearly independent (LI) over R.

Lemma 2.1. Let R be a domain, K its fraction field, V' a vector space over K and
M C V. Then M is LI over R < Mis LI over K.

Lemma 2.2. Let V be a vector space over K(z) and vy,...,v, € V. Then vy,... v, is
LD over K(z) < Jay,...a, € K[z] such that ) . a;v; = 0 and a;(0) # 0 for at least one
7.
T&N. Let R be a ring and A, B C R, then we denote

AB = {(ab|a € A b € B) a subgroup of the additive group (R, +, —,0) generated by
the set {ab|a € A,b € B},

A[B] . {f(b1,7bk) | ke N,f S A[.ﬁUl...,ZEk],bl,...7bk S B},

A[bl, R ,bk} = A[{bl, .. ,bk}] Pro blw . .,bk € R.

Observation. Let R be a ring and A, B,C C R, then

(1) AB = BA and A(BC) = (AB)C,
2



(2) it A, B are subrings (ideals) of R, then AB = A[B] is a subring (AB is an ideal)
of R,
(3) Albrr- .- b = {f(br,. o b) | £ € Al i} Wy, by € R,

In the sequel K C L means a field extension of K by L and recall that [L : K| = dimg L
and [U : K] =[U : L][L : K] for extensions K C L C U.
Proposition 2.3. Let K C L be an algebraic extension.
(1) If B is a basis of L as a K-space, then B is a basis of L(z) as a K(z)-space,
(2) [L(z) : K(z)] =[L: K].
Lemma 2.4. Let V be a K(x)-space and M C V. Then
M is LD overK (r) < {va’ |v€ M,j >0} is LD over K.

Definition. Let K C L. L is called an algebraic function field (AFF) over K | if Ja € L
transcendental over K for which [L : K(«a)] < oc.

Example 2.5. (1) R(z) and C(z) are an AFF over R.

(2) Q/B)(x) = Q(V/5,2) = Q(¥5, 1) C R, then Q(/5, ) is an AFF over Q.

(3) Let g € K[z,y| be an irreducible polynomial, R := Klz,y]/(g), L be a fraction
field of R. Put £ := z + (g) and v := y + (¢9). Then R = K[{,v] and L = K(&,v).
Assume to contrary that &, v are both algebraic over K, then [K(£,v) : K| < oo, hence
R = K[¢,v] = K(¢,v) = L, which implies (¢) N K[z] # 0 and (g) N K[y] # 0. Then
g € K*, a contradiction. Thus £ or v is transcendental over K. Let w.lo.g. a := ¢
transcendental, then g(o,v) = 0, and so [L : K(«)] < co. We have proved that L is an
AFF over K.

Lemma 2.6. If K C U C L are field extensions, L is an AFF over K and U is algebraic
over K, then [U : K] < oc.

T&N. Let K C L and L be an AFF over K, then
K:={acL|[K(a): K] < oo}

is said to be the field of constants (of the AFF).

Corollary 2.7. K is a subfield of L and [K : K] < oo for any AFF L over K.

Theorem 2.8. Let K C L, a be transcendental over K and [L : K(«)] < oo. Then the
following conditions are equivalent for each u € L:

(1) L+ K(u)] < oo,

(2) g € K|x,y] for which g(x,u) # 0 and g(a,u) = 0,

(3) w is transcendental over K.

3. VALUATION RINGS

K is a field. R < K means that R is a subring of K and R* is the group of invertible
elements of R.

T&N. The notation (R, M) means that R is a [ocal ring with the unique maximal ideal

M.
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Observation. The following conditions are equivalent for an ideal M of a ring R:

(1) (R, M) is a local ring,

(2) each proper ideal of R is contained in M,

(3) M = R\ R,

(4) R* = R\ M.
Lemma 3.1. Let (R, M) be a local ring and A a finitely generated ideal such that
AM = A. Then A =0.

Proposition 3.2. Let (R, M) be a local domain with M = (¢) for ¢ # 0 and put
A=, M"=,(t"). Then
(1) for each s € R\ A there exist unique 7 > 0 and unique v € R* such that s = t'u,
(2) if A is finitely generated, then A = 0.

T&N. Recall that a ring R is noetherian if all its ideals are finitely generated, and R is
uniserial if for every pair of ideals I, .J either I C J or J C I.

Corollary 3.3. If (R, M) is a noetherian local domain with the field of fractions K and
M = (t) for some t € M, then
(1) for each s € R\ {0} there exist unique i > 0 and unique u € R* such that s = t'u,
(2) for each s € K'\ {0} there exist unique i € Z and unique v € R* such that s = t'u,
(3) R is a uniserial principal ideal domain.

T&N. If R < K, R is called a valuation ring (VR) of K if for every a € K* either & € R
ora”! € R.
Observation. Let K be the fraction field of a domain R and let 7 : K* — K™ is defined
ila) = a L.

(1) Ris a VR = R is uniserial = R is local,

(2) i(R") = R*

(3) if Ris a VR, then i(M \ {0}) =i(R\ (R*U{0}) = K*\ R.
Example 3.4. (1) Zy,) = {{ | a € Z,b € N, p does not divide b} is a VR for each prime
p (of the field of fractions Q).

(2) Ryy = {% € R(z,y) | r,s € Rlz,y],5(0,0) # 0} € R(x,y) is noetherian local

domain with the maximal ideal (z,y), which is not a VR: for instance neither z$_+;/ nor
215 belongs to Ry .

Lemma 3.5. Let R < K, o € K\ R such that o' ¢ R. If J is a proper ideal of R,
then either J[a] C R[a] or J[a™!] € R[a™].
Theorem 3.6. Let R < K and [ be an ideal satisfying 0 # I # R.

(1) There exists a VR S of K with the maximal ideal M, for which R C S C K and
I C M.
(2) If R is maximal subring of K, then it is a VR.

Observation. Let R;, j = 1,2, be valuation rings of K, 0 # M, = R; \ R} and define
i(a) = a™! Va € K*. Then
(1) My C My < K\ Ry =i(M; \ {0}) Ci(My\ {0}) =K\ Ry & Ry C Ry,
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(2) M1 :M2 = Rl :RQ.

Observation. If R is a subring of a ring S and P is a prime ideal of S, then PN R is a
prime ideal of R.

Lemma 3.7. Let R; be a noetherian VR of K with the maximal ideal 0 # M; = R; \ R}
for = 1,2. Then for i =1,2
(1) R; is a principal ideal domain, in particular M; is principal,

(2) R; is a maximal subring of K,
(3) M, C My M, =My R =Ry & Ry CR,.

4. DISCRETE VALUATION RINGS

In this section, R is a domain and R < K means that K is the field of fractions of R.

Definition. A map v : K — Z U {oo} is a discrete valuation (DV) of K if for each
a,be K:

(D1) v(ab) = v(a) + v(b),

(D2) v(a+ b) > min(v(a), v (b)),

(D3) v(a) = o iff a = 0.
v is said to be the trivial discrete valuation if v(K*) = 0.

We will suppose that all discrete valuations are nontrivial.

T&N. Let R < K, where R is noetherian and p € R a prime element. For each
a,b € R\ {0} let us define

vp(a) = max{i | p'/a}, v, (T ) = vp(@) = u(b). ,(0) = oo.

Example 4.1. Let R < K, R be noetherian, and p a prime element. Then v, is a
correctly defined discrete valuation of K.

Note that if (R, (p)) is a local ring, then p is prime.

Observation. Let v be a discrete valuation of K and let us define
S={reK|v(x) >0}, M={zeK|v(x)>0}
Then for each z € K*
(1) v|g+ is a group homomorphism of (K*,-, ' 1) into (Z,+, —,0) by (D1), hence
v(l)=v(-1)=0av(z')=—v(x),
(2) S is a subring of K, M its ideal and S is a VR of K,
B)vix) =0 v ) =—-ve)=0&z€ 5, M =75\ S5*Iis the maximal ideal of

(4) if I # 0 is an ideal of S and a € I\ {0} is of minimal value v(a), then (a) = I,
since for b € I satisfying v(b) > v(a) we get v(ba™') > 0, hence ba™! € S a
b=aba"! € (a),

(5) S is a principal ideal domain.

Definition. Let R < K. R is said to be a discrete valuation ring (DVR), if there is a

discrete valuation v such that R = v~1({0,00)) = {a € K | v(a) > 0}.
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Proposition 4.2. The following is equivalent for a domain R which is not a field:

(1) R is a discrete valuation ring,

(2) R is a noetherian valuation ring,

(3) R is a local principal ideal domain,

(4) R is a noetherian local ring such that its maximal ideal is principal.

T&N. If R is a DVR with the maximal ideal (¢) then ¢ is called a uniformizing element
and v is a normalized discrete valuation (NDV).

Example 4.3. For a noetherian domain R and a prime element p, the localization R,
is a DVR with the discrete valuation v, from 4.1.
In particular, Z,) < Q from 3.4(1) is a DVR for each prime p.

Lemma 4.4. Let R < K and R be a DVR with a uniformizing element ¢. Then for each
DV u with R = p71((0, 00)) there exists unique k¥ € N for which p = kv,.

Corollary 4.5. Let v be a DV of K. Then vis a NDV < 3t € K : v(t) = 1.

Lemma 4.6. If v is a DV of K and a,b € K satisfies v(a) # v(b), then v(a 4+ b) =
min(v(a), v(b)).

T&N. Let L be an AFF over K. We say that R is a valuation ring of the AFF L over
K, if R is a valuation ring of L and K C R. v is a (normalized) discrete valuation of the
AFF L over K, if v is a (normalized) discrete valuation of L and v(K*) = 0.

We define voo(3) = deg(b) — deg(a) for a,b € K[z] \ {0} on the AFF K(x) and
Voo (0) = o0.

Observation. z~! is a prime element of K[z '] (& K[z]), K(z) = K(z7!) and vo, = v,
is a NDV of the AFF K(z) over K.

Proposition 4.7. A normalized discrete valuation of the AFF K(z) over K is either vy
or v, for an irreducible polynomial p € K|[z|.

In the sequel, L is an AFF over K and K its field of constants.
Definition. Let us define
Pr/x = {M C L | 3 a valuation ring of the AFF L over K R: K CRC L,M = R\R"}.

Every element P € Pp,/k is said to be a place of the AFF L over K, Op denotes a VR of
the AFF determined by P and the number

is called degree of P.
Theorem 4.8. If P € Pk, then

(1) K C Op,

(2) Op is a uniquely defined discrete valuation ring,

(3) deg P < oc.
T&N. For any P € Pk denote by vp = v the NDV determined by Op where P = (t).

Let a = > ai, i, 27 ...y € K[zy, ..., x,]. Then mult(a) = min(3°7_, i; | aiy. 4, #0)
is called multiplicity of the polynomial a.
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Observation. If a € K|z], then mult(a) = max{i > 0 | 2* divides a}, hence it is the
multiplicity of the root 0.

Lemma 4.9. Let 2 € L\ K, a € K[z], P € P; k. Then
(1) 3 Q1, Q2 € Pk for which vg, (2) > 0> vg,(2),
(2) vp(2) = 0 = vp(a(2)) > 0,
(3) vp(z) >0 = vp(a(z)) = mult(a) - vp(2),
(4) vp(z) <0 = vp(a(z)) = deg(a) - vp(z) .

5. WEIERSTRASS EQUATIONS
Recall that K is a field. K < L denotes a field extension and n € N.

T&N. Let K < L and A be a K-algebra. Denote

Endg(A) ={p: A— A|pis a K-homomorphism}

Autg(A) = {p € Endg(A) | ¢ is a bijection}

Let A € K™" b € K", define a map 4,7, : K" — K" by rules J4(v) = Av,
m(v) = v + b. Denote Aff,(K) = {n,0s | A € GL,(K),b € K"}, elements of Aff,(K) are
called affine maps.

Observation. Let K < L, A,B € K™" b,c € K". Then

(1) Tv7e = Topes V408 = Vap, Vam = 79,V as

(2) 04 is a bijection & A € GL,(K),

(3) Aff,(K) is a subgroup of the permutation group S(K™),

(4) Aff,(K) is a subgroup of Aff, (L), where we identify 7,04 on K™ and L".
T&N. Let o0 € Aff(K) and x = (21,...,2,). Define o* € Endg (K[x]) by

o (f(xr, . xn)) = flo((z, .. 2n))),
where o is viewed as an element of Aff,(K(x)). Elements of Aff}(K) = {o* | 0 €
Aff,(K)} are said to be affine automorphisms.
Observation. Let 0, p € Aff,(K), x = (z1,...,2,) and f € K[x]

(1) pro*(f(x) = p"(f(o(x))) = flop(x)) = (ap)"(f (%)),
(2) id}}n = idK[X], ((7_1)* = (U*)_l,
(3) Aff}(K) is a subgroup of Aut(K[x]).

T&N. Denote
To(K) = {(dij) € K™" | di # OVi, dij = OVi < j},
- U (K) ={(dj) € To(K) | dis = 1vi},

- D, (K) = (dw) T.(K )|dzJ_OVZ7AJ}

Observation. 7,,(K), U, ( ) a D, (K) are subgroups of GL,(K) and it holds that
TW(K) = Un(K)Dy(K) = D (K)Up(K).

Definition. Let f,g € K[z] such that degg < 1, deg f = 3, lc(f) = 1. Then the equation
of the form y? + yg(x) = f(x) is called a Weierstrass equation (WE), any polynomial
y| i

v2 +yg(z) — f(x) € K[z, y] is said to be a Weierstrass (equation) polynomial (WEP).
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Observation. Let w = y* + yg(z) — f(x)) € K[z,y] be a WEP, A = (i (1)) € Uy(K),

b= (Z;) c K2
(1) 7 (w) = (y+b2)> + (y+b2)g(x+b1) = f(x+b1) = y* +y(2bo + g(x +b1)) — (f(z +
b)) — b5 — bag(x + by)) is a WEP,
(2) ?91‘4(11\122] ];P(y+ux)2+(y+ux)g(:v)—f (2) = ¥*+yQur+g(w)) = (f (2) —uz* —uzg(z))
(3) U* = {(7';193)* | c € K2, B € Uy(K)} is a subgroup of Affy(K) and o*(w) is a
WEP for each o* € U*.

Lemma 5.1. If char K # 2 and € K|z, y] is a WEP, then 3A € Uy(K) and 3b € K? such
that (1,94)*(w) = y* — h(z) for some h € K[z, degh = 3 and Ic(h) = 1, hence y? — h(z)
is a WEP as well.
T&N. A WEP is said to be short, if das, a4, ag € K such that it is of the form
(SH1) y* — (2 + ayx + ag) if char K # 2,3,
(SH2) y? — (2% + asx + ag) or y* + vy — (2% + ayx + ag) if char K = 2,
(SH3) y* — (2% + aqz + ag) or y* — (® + axx® + ag) if char K = 3.
By a better choice of b in 5.1 it could be shown the next observation.

Observation. If char K # 2,3 and € K[z,y| is a WEP, then there exists o € Aff,,(K)
such that o*(w) is a short WEP.

Lemma 5.2. Let A € K*, w be a WEP and ¢ € Affy(K). Then 3 WEP @ for which

o*(w) = M0 & wia, 0,y € K a 3b € K?such that o® = 62 = \, A = (: g) and

o = TbﬁA.

1

If we consider ¢ = da™", we get the following easy result:

Observation. Let o, € K*. Then o = §? & Jc € K* satisfying § = ¢® a a = 2.

Proposition 5.3. Let w € K[x,y] be a WEP and o € Aff3(K). Then the following
conditions are equivalent:

(1) there exists A € K* such that Ao*(w) is a WEP,
(2) there exists a WEP @ such that (0*(w)) = (w),
2
c

0
: * 2 _ = 79
) —\aqa 3 = .
(3) there exists ¢ € K*, d € K and b € A*(K) such that A ( B ) and o0 = 704

T&N. We say that two WEPs w,w € K|z,y] are K-equivalent provided Jo € Affy(K)

satisfying (o*(w)) = (w) as ideals of K|z, y].

Corollary 5.4. The following conditions are equivalent for two WEPs w, w € K|z, y]:
(1) w and @ are K-equivalent,

2
(2) 3ce K*, d € K and b € K? such that (179%(w)) = (w) for A = (3 35>’

(3) 3ce K* and d, by, by € K such that @ = ¢ Sw(cx + by, Ay + dx + by).
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Example 5.5. (1) Let w = y? + y(22 +2) — (2® — 42> + 1) € R[z,y]. Then w is a WEP.
We find a short WEP which is R-equivalent to w. Applying linear algebra machinery we
1 0

remove the term 2zy: A = (_1 1) € Uy(R):
Pi(w) =y -2 +y—2)2x+2)— (2° —42® +1) = y* + 2y — (2° — 32° + 22 + 1)
then we use b = (1, —1) to exclude monomials y and z*:
T0h(w) = (=1’ +20y -1 = ((z+ 1)’ =3@+ 1)’ +2c+ )+ 1) =¢* - (2" —x+2).
(2) The polynomial w = y* — (2% —x + 2) is

(a) R-equivalent for example to the polynomial y? — (z* — &z + 35) since ¥ (w) =

4 0
64y® — 64(a® — scx + 55) for Ay = (O 8)’

(b) C-equivalent to y*> — (2° — x — 2), because V% (0) = —y* — (—2° + = + 2) for
-1 0
(3

K denotes the algebraic closure of a field K and x := (21,...,,) in this section.

T&N. Let K < L < K. Let us denote the affine spaces
- A" := K" over a field K and
- A™(L) := L" over a field L (L-rational points of A™).
For a € K[x|, M C K[x] we will denote:
-V ={a € A" | a(a) = OVa € M} (variety),
- VM(L) = VM N AH(L)a V;z = ‘/{a}> Va(L) = ‘/{a}(L)
If a € K[x,y] and dega > 1, then V, is said to be an affine (planar) curve.
Recall that it is well known that V3, = V(up for each M C K[x].

Observation. Let a € K[x] and 8 = (f1,...,8,) € A". Then mult 75(a) > 1 <
mult a(zy + B, ..., ¢n+ Fn) 21 < a(fy,...,0,) =0 €V,

T&N. Let a=)_ iy g = > bz € K[x], where b; € K[x\ {z;}]. Then

6. SINGULARITIES

i1...0n
La)= Y a2t .20 =) as, .5,
i1ein:y ij=1 j=1
is called the linear part of a polynomial a and
Qo — >+ 1)bja] is a (partial) derivative of a polynomial a in a variable ;.
fa=(a,...,a,) € V,and ¢; := g—g‘i(a). Then ty(a) == )", cxi—), cioy =Y, ci(x;—
;) is called a tangent of a (or V) at the point «, and we say that a (or V,) is smooth at
a if t,(a) # 0, and singular at « if t,(a) = 0.

Definition. Polynomial a (or variety V) is
- smooth if it is smooth at all points a € V,, and

- singular if 3 a singular point a € V, (such an « is called a singularity of V).
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Observation. If a € K[x] and «a € V,, then
(1) @ is smooth at o < Ji2%(a) # 0,
(2) o€ Vta(a).

Example 6.1. Let w = y? — (z° +  — 2) € Rz, y] be a short WEP. Then L(w) = —uz,

ow __ 2 ow __

For a = (1,0) € V,, we get t,(w) = —4(z — 1).

Lemma 6.2. Let a € K[x], o € A", and o € Aff,(K). Then

(1) to(a) = 7* (L(7%(a))), whenever a € V,,

(2) o € Voupo) © o(a) € V,; in such a case t,(0*(a)) = 0*(ts)(a)),

(3) U(VU*(a)) = Vm

(4) 0*(a) is singular at a € V,.(q) < a is singular at o(a) € V.
Corollary 6.3. Let w,w € K|z, y|] be K-equivalent WEPs. Then w is smooth < o is
smooth.

Recall that a polynomial is separable if all its rots in its splitting field are simple and
the field is perfect, provided all its irreducible polynomials separable.

Proposition 6.4. If w = y*> — f(z) is a WEP for f(z) € K|[z], then w has at most 1
singularity. If, furthermore, char K # 2, then

(1) w is smooth < f is separable,

(2) a singularity is K-rational whenever K is perfect.

Example 6.5. (1) y* — (2% + 1) € Rz, 3] is a smooth short WEP,
(2) (y+1)* = (2® + 1) € F3[z,y] is a singular WEP with the singularity (2, 2),
(3) y*> — (2* — 2 —x + 1) € R[z,y] is a singular WEP with the singularity (1,0).

7. COORDINATE RINGS

Let us denote x := (z1,...,x,) and A" is an affine space over K.
T&N. Let U C A™ and o« € A"™. Then
Iy ={a€ K[x]|a(a) =0Wa e U}, Iy ={a € K[x|a(a) = 0Va € U}
and I, = Iy, I, = T{a}.
Observation. (1) If [ is an ideal of K[x] such that I N K[z;] = (a;) # 0 Vi, then K[x|/I

is generated as a K-space by the set {[[, 27 | j; < deg(a;)}, hence dimg K[x]/I <

L deg(a;) < oc.
(2) If R is a domain and a K-algebra satisfying dimy R < oo, then K[a] is a field for
every o € R, thus R is a field as well.

Lemma 7.1. Let a = (g, ..., q,) € A"
(1) I, is a maximal ideal,
2 aeA"K)e K+1,=K[x| e l,= (11 —ay,...,T, — ay).
Lemma 7.2. Let K < L be an extension such that [L : K] < oo and [ an ideal of K[x].

(1) (IL[x]) N K[x] = 1,
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(2) if I is prime with I N Kx;] # 0 for all i = 1,...n, then there exists o € A" for
which I = 1,.

Lemma 7.3. If a,b € K[z,y] \ K are coprime, then (a,b) N K[z] # 0 # (a,b) N Ky|.

Theorem 7.4. Let P be a nonzero prime ideal of K[z,y]. Then
(1) either P is maximal, then it is not principal and there exists v € A? for which
P=1,
(2) or P = (p) for some irreducible p € K[z, y].

Note that Vp is finite for P maximal, and if p, ¢ € K[z, y] are non-associated irreducible,
Vip) 1s infinite and Vi, » = V, NV, finite.

Example 7.5. For a WEP w = y* — (2% + 1) € R[z, 3] for example ideals

(w) g (y,l’ + 1) = I(—l,O)u (y7$2 — T+ 1) = ]”LH (y2 + 171; + \3/5) = [(—\3/21‘)7
u = (e37,0), are prime.
T&N. Let C' =V, be an affine planar curve for a € K[z, y| such that I = (a). Then
K|[C) = Klz,y]/Ic = K[x,y]/(a) is a coordinate ring of the curve C. The curve C' is said
to be irreducible if K[C] is a domain and an element p(z,y) + I is called a polynomial

at C for any p € K[z, y|.
If wis a WEP, then V,, is called a Weierstrass curve.

Observation. Let a € K|z,y] be irreducible, C =V, and I¢ = (a).

(1) C is irreducible < Io = (a) is prime < a is irreducible,

(2) the map ¢ : K[C] — K given by the rule ¢(p + (a))(a) = p(«) for each a € C'is

a well-defined injective map.

T&N. If a € K|z,y] is irreducible and C' = V,, then the field of fractions
n+ (a)
d+ (a)
of K[C] is said to be a function field of the irreducible curve C.

K(C) ={ | n € Klz,y],d € K[z, y]\ (a)}

Proposition 7.6. Let a € Klx,y] be irreducible, C = V,, a =z + (a), f =y + (a) €
K[C]. Then K(C) = K(«,f) is an AFF over K and « is transcendental over K <
[K(C) : K(a)] = deg, a > 0.

Corollary 7.7. Let K < L. Then 3o, 8 € L such that L = K(«, ) is an AFF over K
& 3 an irreducible affine curve C' C A? satisfying L =, K(C).

T&N. Let w € K[x,y|, L is an AFF over K and «, € L. We say that an AFF L is
given by (the equation) w(«, 8) =0 (over K) , if

(1) L = K(a,B),

(2) w is irreducible,

(3) w(a,B) = 0.
Example 7.8. If w € K[z,y] is irreducible and o = = + (w), f = y + (w), then K(V,,)

is given by w(a, f) = 0 over K.
11



8. ABSOLUTELY IRREDUCIBLE POLYNOMIALS

T&N. f € K[z,y] is called absolutely irreducible, if f is irreducible in the domain K[z, ).

Example 8.1. The polynomial 2% + 3? is irreducible but not absolutely irreducible in
R[z,y] (F3[z,y]), since 2% + y* = (z + iy)(z — iy) in C[z,y] (i stands for an element of
the order 4 in F} C F3).

Polynomial z? + y is absolutely irreducible in R[z, y] (F3[x,y]).

Lemma 8.2. If for f,g € K[z] holds true that degg < 1 and deg f > 3 is odd, then
w = y? +yg(z) — f(z) is absolutely irreducible in K[z, y].

Proposition 8.3. Let w € K|z, y] be irreducible and K be the field of constants of the
AFF K(V,,) over K. Then K = K < w is irreducible in K|z, y].

Corollary 8.4. If w € K[z,y| is a WEP and C' = V,, is a Welerstrass curve, then w is
absolutely irreducible and all elements K (C') \ K are transcendental over K.

Example 8.5. Let w = y? + yz + 2% + 1 € Fy[x,y] be a WEP and denote L the fraction
field of Fy[z, y]/(w), hence L is the function field of the curve V,,, which is an AFF over
[Fy by 7.6. Since w is absolutely irreducible by 8.2, we can compute the field of constants
[Fy = Iy, using 8.3. Since for example polynomials 22 +x + 1 and 2% + x + 1 has no root
in Fy they have no root in L, so both are irreducible over L.

9. PLACES DETERMINED BY A PAIR

In this section, L denotes an AFF over K given by w(a, ) = 0 with deg(w) >
Observation. Let a € Klz,y] C Llz,y], o € Affy(K), and &, B e L. Denote by
o € Affy(L) the unique extension of o and put u = o*(x)(&, 8), v = 0*(y)(&, 5). Then

w(z,y) = a(0*(x),0"(y)) & a= (c7)"(w),
o*(a) = 0*(a) € K[x,y].

We will use notation & from the last observation in the sequel. Put mult(0) = oc.

Lemma 9.1. Let w be smooth at v = (71,72) € Vi(K), A € GLy(K), 0 := Y47, and
put (u,v) =o(a, 3) and f, = (67")*(w). Then
(1) Lis an AFF over K given by f,(u,v) =0,
(2) 3 amatrix A such that f, = yg(z,y)+h(x)+y where h € K[z]\{0}, g € K[z, ],
mult(h) > 2, mult(g) > 1,

(3) if ty(f) = a1(z — 71) + a2(y — 72), then A is a matrix from (2) < A = <b1’ b2>

ay, a2
for (by,bs) € K2\ Spank((ay,as)).
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Let us suppose that L is an AFF over K given by w(«, 8) = 0 with deg(w) > 2 and
simultaneously by f(u,v) = 0, where f = yg(z,y) + h(z) +y € K[z,y|, h € K[z] \ {0},
g € K[z,y], mult(h) > 2, mult(g) > 1.

Put m := mult(h) (which is finite by 9.1).

T&N. Let a = 3, . ai;z'y’ € K[z, y] \ {0}, then define:
p(a) := mult(a(z,y™)),
s(a) :={(i,7) € Z*| 3,5 > 0,3+ jm = p(a)},
S(CL) : Z(’L j)Es(a) Qi y]

Observation. Let a,b =),  bjjz'y’ € K[z, y] \ {0} and 4, j,k,1 > 0. Then
(1) mult(a - b) = mult(a) + mult(b),
and if mult(a) < mult(b), then mult(a + b) = mult(a),
(2) p(a-b) = mult(a(z, y™)-b(z,y™)) = mult(a(z, y™)) +mult(b(z,y™)) = p(a)+pb),
and if p(a) < p(b), then u(a+b) = p(a) > mult(a),
(3) If (z'b—i-jmg—i-h(k—i-lm) = p(a)+pu(b) = p(ab) and (i+jm) > p(a) = (k+Im) < u(b)
= Ok = ence

Z Z aijbpr TFyt = Z x9y" Z a;;b = S(ab),

(i-d)€s(a) (k) €s(b) (ar)estab) (i) +kD=(ar)
(4) pla) = p(S(a)), and if pi(a) < pu(b), then S(a +b) = S(a).

T&N. Denote by A the K-endomorphism of K|z, y| defined for each a € K[x,y] by the
rule

Aa(z,y)) = alz, —h(z) — yg(z,y)).

Lemma 9.2. u(A(x'y?)) =i+ jm and there exists A € K \ {0} such that S(A(xiy’)) =
AzH™ for each 4,5 > 0.

Example 9.3. Let w = (y +z + 1) — (23 + 2z + 1) € Rz, y].

Since ged(x®+2x+1, 322 +2) = 1, the polynomial w is a smooth WEP and it holds that
f=3w==102+2?+2yz+2y—2°) = y(z+iy)+3(2*—2*)+y.s0 f = yg(z,y)+h(z)+y
for g =2 + iy and h = $(2? — 2%). Note that mult(g) = 1 and m = mult(h) = 2. Then
compute

p(g) = mult(z + 3%) = 1, S(g) =

(k) = () =2, S(0) = Lo -
w(xy?) —3+2 2="T, u@*y}) =2+3-2=8= p(@*y? +2%°%) =71,

S(Ay? + %)) = S(A(2%?) = Lo by 9.2.

Observation. Let a = Y. a;x'y’ € K[z,y]\ {0}, u,v € P € Pk and t = a(u,v),
(1) Ala)(u,v) = alu, —h(U) —vg(u,v)) = a(u,v),
() (a0 = w0 = 0(g(us0) = 1) = ) + v (gl00) 1) = (o) by
(3) velt) > minfvp(uied) | ay £ 0} = min{(i + mj)vp(u) | ay # 0} = p(a)vp(u),
hence p(a) < 220

— vp(u)’

T&N. Put pu(t) = max{pu(a) | a € Kz, y] : a(u,v) =t} for each ¢t € Ku,v].
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Lemma 9.4. Let t € Ku,v]\{0} and k := u(t). Then there exist A € K* and b € K|z, y]
satisfying u(b) > k and t = MuF + b(u, v).

Theorem 9.5. There exists a unique P € Py i such that u,v € P. Furthermore, it holds
true that vp(u) = 1, vp(v) = m and vp(r-s—') = u(r) — u(s) for each r, s € K[u,v]\ {0}.

Example 9.6. Consider a polynomial f = y(z + 3y) + 5(2* — 2®) + y from 9.3. Then
L = R(u,v) for u =2+ (f), v = y + (f) and let P be the uniquely determined place
from 9.5 Then vp(u) = 1 and vp(v) = mult(h) = 2. Let us compute vp(u® + v) and
vp(u® + 2v):

f(u,v) =0 = v =—v(u+ 3v) + 3(u* — u?), hence

vp(u? +v) = vp(3u? — vu — $0? + Ju*) = min(2,3,4,3) = 2 and

vp(u?+2v) = vp(u?—2vu—v?) = vp(u(u?—2v)—v?) = min(3, 4) = 3 since vp(u*>—2v) =
vp(—u? + 2vu + v? + 2u?) = min(2, 3,4,3) = 2 and so vp(u(u® — 2v)) = 3.

Theorem 9.7. Let w be smooth at v = (71,72) € Vi (K).
(1) There exists a unique P € Py x satisfying vp(a — 1) > 0 and vp(8 — 72) > 0.
(2) If Ll =lp+ lix + loy € K|x,y] where ly, 11,1y € K then it holds for P from (1):
—0 ifl(7)£0
vp(lla ) =1 it 1(y) =0 and I ¢ (t,(w))
>2 ifl(y)=0and! € (t,(w))
T&N. If p € K[z] and v € K, denote by mult,(p) = mult(7* (p)) the multiplicity of a
root 7 of p, i.e the non-negative integer k satisfying (z — v)*|p and (z — v)**! Jp..

Observation. If p,s € K[z], g € K[z,y], v € K is a root of s, mult,(g(z — v, s(x))) >
mult(g).

This year we omit the proof of the following fact:

Proposition 9.8. Let v = (71,72) € Vi (K), 3y< )£ 0, \,p€ K satisfy l =y — Az —
and [(y) =0, and (o =y, 8 —72) C P € Py k. Then vp(l(a, £)) = mult,, (w(x, )\x—l—,u)).

Example 9.9. Let f = y?+ 2y +2° + 32 € Rz, y], then f is an absolutely irreducible by
8.2. Denote by L the AFF over R given by f(«,8) =0fora=z+(f)and 8 =y+(f) €
Rz, y]/(f). Since (—2,2) € V; and : 8f = y + bz, g—g =2y + z, we get %(—2,2) = 82,
(-2,2) =2 and t = t(2)(f) —82x+2y+160.

By 9.7 there exists the unique P € Py /i containing o + 2, 3 — 2.

For uw =+ 41la + 80 = 1t( ,B) we determine the value vp(u) by applying 9.8:

f = f(x,~41z — 80) = 2° + 40 - 412° — 80 - 81 + 80% + 32.

Since 0= f(~2) = f/(—2) # f/(~2) we get vp(u) = 2.

10. LOCALIZATION IN A COORDINATE RING

Let us suppose again that L is an AFF over K given by w(«, 5) = 0 with deg(w) > 2
and by f(u,v) =0, where f =yg(z,y) + h(z) +y € Klz,y], h € K[z] \ {0}, g € K[z,y],
m = mult(h) > 2, mult(g) > 1.
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T&N. Letyz(vl,VQ)GV(K)CAQ(K) Then (w) C I, = (x — 71,y — 72). Denote by
Ry = Klz,ylu, —{ € K(z,y) | a,b € Klz,y]: b(7) # 0}

the localization of Klz,y] in the maxnnal ideal I, (I,) = {} € R, | a € I,,b(y) # 0}
denotes the (unique) maximal ideal of R, and w, : R, — L is a ring homomorphism

defined by the rule w,(§) = Zéa 5 Then let us denote

wOy =wy(Ry) ={peL]|3IreR,: wr)=np}

wPy =w, (1) ={pe€ L|3Ire(l,): w(r)=p}
If w is fixed we will write O, instead ,,O, and P, instead ,,P,.
Observation. If v € V,,(K), 0 € Affy(K) such that f = (o~
and denote O, =, O, P, =, P,, then

(1) O, is a local ring with the maximal ideal P,,
(2) O, = K + P,, hence dimg (O, /P,) =1
(3) Oy = ;000 a Py = ;P00

!)*(w) and o(y) = (0,0)

Lemma 10.1. If w is singular at v € V,,(K), then O, is not a valuation ring.

Example 10.2. Let w = (y+1)*—(z+2)% and L be an AFF over F5 given by w(a, 8) = 0
for o« = x4+ (w) and 8 =y + (w) € K[z,y]/(w) (cf. 7.8). Then (3,4) € Vy(F5) is a

singularity of w and by the proof of 10.1 gﬁ ¢ wO@3.a and gé wO(3.4).-

Lemma 10.3. Let u,v € P € P /i and z € K[u,v] \ {0}. Then Ja,b € K[z,y] \ L)
(i.e. mult(a) = mult(b) = 0) such that —=- = % € 1040 = 1900\ P00

Proposition 10.4. Let w be smooth at v = (71,72) € Vi(K), and (o — 71,8 — 72) C
Pe ]PL/K- Then

(1) 3@ € P, such that vp(a) = 1 and za~*) € O for each z € K[a, 8]\ {0},
(2) P =P,
(3) Op =0,.

Example 10.5. Consider f = y? + zy + 2° + 32 € Rz,y| from 9.9, where L is an
AFF over R given by f(a, ) = 0. Put t = t(_99)(f) = 82z + 2y + 160 and compute
P = P39 € Ppr. Since (—2,2) is a zero of both lines 42, x +y, and 242, 2 +y & (1),
9.7 implies that vp(a +2) = vp(a+ §) = 1.

Hence P_s2) = (a+2) = {(a+ 2)2&32; | q(—2,2) # 0}.

Observation. Let 0 # M C Ko, ] be a prime ideal and K = K|, 5]/M. Then

(1) M a maximal ideal of K[a, 3] and K = Klz,y]/1, for some 3y € V,, by 7.4,
(2) K = K[+ M, 3+ M] is a field and [K : K] < oo,
(3) a+ M, B+ M are algebraic over K,
(4) [K : K] =1 < 3(y,72) € Vi(K) such that M = (o — 1, 8 — 42) by 7.1(2) and
(1).
Lemma 10.6. Let P € Py /x and P=PnKla,pj.
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(1) If Ko Op, then P is a maximal ideal of K[a, §], dimg(K|[a, 8]/P) < oo,

i
vp(a) > 0, and vp(3) > 0.
(2) If Kla, 8] € Op, then P =0 and either vp(a) < 0 or vp(B) < 0.
(3) If Ko, f] € Op and w is a WEP, then 3vp(a) = 2vp(5) < 0.

T&N. Denote IP’(L/K ={P cPy/k|degP =1}.

Theorem 10.7. Let P € IPL/K and a polynomial w be smooth at all points of v € V,,(K).
Then the following conditions are equivalent:

(1) K[Oé,ﬁ] - OP7

(2) 3 a unique (v1,72) € Vi (K) for which vp(a — ) > 0 and vp(f — v2) > 0,

(3) 3 a unique v € V,,(K) for which P = P,.

Corollary 10.8. If a WEP w is smooth at all points v € V,,(K) and P € P

LK then
either 3y € V,,(K) for which P =P, or o™, € P.

11. WEAK APPROXIMATION THEOREM
L is an AFF over K with the field of constants K.

Observation. Let a,b € L.
(1) Ifa ¢ K, then 3P € P1 K such that vp(a) > 0 by 3.6,
(2) K*={s€ L|vp(s)=0VYP € Pk} by (1) and 4.8,
(3) if P € Py satisfies vp(a) # 0 # vp(b), then vp(a+ b*) = min(vp(a), kvp(b)) for
all but one k by 4.6, hence Jky such that the equality holds Vk > k.

Lemma 11.1. Let n > 1 and P, ..., P, € Py /i be pairwisely distinct places. If v; := vp,
for all 4, ay,...a, € L and z € Z, then

(1) 3 s € L* such that v1(s) > 0 and v;(s) <0 foreach i =2,...,n
(2) 3t € L such that v;(t —a;) > z foreachi=1,...,n

Theorem 11.2 (Weak Approximation Theorem). Let n > 1 and Py,..., P, € Pr/k be
pairwise distinct places. If ay,...a, € L and z1,..., 2z, € Z, then there exists s € L such
that vp (s —a;) = z; foralli =1,... n.

Corollary 11.3. Py /k is infinite.

T&N. If W is a subspace of a K-space V', we say that B is linearly independent/LI (a
basis) of V modulo W if {b+ W | b € B} forms a linearly independent set (a basis) of
the factor V/W.

Corollary 11.4. If n > 1, e > 0 and P, P,,..., P, are pairwise distinct, then 3 a basis
B of the K-algebra Op modulo P such that B C Pf \ PjeJrl Vi=1,....n

Observation. Let P € Pr/x and by,...,b, € Op is linearly independent modulo P over
K, tePuvp(t)=1, N, \ije Kfori=1,...,n,j=0,...,e—1and 3 : \; # 0 and
3(i,7) : Xij # 0. Then

(1) l/p(zi /\zbz) = 0, since Zz )\zbz ¢ P,

(2) vp(3o; Nibit?) = vp(32, Nibi) +vp(t)) = 4,
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(4) {bt' |1 =1,...,n, 7=0,...,e— 1} is linearly independent modulo P*.

Proposition 11.5. Let Py,..., P, € Pr/x be pairwise distinct places for n > 1. If
s € ey P, then [L: K(s)] > > vp(s)deg P

Corollary 11.6. If s € L*, then the set {P € P /i | vp(s) # 0} is finite.

Corollary 11.7. If w is a WEP and L is given by w(a, ) = 0, then there exists unique
Py, € Pr/k such that o' € Py or 37 € Py. Furthermore, Py, € P(Ll/)K, vp(a) = =2
and vp_(3) = —3.

T&N. The uniquely determined place from 11.7 is denoted by P..
Proposition 11.8. If w is a smooth WEP at V,,(K), then
1
Py = {Po} U{P, | 7 € Vu(K)}.

Example 11.9. Let f =3 +y— (23 +1) =¢y* +y+2°+1 € Fylz,y] and o := x + (f),
B :=y+(f) € Fo[z,y]/(f). Then fis a Weierstrass equation polynomial and L = Fy(a, )
is an AFF over [Fy given by f(«,5) = 0.

Let P € Pr of degree 1. Then PY), = {Pl10), Py, P} by 11.8, since Vy(Fy) =
{(1,0), (1, 1)}.

By 11.3 Py k is infinite, hence other places are of degree greater than 1, for example
for each irreducible m € Fy[z] of degree greater than 1, there exists P, € P, /K such that

m(a) € Py, thus deg P,,, > deg(m) > 1.
12. DIVISORS

Let L be an AFF over K and K its field of constants in this section.

Definition. Let Div(L/K) = {ZPG]PL/K a,P | a, € Z} denote the free abelian group
with the free basis P1/x (hence only finitely many a,’s are non-zero) and operations

> aP+ Y bP= > (q£b)P, 0= > 0P
A formal sum ZPGPL/K a, P is called a divisor (of the AFF L over K). Degree of a divisor
is defined by degK(ZPE]P,L/K a,P) := ZPE]P,L/K a, deg g (P).
Example 12.1. ZPE]P,L/K vp(r)P is a divisor by 11.6 for each r € L* and note that
ZPE]P’L/K I/P(CL)P =0& VP(CL) =0VPe ]P)L/K = ac K

T&N. A divisor ZPE]PL/K vp(r)P for r € L* is called principal divisor and it is denoted
by (r) and let Princ(L/K) := {(r) | » € L*} be the set of all principal divisors of L over
K.
Observation. Put k = [K : K| < oo, P € Pp/x, A € Div(L/K).

(A1) P,z = Pr/k and Div(L/K) = Div(L/K),

(A2) degy P = dimgx Op/P =k -degy P and degy(A) =k - degi(A),
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(A3) degy : Div(L/K) — Z is a group homomorphism

(A4) the map r — (r) forms a homomorphism of (L*,-,~! 1) and (Div(L/K),+, —,0)
since (15) = pep, o 1p(r)P = Yopers . 0p(r) + 1p(5) P = (1) + (5),

(A5) Princ(L/K) is a subgroup of Div(L/K) where —(r) = (r~!) and 0 = (1), further-
more, (r) = (s) & 3 A € K* satisfying 7 = \s.

T&N. Let A = EPGPL/K a,P, B = EPGPL/K b,P € Div(L/K). Then let us denote:

max (A, B) = Z max(a,, b,) P, min(A, B) := Z min(a,, b,) P,
PePr PePr /i

A, :=max(A,0), A_ := —min(A,0) = (—A)4, and A is called positive if A = A,.

Define relations < and ~ on Div(L/K): A < Bifa, < b, VP € P g, A~ B if
A — B € Princ(LL/K). > denotes the opposite relation.

Denote L(A) :={r € L*| (r) + A > 0} U {0}.
Observation. Let » € L* and A € Div(L/K).

(B1) ~is a congruence on Div(L/K) and < is an ordering on Div(L/K) compatible with

the operation + (ie. AL B, C<D=A+C<B+Dfor A BC,D¢€Pr),
(B2) if r € L'\ K, then (r) # 0 by Lemma 4.9(1),
(B3) L(A) is a K-space and so K-space and

L0):={reL | (r)+(1)>0}u{0} =K.

T&N. Cl(L/K) := Div(L/K)/Princ(L/K) is called the class group of the AFF L over K.
If A € Div(L/K), then L£L(A) is said to be Riemann-Roch space of the divisor A and
If K = K, then L is a full constant AFF.

Observation. Let i < j € Z, (p) = P € Py /k and denote P' = p'Op.

(C1) The map ¢, : Op/P — P7~! /P’ determined by the rule ¢;(a + P) = ap’~* + P?
is an isomorphism of K-spaces,
(C2) degP:dlmKOp/P dlprjil/P]
(C3) dimg (P'/P7) =377, dim(P*'/P¥) = (j — i) deg P.
Lemma 12.2. If A, B € Div(L/K) such that A < B, then £(A) is a subspace of £(B)
and dimg (L(B)/L(A)) < degg (B — A).

Lemma 12.3. If ]P’(Ll/)K #£(, then K = K

We will suppose in the rest of the lecture that K = K, i.e. L is a full constant AFF.

Proposition 12.4. If A, B € Div(L/K), then
(D1) 1 <I(A) <degA+1if A>0,
(D2) I(A) =0, if A <0,
(D3) [(A) <1(A4) < o0,
(D4) deg A — I(A) < deg B — I(B), if A < B.

Lemma 12.5. If s € L \ K, then 3B € Div(L/K) such that B > 0 and for each k > 0:
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(1) (k+DIL: K(s)] <U(k-(s)- + B),
(2) (k+1)[L: K(s)] < k- deg((s)-) +deg B +1,
(3) KL : K(s)] = I(k - (s)-) < deg B—[L: K(s)].

Theorem 12.6. If s € L\ K then deg((s)_) = deg((s)+) = [L : K(s)] and deg((s)) = 0.
Corollary 12.7. If A ~ B, then deg A = deg B and dim; /;x A = dimy, x B.

Example 12.8. Let L be an AFF over F, given by w(a, 8) = 0 for w = y*+y—(23+1) €
Fylz,y] as in 11.9. We will compute principal divisors (o + 1) and («).
(a) By 12.6

deg((a+1)1) = Y vpla+1)degP =[L:Fy(a+1)] =[L:Fa(a)] =2.

P: a+leP
Since a4+ 1 € P10y N P,y and vp (a+ 1) = vp (o) = =2 by 11.7, we get
(()é+1):1P(170)+1P(171)—2POO

(b) Again by 12.6 is deg((®)4) = > p. pepvpr(@)deg P = [L : Fo(a)] = 2 and o ¢ P
for all P € IP’L/K(I), hence there exists a unique P such that o € P and deg P = 2, which
means that

() =1-P—2-P,.

Observation. For A, B € Div(L/K) it holds:

(D5) I(A) > 1 < ds € L* such that s € L(A) < Js € L* such that A+ (s) > 0,

(D6) I(B—A) > 1 < Js € L* such that A — (s) < B < JA" € Div(L/K) such that
A~ A < B,

(D7) if (B —A) > 1, then deg A — [(A) < deg A’ — [(A") < deg B — I(B) for A’ from
(D6) by (D4),

(D8) if deg A < 0, then deg(A + (s)) =deg A <0 Vs € L*, hence [(A) =0,

(D9) L((s))={reL*|(rs) >0} U{0}=Ks ' (={ks™' | ke K}) Vs € L*.

Lemma 12.9. If A € Div(L/K) such that deg A = 0, then

(1) 1(A) € {0,1},
(2) I(A) =1 < A € Princ(L/K).

Theorem 12.10 (Riemann). There exists an integer 7 such that for each A € Div(L/K)
deg(A) —I(A) < 7.

Definition. The minimal possible 7 such that deg(A)—1I(A) < v for each A € Div(L/K),
which exists by Theorem 12.10, is called the genus of the AFF L over K. Furthermore,
i(A) :=g—1—deg(A) +1(A) > 0 is said to be the index of specialty of A (A is called
special if i(A) > 0 and A is called nonspecial if i(A) = 0).

Corollary 12.11. Let A, D € Div(L/K)) and suppose deg(D) — (D) = g — 1 for the
genus g.
(E1) g > deg(0) —1(0) = —1, hence g > 0,
(E2) deg(A— D) —I(A—D) <g—1, hence [(A— D) > deg(A) — deg(D) — g + 1,
(E3) if deg(A) > deg(D) + g, then [(A — D) > 1 by (E2),
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(E4) if either [(A— D) > 1 or D < A then by (D4) and (D6) g — 1 = deg(D) — (D) <
deg(A) —I(A) < g—1, hence deg(A) —I(A) = g — 1 and i(A) =0,

(Eb) if deg(D) + g < de (A) then [(A — D) > 1 by (E3), thus I(A) = deg(A) — g+ 1
and i(A) = 0 by (E4).

13. ADELES AND WEIL DIFFERENTIALS
We suppose that L is a full constant AFF over K = K of genus g.

T&N. Let P := P;,x and consider the Cartesian power L as an L-algebra with

component-wise defined operations where [ — [ -1 € LF identifies elements of L with
constants of L. Let A=, a,P € Div(L/K). Then
L/K

Ap(A) = {f € L" | vp(f(P)) +ap > 0 VP € P}.
An element of Ay /x = UBeDiV(L/K) Ap/k(B) is called adéle.
If P=(p) € Pr/k, then P* = p*Op = {r € L | vp(r) > k} for each k € Z.

Observation. Let r € L, f € LFr/x A = > pep, i Gl € Div(L/K) and s € L*.

(1) fe Ak © {P €P|vp(f(P)) <0} is finite, hence r € Ay x by 11.6,

(2) ALk is a subalgebra of the L-algebra LPrx,

(3) Ar/k(A) = HPG]PL/K P~ is a subspace of the K-space A x and Ap/x(A)NL =
L(A).

Lemma 13.1. Let A = ZPGPL/K a,P, B = ZPGPL/K b,P € Div(L/K) and s € L*.

(1) A S B = .AL/K(A) Q .AL/K(B) and dimK(AL/K( )/AL/K( )) deg(B A)
(2) A< B = dimg((Ar/x(B) + L)/(Ar/x(A) + L)) = i(A) —i(B),
(3) ALyx(A) NV AL/k(B) = Apjx(min(A, B)),
AL/K(A) + AL/K(B) = AL/K(maX(A, B)),
(1) dinnge(Ag e/ (Arc(4) + L) = i(A),
(5) Ar/x = Aryx(A) + L < i(A) =0,
(6) sAL/k(A) = Ap/k(A = (s)).

T&N. Let A € Div(L/K). Then
Qui(A) = (Apx(A) + L) ={w € Ayk™ |w(ALk(A) + L) =0,}

QL/K = U QL/K(B) = {w c AL/K* | W(L> = O, dB € DlV(L/K) : W(AL/K(B)) = 0}
BeDiv(L/K)

We define Vw € Q1 /k and Vs € L* multiplication on €7,k by the rules (s-w)(t) = w(st)

Vs € L* and 0-w = 0. Elements of Q) are called Weil differentials (of the AFF).

Corollary 13.2. Let A, B € Div(L/K) a s € L*.
(1) dimg (QA)) = dim(Ar/x/(Ar/x(A) + L) = ( ) by 1.4(2), 13.1(4),
(3) Qu/k(A) N QL k(B) = (Ar/k(A) + AL/K( ) + L) = Ok (max(4, B)),
Qi (A) + Qe (B) = (Aryk (A) + L) N (AL (B) + L))° € Qpyk (min(A, B))
by 1.4(1),(4), 13.1(3),

(4) sQpx(A) = (s (ALx(A))° = QL/I;EA + (s) by 1.5(3), 13.1(6),



(5) Qp/k forms an L-space by 1.5, (3) a (4).

Lemma 13.3. If w € Qp/x \ {0}, then there exists a unique W € Div(L/K) such that
w(AL/k(W)) =0 and each A € Div(L/K) satisfies A < W whenever w(Ar/x(A)) = 0.

T&N. Let w € Qp/x \ {0}. The divisor W from 13.3 uniquely determined by w is called
the canonical divisor of w and it is denoted by (w).

Let us define a map ¥, : L — 1 /k by U,(s)=s-wVse L.
Lemma 13.4. Let w,@ € Q/k \ {0} and A € Div(L/K). Then

(1) (sw) = (s) + (w) Vs € L*,
(2) U, is L-linear and so K-linear embedding and V¥, (L((w) — A))
(3) 3B € Div(L/K) such that ¥, (L((w) — B)) N ¥4 (L((w) — B)) #

Theorem 13.5. Let w € Q/x \ {0} and A € Div(L/K), then

(1) dlmL(QL/K) = 1,
(2) W, induces a K-isomorphism L((w) — A) = Qp/k(A).

C Qr/k(A),
0

As a consequence we can easily see that all the canonical divisors form exactly one
coset modulo Princ(L/K).
The following two results will be skipped this year.

Lemma 13.6. Let S ;Cé Pr/k, , Pr,..., P, €S be pairwise distinct places, a;,...a, € L
and z € Z. Then there exists t € L such that vp (t —a;) > 2Vi=1,...,n and vp(t) >0
VPeS\{P...,P,}.

Theorem 13.7 (Strong Approximation Theorem). Let S G Pr/k, , Pi,..., P, € S be
pairwise distinct places. If ay,...a, € L and 2,...,2z, € Z, then ds € L such that
vp, (s —a;) = z foreach i = 1,...,n and vp(s) > 0 for each P € S\ {P; ..., P.}.

14. RIEMANN-ROCH THEOREM

L is a full constant AFF over K = K of genus g.
Theorem 14.1 (Riemann-Roch). If W is a canonical divisor and A € Div(L/K), then
[(A) =degA+I(W—-A)+1—g.
If we put W =0 and W = A, then we get the following consequence:

Corollary 14.2. | If W € Div(L/K) is canonical, then [(W) = g, degW = 2g — 2,
iW)=g—1—degW +I(W) = 1.

Corollary 14.3 (Main consequence of the Riemann-Roch Theorem). If deg A > 2g — 1
for A € Div(L/K), then [(A) =deg A+ 1—g.

Lemma 14.4. Let P € P(Ll/)K, heZ,h>0,se L. Then

(1) se LGEP)\ L((i —1)P) & (s)- =iP, where i > 1,

(2) if 3k > 0 such that [(iP) > i — h + 1 for each i > k, then g < h,

(3) if for each @ > h + 1 there exists s; € L such that (s;)- = iP, then g < h.
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Example 14.5. Recall that the field K (z) is an AFF over K and by 4.7

Pr(z)y/xk = {Fp | p € K[z] is monic irreducible } U {Py}
where P, is the maximal ideal of the localization with vp, = v, and P is given by the
discrete valuation vy (%) = deg(b) — deg(a). Then v,(z') > 0 for each i > 0 and p is
irreducible monic. Furthermore v, (z') = —i for each i > 0, hence (z')_ = iP,,. Thus
K(z) is of genus 0 by 14.4(3).

For every s € K(z)* there exist k € K*, irreducible, pairwisely non-associated polyno-
mials p; € K[z] and exponents e; € Z, for which s = k[, pj". If we put d = )", e; degp;,
then (s) = >, e; Py, — dPy forms a principal divisor and it holds e; = v,,(s) = vp, (s).
This presents a way of searching of an element of L determining a divisor of degree 0,
which is in this case necessarily principal.

Proposition 14.6. Let IP’(Ll/)K # (). Then g = 0 < there exists s € L such that L = K(s).

15. ELLIPTIC FUNCTION FIELDS
Let L be an AFF over K of genus g.

Definition. L is called an elliptic function field (EFF) over K, if it is of genus 1 and
PO # 0.

Observation. If L is an EFF over K and P € P(Ll/)K, then is L full constant by 12.3, and
I(iP) = deg(iP) =i for each i > 1 by 14.3, hence K = L(1P) G L(2P) & L(3P).

Proposition 15.1. If L is an EFF over K and P € P(Ll/)K, then Vu € L(2P)\ L(1P) and
v € VL(3P)\ L(2P) there exists a WEP w € Klz,y] and A € K* such that L is given by
w(Au, Av) = 0.

Corollary 15.2. Every EFF is given by a Weierstrass equation (i.e. there are a WEP w
and elements «, 5 such that the EFF is given by w(Au, Av) = 0).

Recall that if w is smooth at V,,(K), then P(Ll/)K ={Po}U{P, |y € V,(K)} by 11.8.

Lemma 15.3. If w € Klz,y] is a WEP and L over K is given by w(a, f) = 0 and it is
not an EFF, then ¢ = 0, and 3s € L and Ja,b € K|z|, for which L = K(s), a = a(s),
B =0b(s) and dega = 2, degb = 3.

Theorem 15.4. Let L be given by w(a, 8) = 0 for a WEP w € KJz,y]. Then L is an
EFF < w is smooth at V,,(K).

Example 15.5. (1) Let w = y* + y + 2® + 1 € Fylx,y] is a WEP from 11.9. Since it is
smooth at rational points V,,(Fy) = {(1,0),(1,1))}, then by 15.4 the genus of Fo(V,,) is
1, hence it is an EFF and Fy(s) & Fa(V,,) for each s € Fo(V,,).

(2) Let w = y*+ 2® + x + 1 € Fy[z, y] be a WEP. Since it is singular at (1,1) € V,,(Fy).
Hence by 15.4 it is of genus 0 and there exists s € Fo(V,,) such that Fa(s) = Fy(V,,). It is
easy to compute that e.g. s = g—ﬁ for a = v+ (w), f = y+ (w), hence Fa(V,,) = Fa(a, 5)
is given by w(a, 5) = 0.

In the rest of the section L is an EFF over K.
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T&N. The factor group Pic’(L/K) := Ker(deg)/Princ(L/K) is called the Picard group
and [A] ;= A+ Princ(L/K) denotes the cosets of Pic’(L/K) and a mapping ¥y, : ]P’(Ll/)K —
Pic’(L/K) is given by the rule

Uo(P) =[P - Q] for QP

Lemma 15.6. Let P,Q € P}). and A € Div(L/K).
(1) it P — @ € Princ(L/K), then P = @,
(2) if deg A = 1, then there exist a unique place Q) € ]P’(Ll/)K such that P — A €
Princ(L/K),
(3) the mapping g : P}), — Pic®(L/K) is a bijection.

T&N. We define for a fixed @ € ]P’(Ll/)K operations by the rule P, & P, = \I/C_Ql(\I/Q(Pl) +
Uq(Py)) and &P = U, (=Vo(P)).

Corollary 15.7. If Q, Py, Py,..., P, € PY . then

L/K>

(1) (]P’(Ll/)K, @, 6, Q) forms an abelian group and W is a group isomorphism,
(2) Pebh=F< [P1+P2] :[Po—f-Q],
B)P®---®P, =P —-F+(1-n)Q+>" P € Princ(L/K).

In the rest, L denotes an EFF over K given by w(a, 5) = 0 for a WEP w.

Definition. Let us consider on P(L/K = {Px}U{P, | v € Viu(K)} (from 11.8) a group
structure determined by Vp_, put E(K) = V,,(K) U {cc} and define operations &, © on
E(K):
y@&6=ne P &P =P, [P+ P =[P, + Pxl,
67 =0 6P, =F; & [P+ Ps] = 2P

Now we formulate a consequence of main results of the course, including 9.7, 11.8 and
12.5:

Proposition 15.8. Let v = (71,72) € Vu(K), lo+ Lz + by € K[z, y] such that ly, 11,15 €
K and (ly,15) # (0,0), and put V = V,(K) N V)(K).
(1) (E(K),®,6,00) is an abelian group isomorphic to Ker(deg)/Princ(L/K),
(2) v € Vi(K) & vp, (l(o, B)) > 1 & 1P, < (l(e, B))+,
(3) ve Vi(K)and [ € (t,(w)) & vp, (I(a,8)) > 2 & 2P, < (I(a, B))+,
(4) (e, B))- = 2Py Whenever lo =0, and ({(«, B))- = 3Py otherwise,
(5) if Iy =0, then | € (x — ;) and E|‘6 € V such that (I(o, 8)) = P, + Ps — 2P, i.e.
oy =0 for V = {v,0},
(6) if I, # 0 and 6 € V such that P, + Ps < (l(a,3))+ then 3lp € V such that
(l(a,)) = Py+ Ps+ Py — 3P, ie. y®0@&n=o0 for V= {v,0,n}.

The rest was not presented at the lecture this year.

Corollary 15.9. If K C F C K is a field extension, then E(K) is a subgroup of E(F).
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Denote by w = y* + a1zy + asy — (3 + as2? + ayx + ag) € K[z, y] for a WEP smooth
at Vi, (K).

Theorem 15.10. (E(K),®,S,00) is a commutative group and for v = (v1,7), 0 =
(61,02), n = (m,m2) € Viy(K) it holds:

(1) ©v=(n, =72 — aim —as),

(2) if vy # ©0 and v @ 6 = 7, then
n=(-n—-00+ N 4 a1\ — ag, A1 —m) — 2 —aym — az), where
(a) A= $=2 if 3, # 4y,

51;71
3vi+2a —a1y2+a
(b))\: 71 271 —a17y2rTa4
2v2+a1v1+tas

if Y1 = 51.

Example 15.11. Let w = y*> — 23 — 1 € F5[z] be a WEP. Since (z® + 1)’ = 322 and 0 is
not a root of 23 + 1, w is smooth.

Since E(F;5) = {(0,1),(0,4), (4,0),(2,2),(2,3), 00} is a commutative group of the order
6, we know that F(F5) = Zg. By applying 15.7 we compute:

(0,1) = ©(0,4) (4,0) @ (4,0) = (2,2) @ (2,3) = 0o and (0,4) @ (4,0) = (2,3).
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