CURVES AND FUNCTION FIELDS

MOTIVATION

Objective: to build an (algebraic) apparatus for describing curves over finite fields. **Idea:** generalization of geometric theory (with geometrically descriptive analogies) **Key tool:** description of the structure of function fields (places \leftrightarrow points at a curve) **Key problem:** situation $\mathbb{R} \subseteq \mathbb{C}$ easier than $\mathbb{F}_q \subseteq \overline{\mathbb{F}_q}$ ($[\mathbb{C} : \mathbb{R}] = 2$ vs. $[\overline{\mathbb{F}_q} : \mathbb{F}_q] = \infty$)

Lecture structure:

- (1) *Rings* algebras over a field, valuation rings,
- (2) Polynomials WEP, coordinate rings,
- (3) *Ideals* places in function fields,
- (4) Spaces divisors, Weil differentials,
- (5) *Groups* function fields of elliptic curves.

1. Algebras over a field

A ring always means commutative ring with operations $+, -, \cdot, 0$ and 1 and we will usually write R instead $(R, +, -, \cdot, 0, 1)$.

T&N. Let K be a field and A a ring containing K as a subring. Then A is called K-algebra (or algebra over K). If A and B are two K-algebras, then $f : A \to B$ is a homomorphism of K-algebras, if it is a ring homomorphism and f(k) = k for every $k \in K$.

K always denotes a field and $R \leq K$ means that R a subring of K.

Observation. If A and B are K-algebras and I is a proper ideal of A, then

- (1) A/I is a K-algebra,
- (2) A is a vector space over K and I is its subspace,
- (3) if $f: A \to B$ is a homomorphism of K-algebras, then f is K-linear.

T&N. Let R be a ring, $M \subset R$ a $a \in R$. Then (M) denotes the ideal of R generated by the set M and $(a) := (\{a\})$. $R[x_1, \ldots, x_n]$ denotes a polynomial ring over R and $K(x_1, \ldots, x_n)$ is a field of fractions of $K[x_1, \ldots, x_n]$.

Example 1.1. (1) K[x], K[x, y], K(x)[y] and K(x, y) are K-algebras.

- (2) $\mathbb{R}, \mathbb{C}, \mathbb{Q}[\sqrt{2}]$ are \mathbb{Q} -algebras.
- (3) $\mathbb{Q}[x] \cong \mathbb{Q}[\pi] \not\cong \mathbb{Q}(\pi) \cong \mathbb{Q}(x)$ are \mathbb{Q} -algebras.

T&N. If A and B are two vector spaces over K (for short K-spaces), then $\operatorname{Hom}_K(A, B)$ is an abelian group of all linear maps $A \to B$ and $C \leq A$ means that C is a subspace of A.

Lemma 1.2. If A a B are two vector spaces over K, $I \leq A$, $J \leq B$ such that $\varphi \in \text{Hom}_K(A, B)$ satisfies $\varphi(I) \subseteq J$, then $\tilde{\varphi}(a + I) = \varphi(a) + J$ is a well-defined linear map $\tilde{\varphi} \in \text{Hom}(A/I, B/J)$ and

- (1) $\tilde{\varphi}$ is injective iff $\varphi^{-1}(J) = I$,
- (2) $\tilde{\varphi}$ is surjective and $J \subseteq \varphi(A)$ iff φ is surjective.

Lemma 1.3. Let V be a vector space over K such that $A, B, C \leq V$, and $A \leq C$.

- (1) $A + (B \cap C) = (A + B) \cap C$,
- (2) if dim $(C/A) < \infty$, then dim $((C+B)/(A+B)) = \dim(C/A) \dim((C\cap B)/(A\cap B))$.

T&N. If V is a vector space over $K A \leq V$, then we denote

$$V^* = \operatorname{Hom}_K(V, K) \text{ and } A^o = \{ f \in V^* \mid f(A) = 0 \}.$$

Lemma 1.4. Let V be a vector space over K and $A, B \leq V$, then

- (1) V^* is a vector space over K and $A^o, B^o \leq V^*$,
- (2) $A^o \cong (V/A)^*$,
- (3) if dim $(V/A) < \infty$, then $A^o \cong V/A$,
- (4) if $A \leq B$, then $B^o \leq A^o$,
- (5) $(A \cap B)^o = A^o + B^o, (A + B)^o = A^o \cap B^o,$

Proposition 1.5. Let $K \subseteq L$ be an extension of the fields, V an L-space. Then V is a K-space and we can define multiplication by each $l \in L$ on V^* by the rule $l\varphi(v) = \varphi(lv)$ for all $\varphi \in V^* = \operatorname{Hom}_K(V, K)$ and $v \in V$. Then

- (1) $l\varphi \in V^* \ \forall l \in L, \varphi \in V^*,$
- (2) V^* is an *L*-space,
- (3) if $A_K \leq V_K$ and $\alpha \in L \setminus \{0\}$, then $\alpha^{-1}A^o = (\alpha A)^o$.

2. Algebraic function fields

T&N. Let R be a subring of a field K, and V a K-space. We say that $A \subset V$ is *linearly dependent* (LD) over R, if $\exists \{a_1 \ldots, a_k\} \subseteq A$ a $\exists r_1, \ldots, r_k \in R \setminus \{0\}$ such that $\sum_i r_i a_i = 0$, otherwise A is *linearly independent* (LI) over R.

Lemma 2.1. Let R be a domain, K its fraction field, V a vector space over K and $M \subset V$. Then M is LI over $R \Leftrightarrow M$ is LI over K.

Lemma 2.2. Let V be a vector space over K(x) and $v_1, \ldots, v_n \in V$. Then v_1, \ldots, v_n is LD over $K(x) \Leftrightarrow \exists a_1, \ldots, a_n \in K[x]$ such that $\sum_i a_i v_i = 0$ and $a_j(0) \neq 0$ for at least one j.

T&N. Let R be a ring and $A, B \subset R$, then we denote

 $AB := \langle ab \mid a \in A, b \in B \rangle$ a subgroup of the additive group (R, +, -, 0) generated by the set $\{ab \mid a \in A, b \in B\}$,

 $A[B] := \{ f(b_1, \dots, b_k) \mid k \in \mathbb{N}, f \in A[x_1, \dots, x_k], b_1, \dots, b_k \in B \},$ $A[b_1, \dots, b_k] := A[\{b_1, \dots, b_k\}] \text{ pro } b_1, \dots, b_k \in R.$

Observation. Let R be a ring and $A, B, C \subset R$, then

(1) AB = BA and A(BC) = (AB)C,

- (2) if A, B are subrings (ideals) of R, then AB = A[B] is a subring (AB is an ideal) of R,
- (3) $A[b_1, \ldots, b_k] = \{f(b_1, \ldots, b_k) \mid f \in A[x_1, \ldots, x_k]\} \ \forall b_1, \ldots, b_k \in R.$

In the sequel $K \subseteq L$ means a field extension of K by L and recall that $[L:K] = \dim_K L$ and [U:K] = [U:L][L:K] for extensions $K \subseteq L \subseteq U$.

Proposition 2.3. Let $K \subseteq L$ be an algebraic extension.

- (1) If B is a basis of L as a K-space, then B is a basis of L(x) as a K(x)-space,
- (2) [L(x) : K(x)] = [L : K].

Lemma 2.4. Let V be a K(x)-space and $M \subset V$. Then

$$M$$
 is LD over $K(x) \iff \{vx^j \mid v \in M, j \ge 0\}$ is LD over K .

Definition. Let $K \subseteq L$. L is called an algebraic function field (AFF) over K, if $\exists \alpha \in L$ transcendental over K for which $[L:K(\alpha)] < \infty$.

Example 2.5. (1) $\mathbb{R}(x)$ and $\mathbb{C}(x)$ are an AFF over \mathbb{R} .

(2) $\mathbb{Q}(\sqrt[3]{5})(x) = \mathbb{Q}(\sqrt[3]{5}, x) \cong \mathbb{Q}(\sqrt[3]{5}, \pi) \subseteq \mathbb{R}$, then $\mathbb{Q}(\sqrt[3]{5}, x)$ is an AFF over \mathbb{Q} .

(3) Let $g \in K[x, y]$ be an irreducible polynomial, R := K[x, y]/(g), L be a fraction field of R. Put $\xi := x + (g)$ and v := y + (g). Then $R = K[\xi, v]$ and $L = K(\xi, v)$. Assume to contrary that ξ, v are both algebraic over K, then $[K(\xi, v) : K] < \infty$, hence $R = K[\xi, v] = K(\xi, v) = L$, which implies $(g) \cap K[x] \neq 0$ and $(g) \cap K[y] \neq 0$. Then $g \in K^*$, a contradiction. Thus ξ or v is transcendental over K. Let w.l.o.g. $\alpha := \xi$ transcendental, then $g(\alpha, v) = 0$, and so $[L : K(\alpha)] < \infty$. We have proved that L is an AFF over K.

Lemma 2.6. If $K \subseteq U \subseteq L$ are field extensions, L is an AFF over K and U is algebraic over K, then $[U:K] < \infty$.

T&N. Let $K \subseteq L$ and L be an AFF over K, then

$$\tilde{K} := \{ \alpha \in L \mid [K(\alpha) : K] < \infty \}$$

is said to be the *field of constants* (of the AFF).

Corollary 2.7. \tilde{K} is a subfield of L and $[\tilde{K}:K] < \infty$ for any AFF L over K.

Theorem 2.8. Let $K \subseteq L$, α be transcendental over K and $[L: K(\alpha)] < \infty$. Then the following conditions are equivalent for each $u \in L$:

- (1) $[L:K(u)] < \infty$,
- (2) $\exists g \in K[x, y]$ for which $g(x, u) \neq 0$ and $g(\alpha, u) = 0$,
- (3) u is transcendental over K.

3. VALUATION RINGS

K is a field. $R \leq K$ means that R is a subring of K and R^* is the group of invertible elements of R.

T&N. The notation (R, M) means that R is a local ring with the unique maximal ideal M.

Observation. The following conditions are equivalent for an ideal M of a ring R:

- (1) (R, M) is a local ring,
- (2) each proper ideal of R is contained in M,
- (3) $M = R \setminus R^*$,
- (4) $R^* = R \setminus M$.

Lemma 3.1. Let (R, M) be a local ring and A a finitely generated ideal such that AM = A. Then A = 0.

Proposition 3.2. Let (R, M) be a local domain with M = (t) for $t \neq 0$ and put $A := \bigcap_i M^i = \bigcap_i (t^i)$. Then

- (1) for each $s \in R \setminus A$ there exist unique $i \ge 0$ and unique $u \in R^*$ such that $s = t^i u$,
- (2) if A is finitely generated, then A = 0.

T&N. Recall that a ring R is *noetherian* if all its ideals are finitely generated, and R is *uniserial* if for every pair of ideals I, J either $I \subseteq J$ or $J \subseteq I$.

Corollary 3.3. If (R, M) is a noetherian local domain with the field of fractions K and M = (t) for some $t \in M$, then

- (1) for each $s \in R \setminus \{0\}$ there exist unique $i \ge 0$ and unique $u \in R^*$ such that $s = t^i u$,
- (2) for each $s \in K \setminus \{0\}$ there exist unique $i \in \mathbb{Z}$ and unique $u \in R^*$ such that $s = t^i u$,
- (3) R is a uniserial principal ideal domain.

T&N. If $R \leq K$, R is called a *valuation ring* (VR) of K if for every $\alpha \in K^*$ either $\alpha \in R$ or $\alpha^{-1} \in R$.

Observation. Let K be the fraction field of a domain R and let $i: K^* \to K^*$ is defined $i(\alpha) = \alpha^{-1}$.

- (1) R is a VR \Rightarrow R is uniserial \Rightarrow R is local,
- (2) $i(R^*) = R^*$

(3) if R is a VR, then $i(M \setminus \{0\}) = i(R \setminus (R^* \cup \{0\}) = K^* \setminus R$.

Example 3.4. (1) $\mathbb{Z}_{(p)} = \{\frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{N}, p \text{ does not divide } b\}$ is a VR for each prime p (of the field of fractions \mathbb{Q}).

(2) $R_{x,y} = \{\frac{r}{s} \in \mathbb{R}(x,y) \mid r,s \in \mathbb{R}[x,y], s(0,0) \neq 0\} \subseteq \mathbb{R}(x,y)$ is noetherian local domain with the maximal ideal (x,y), which is not a VR: for instance neither $\frac{x+y}{xy}$ nor $\frac{xy}{x+y}$ belongs to $R_{x,y}$.

Lemma 3.5. Let $R \leq K$, $\alpha \in K \setminus R$ such that $\alpha^{-1} \notin R$. If J is a proper ideal of R, then either $J[\alpha] \subsetneq R[\alpha]$ or $J[\alpha^{-1}] \subsetneq R[\alpha^{-1}]$.

Theorem 3.6. Let $R \leq K$ and I be an ideal satisfying $0 \neq I \neq R$.

- (1) There exists a VR S of K with the maximal ideal M, for which $R \subseteq S \subsetneq K$ and $I \subseteq M$.
- (2) If R is maximal subring of K, then it is a VR.

Observation. Let R_j , j = 1, 2, be valuation rings of K, $0 \neq M_j = R_j \setminus R_j^*$ and define $i(a) = a^{-1} \forall a \in K^*$. Then

(1) $M_1 \subseteq M_2 \Leftrightarrow K \setminus R_1 = i(M_1 \setminus \{0\}) \subseteq i(M_2 \setminus \{0\}) = K \setminus R_2 \Leftrightarrow R_2 \subseteq R_1,$

(2) $M_1 = M_2 \Leftrightarrow R_1 = R_2.$

Observation. If R is a subring of a ring S and P is a prime ideal of S, then $P \cap R$ is a prime ideal of R.

Lemma 3.7. Let R_i be a noetherian VR of K with the maximal ideal $0 \neq M_i = R_i \setminus R_i^*$ for = 1, 2. Then for i = 1, 2

- (1) R_i is a principal ideal domain, in particular M_i is principal,
- (2) R_i is a maximal subring of K,
- (3) $M_1 \subseteq M_2 \Leftrightarrow M_1 = M_2 \Leftrightarrow R_1 = R_2 \Leftrightarrow R_1 \subseteq R_2.$

4. Discrete valuation rings

In this section, R is a domain and $R \leq K$ means that K is the field of fractions of R.

Definition. A map $\nu : K \to \mathbb{Z} \cup \{\infty\}$ is a *discrete valuation* (DV) of K if for each $a, b \in K$:

(D1) $\nu(ab) = \nu(a) + \nu(b),$ (D2) $\nu(a+b) \ge \min(\nu(a), \nu(b)),$ (D3) $\nu(a) = \infty$ iff a = 0.

 ν is said to be the trivial discrete valuation if $\nu(K^*) = 0$.

We will suppose that all discrete valuations are nontrivial.

T&N. Let $R \leq K$, where R is noetherian and $p \in R$ a prime element. For each $a, b \in R \setminus \{0\}$ let us define

$$\nu_p(a) = \max\{i \mid p^i/a\}, \quad \nu_p\left(\frac{a}{b}\right) = \nu_p(a) - \nu_p(b), \quad \nu_p(0) = \infty.$$

Example 4.1. Let $R \leq K$, R be noetherian, and p a prime element. Then ν_p is a correctly defined discrete valuation of K.

Note that if (R, (p)) is a local ring, then p is prime.

Observation. Let ν be a discrete valuation of K and let us define

$$S = \{x \in K \mid \nu(x) \ge 0\}, \quad M = \{x \in K \mid \nu(x) > 0\}$$

Then for each $x \in K^*$

- (1) $\nu|_{K^*}$ is a group homomorphism of $(K^*, \cdot, ^{-1}, 1)$ into $(\mathbb{Z}, +, -, 0)$ by (D1), hence $\nu(1) = \nu(-1) = 0$ a $\nu(x^{-1}) = -\nu(x)$,
- (2) S is a subring of K, M its ideal and S is a VR of K,
- (3) $\nu(x) = 0 \Leftrightarrow \nu(x^{-1}) = -\nu(x) = 0 \Leftrightarrow x \in S^*, M = S \setminus S^*$ is the maximal ideal of S,
- (4) if $I \neq 0$ is an ideal of S and $a \in I \setminus \{0\}$ is of minimal value $\nu(a)$, then (a) = I, since for $b \in I$ satisfying $\nu(b) \geq \nu(a)$ we get $\nu(ba^{-1}) \geq 0$, hence $ba^{-1} \in S$ a $b = aba^{-1} \in (a)$,
- (5) S is a principal ideal domain.

Definition. Let $R \leq K$. R is said to be a *discrete valuation* ring (DVR), if there is a discrete valuation ν such that $R = \nu^{-1}(\langle 0, \infty \rangle) = \{a \in K \mid \nu(a) \geq 0\}.$

Proposition 4.2. The following is equivalent for a domain R which is not a field:

- (1) R is a discrete valuation ring,
- (2) R is a noetherian valuation ring,
- (3) R is a local principal ideal domain,
- (4) R is a noetherian local ring such that its maximal ideal is principal.

T&N. If R is a DVR with the maximal ideal (t) then t is called a *uniformizing element* and ν_t is a *normalized discrete valuation* (NDV).

Example 4.3. For a noetherian domain R and a prime element p, the localization $R_{(p)}$ is a DVR with the discrete valuation ν_p from 4.1.

In particular, $\mathbb{Z}_{(p)} \leq \mathbb{Q}$ from 3.4(1) is a DVR for each prime p.

Lemma 4.4. Let $R \leq K$ and R be a DVR with a uniformizing element t. Then for each DV μ with $R = \mu^{-1}(\langle 0, \infty \rangle)$ there exists unique $k \in \mathbb{N}$ for which $\mu = k\nu_t$.

Corollary 4.5. Let ν be a DV of K. Then ν is a NDV $\Leftrightarrow \exists t \in K : \nu(t) = 1$.

Lemma 4.6. If ν is a DV of K and $a, b \in K$ satisfies $\nu(a) \neq \nu(b)$, then $\nu(a + b) = \min(\nu(a), \nu(b))$.

T&N. Let *L* be an AFF over *K*. We say that *R* is a valuation ring of the AFF *L* over *K*, if *R* is a valuation ring of *L* and $K \subseteq R$. ν is a (normalized) discrete valuation of the AFF *L* over *K*, if ν is a (normalized) discrete valuation of *L* and $\nu(K^*) = 0$.

We define $\nu_{\infty}(\frac{a}{b}) = \deg(b) - \deg(a)$ for $a, b \in K[x] \setminus \{0\}$ on the AFF K(x) and $\nu_{\infty}(0) = \infty$.

Observation. x^{-1} is a prime element of $K[x^{-1}] \cong K[x]$, $K(x) = K(x^{-1})$ and $\nu_{\infty} = \nu_{x^{-1}}$ is a NDV of the AFF K(x) over K.

Proposition 4.7. A normalized discrete valuation of the AFF K(x) over K is either ν_{∞} or ν_p for an irreducible polynomial $p \in K[x]$.

In the sequel, L is an AFF over K and \tilde{K} its field of constants.

Definition. Let us define

 $\mathbb{P}_{L/K} = \{M \subset L \mid \exists \text{ a valuation ring of the AFF } L \text{ over } K R : K \subseteq R \subsetneq L, M = R \setminus R^* \}.$ Every element $P \in \mathbb{P}_{L/K}$ is said to be a *place* of the AFF L over K, \mathcal{O}_P denotes a VR of the AFF determined by P and the number

$$\deg P = \dim_K(\mathcal{O}_P/P) = [\mathcal{O}_P/P: (K+P)/P]$$

is called *degree* of P.

Theorem 4.8. If $P \in \mathbb{P}_{L/K}$, then

- (1) $K \subseteq \mathcal{O}_P$,
- (2) \mathcal{O}_P is a uniquely defined discrete valuation ring,
- (3) deg $P < \infty$.

T&N. For any $P \in \mathbb{P}_{L/K}$ denote by $\nu_P = \nu_t$ the NDV determined by \mathcal{O}_P where P = (t). Let $a = \sum a_{i_1...i_n} x_1^{i_1} \dots x_n^{i_n} \in K[x_1, \dots, x_n]$. Then $\operatorname{mult}(a) = \min(\sum_{j=1}^n i_j \mid a_{i_1...i_n} \neq 0)$ is called *multiplicity* of the polynomial a. **Observation.** If $a \in K[x]$, then $\operatorname{mult}(a) = \max\{i \ge 0 \mid x^i \text{ divides } a\}$, hence it is the multiplicity of the root 0.

Lemma 4.9. Let $z \in L \setminus K$, $a \in K[x]$, $P \in \mathbb{P}_{L/K}$. Then

(1) $\exists Q_1, Q_2 \in \mathbb{P}_{L/K}$ for which $\nu_{Q_1}(z) > 0 > \nu_{Q_1}(z)$, (2) $\nu_P(z) \ge 0 \Rightarrow \nu_P(a(z)) \ge 0$, (3) $\nu_P(z) > 0 \Rightarrow \nu_P(a(z)) = \text{mult}(a) \cdot \nu_P(z)$, (4) $\nu_P(z) < 0 \Rightarrow \nu_P(a(z)) = \text{deg}(a) \cdot \nu_P(z)$.

5. Weierstrass equations

Recall that K is a field. $K \leq L$ denotes a field extension and $n \in \mathbb{N}$.

T&N. Let $K \leq L$ and A be a K-algebra. Denote

 $\operatorname{End}_{K}(A) = \{\varphi : A \to A \mid \varphi \text{ is a } K\text{-homomorphism}\}$ $\operatorname{Aut}_{K}(A) = \{\varphi \in \operatorname{End}_{K}(A) \mid \varphi \text{ is a bijection}\}$

Let $A \in K^{n \times n}$, $b \in K^n$, define a map $\vartheta_A, \tau_b : K^n \to K^n$ by rules $\vartheta_A(v) = Av$, $\tau_b(v) = v + b$. Denote $Aff_n(K) = \{\tau_b \vartheta_A \mid A \in GL_n(K), b \in K^n\}$, elements of $Aff_n(K)$ are called *affine maps*.

Observation. Let $K \leq L$, $A, B \in K^{n \times n}$, $b, c \in K^n$. Then

- (1) $\tau_b \tau_c = \tau_{b+c}, \, \vartheta_A \vartheta_B = \vartheta_{AB}, \, \vartheta_A \tau_b = \tau_{\vartheta_A(b)} \vartheta_A,$
- (2) $\tau_b \vartheta_A$ is a bijection $\Leftrightarrow A \in GL_n(K)$,
- (3) $\operatorname{Aff}_{n}(K)$ is a subgroup of the permutation group $S(K^{n})$,
- (4) Aff_n(K) is a subgroup of Aff_n(L), where we identify $\tau_b \vartheta_A$ on K^n and L^n .

T&N. Let $\sigma \in Aff_n(K)$ and $\mathbf{x} = (x_1, \ldots, x_n)$. Define $\sigma^* \in End_K(K[\mathbf{x}])$ by

$$\sigma^*(f(x_1,\ldots,x_n)) = f(\sigma((x_1,\ldots,x_n))),$$

where σ is viewed as an element of $\operatorname{Aff}_n(K(\mathbf{x}))$. Elements of $\operatorname{Aff}_n^*(K) = \{\sigma^* \mid \sigma \in \operatorname{Aff}_n(K)\}$ are said to be *affine automorphisms*.

Observation. Let $\sigma, \rho \in Aff_n(K)$, $\mathbf{x} = (x_1, \ldots, x_n)$ and $f \in K[\mathbf{x}]$

(1) $\rho^* \sigma^*(f(\mathbf{x})) = \rho^*(f(\sigma(\mathbf{x}))) = f(\sigma \rho(\mathbf{x})) = (\sigma \rho)^*(f(\mathbf{x})),$

(2)
$$\operatorname{id}_{K^n}^* = \operatorname{id}_{K[\mathbf{x}]}, \ (\sigma^{-1})^* = (\sigma^*)^{-1},$$

(2) $\operatorname{Ad}_{K_{n}}^{K_{n}}$ $\operatorname{Ad}_{K[\mathbf{x}]}^{K_{n}}$, (3) $\operatorname{Adf}_{n}^{*}(K)$ is a subgroup of $\operatorname{Aut}(K[\mathbf{x}])$.

T&N. Denote

- $\begin{array}{l} \ T_n(K) = \{(d_{ij}) \in K^{n \times n} \mid d_{ii} \neq 0 \forall i, \ d_{ij} = 0 \forall i < j\}, \\ \ U_n(K) = \{(d_{ij}) \in T_n(K) \mid d_{ii} = 1 \forall i\}, \end{array}$
- $D_n(K) = \{ (d_{ij}) \in T_n(K) \mid d_{ij} = 0 \forall i \neq j \}.$

Observation. $T_n(K)$, $U_n(K)$ a $D_n(K)$ are subgroups of $GL_n(K)$ and it holds that $T_n(K) = U_n(K)D_n(K) = D_n(K)U_n(K)$.

Definition. Let $f, g \in K[x]$ such that deg $g \leq 1$, deg f = 3, lc(f) = 1. Then the equation of the form $y^2 + yg(x) = f(x)$ is called a *Weierstrass equation* (WE), any polynomial $y^2 + yg(x) - f(x) \in K[x, y]$ is said to be a *Weierstrass (equation) polynomial* (WEP). **Observation.** Let $w = y^2 + yg(x) - f(x) \in K[x, y]$ be a WEP, $A = \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix} \in U_2(K)$,

$$b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \in K^2.$$
(1) $\tau_b^*(w) = (y+b_2)^2 + (y+b_2)g(x+b_1) - f(x+b_1) = y^2 + y(2b_2 + g(x+b_1)) - (f(x+b_1) - b_2^2 - b_2g(x+b_1))$ is a WEP,
(2) $\vartheta_A^*(w) = (y+ux)^2 + (y+ux)g(x) - f(x) = y^2 + y(2ux+g(x)) - (f(x)-u^2x^2 - uxg(x))$ is a WEP

(3) $U^* = \{(\tau_c \vartheta_B)^* \mid c \in K^2, B \in U_2(K)\}$ is a subgroup of $Aff_2(K)$ and $\sigma^*(w)$ is a WEP for each $\sigma^* \in U^*$.

Lemma 5.1. If char $K \neq 2$ and $\in K[x, y]$ is a WEP, then $\exists A \in U_2(K)$ and $\exists b \in K^2$ such that $(\tau_b \vartheta_A)^*(w) = y^2 - h(x)$ for some $h \in K[x]$, deg h = 3 and lc(h) = 1, hence $y^2 - h(x)$ is a WEP as well.

T&N. A WEP is said to be *short*, if $\exists a_2, a_4, a_6 \in K$ such that it is of the form (SH1) $y^2 - (x^3 + a_4x + a_6)$ if char $K \neq 2, 3$, (SH2) $y^2 - (x^3 + a_4x + a_6)$ or $y^2 + xy - (x^3 + a_4x + a_6)$ if char K = 2, (SH3) $y^2 - (x^3 + a_4x + a_6)$ or $y^2 - (x^3 + a_2x^2 + a_6)$ if char K = 3.

By a better choice of b in 5.1 it could be shown the next observation.

Observation. If char $K \neq 2,3$ and $\in K[x,y]$ is a WEP, then there exists $\sigma \in Aff_n(K)$ such that $\sigma^*(w)$ is a short WEP.

Lemma 5.2. Let $\lambda \in K^*$, w be a WEP and $\sigma \in Aff_2(K)$. Then \exists WEP \tilde{w} for which $\sigma^*(w) = \lambda \tilde{w} \Leftrightarrow w \exists \alpha, \delta, \gamma \in K$ a $\exists b \in K^2$ such that $\alpha^3 = \delta^2 = \lambda$, $A = \begin{pmatrix} \alpha & 0 \\ \gamma & \delta \end{pmatrix}$ and $\sigma = \tau_b \vartheta_A$.

If we consider $c = \delta \alpha^{-1}$, we get the following easy result:

Observation. Let $\alpha, \delta \in K^*$. Then $\alpha^3 = \delta^2 \Leftrightarrow \exists c \in K^*$ satisfying $\delta = c^3$ a $\alpha = c^2$.

Proposition 5.3. Let $w \in K[x, y]$ be a WEP and $\sigma \in Aff_2(K)$. Then the following conditions are equivalent:

- (1) there exists $\lambda \in K^*$ such that $\lambda \sigma^*(w)$ is a WEP,
- (2) there exists a WEP \tilde{w} such that $(\sigma^*(w)) = (\tilde{w})$,

(3) there exists
$$c \in K^*$$
, $d \in K$ and $b \in \mathbb{A}^2(K)$ such that $A = \begin{pmatrix} c^2 & 0 \\ d & c^3 \end{pmatrix}$ and $\sigma = \tau_b \vartheta_A$.

T&N. We say that two WEPs $w, \tilde{w} \in K[x, y]$ are *K*-equivalent provided $\exists \sigma \in Aff_2(K)$ satisfying $(\sigma^*(w)) = (\tilde{w})$ as ideals of K[x, y].

Corollary 5.4. The following conditions are equivalent for two WEPs $w, \tilde{w} \in K[x, y]$:

(1) w and \tilde{w} are K-equivalent, (2) $\exists c \in K^*, d \in K$ and $b \in K^2$ such that $(\tau_b^* \vartheta_A^*(w)) = (\tilde{w})$ for $A = \begin{pmatrix} c^2 & 0 \\ d & c^3 \end{pmatrix}$, (3) $\exists c \in K^*$ and $d, b_1, b_2 \in K$ such that $\tilde{w} = c^{-6}w(c^2x + b_1, c^3y + dx + b_2)$.

Example 5.5. (1) Let $w = y^2 + y(2x+2) - (x^3 - 4x^2 + 1) \in \mathbb{R}[x, y]$. Then w is a WEP. We find a short WEP which is \mathbb{R} -equivalent to w. Applying linear algebra machinery we remove the term 2xy: $A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \in U_2(\mathbb{R})$: $\vartheta_A^*(w) = (y-x)^2 + (y-x)(2x+2) - (x^3 - 4x^2 + 1) = y^2 + 2y - (x^3 - 3x^2 + 2x + 1)$ then we use b = (1, -1) to exclude monomials y and x^2 : $\tau_b^* \vartheta_A^*(w) = (y-1)^2 + 2(y-1) - ((x+1)^3 - 3(x+1)^2 + 2(x+1) + 1) = y^2 - (x^3 - x + 2).$ (2) The polynomial $\tilde{w} = y^2 - (x^3 - x + 2)$ is (a) \mathbb{R} -equivalent for example to the polynomial $y^2 - (x^3 - \frac{1}{16}x + \frac{1}{32})$ since $\vartheta_{A_1}^*(\tilde{w}) = 64y^2 - 64(x^3 - \frac{1}{16}x + \frac{1}{32})$ for $A_1 = \begin{pmatrix} 4 & 0 \\ 0 & 8 \end{pmatrix}$, (b) \mathbb{C} -equivalent to $y^2 - (x^3 - x - 2)$, because $\vartheta_{A_2}^*(\tilde{w}) = -y^2 - (-x^3 + x + 2)$ for $A_2 = \begin{pmatrix} -1 & 0 \\ 0 & i \end{pmatrix}$.

6. SINGULARITIES

K denotes the algebraic closure of a field K and $\mathbf{x} := (x_1, \ldots, x_n)$ in this section.

T&N. Let $K \leq L \leq \overline{K}$. Let us denote the affine spaces

- $\mathbb{A}^n := \overline{K}^n$ over a field \overline{K} and

- $\mathbb{A}^n(L) := L^n$ over a field L (*L*-rational points of \mathbb{A}^n).

For $a \in K[\mathbf{x}]$, $M \subset K[\mathbf{x}]$ we will denote:

- $V_M = \{ \alpha \in \mathbb{A}^n \mid a(\alpha) = 0 \forall a \in M \} (variety),$

- $V_M(L) = V_M \cap \mathbb{A}^n(L), V_a = V_{\{a\}}, V_a(L) = V_{\{a\}}(L).$

If $a \in K[x, y]$ and deg $a \ge 1$, then V_a is said to be an *affine (planar) curve*.

Recall that it is well known that $V_M = V_{(M)}$ for each $M \subset K[\mathbf{x}]$.

Observation. Let $a \in K[\mathbf{x}]$ and $\beta = (\beta_1, \ldots, \beta_n) \in \mathbb{A}^n$. Then mult $\tau^*_{\beta}(a) \ge 1 \Leftrightarrow$ mult $a(x_1 + \beta_1, \ldots, x_n + \beta_n) \ge 1 \Leftrightarrow a(\beta_1, \ldots, \beta_n) = 0 \Leftrightarrow \beta \in V_a$.

T&N. Let $a = \sum_{i_1\dots i_n} a_{i_1\dots i_n} x_1^{i_1}\dots x_n^{i_n} = \sum_j b_j x_i^j \in K[\mathbf{x}]$, where $b_j \in K[\mathbf{x} \setminus \{x_i\}]$. Then

$$L(a) = \sum_{i_1...i_n:\sum_j i_j=1} a_{i_1...i_n} x_1^{i_1} \dots x_n^{i_n} = \sum_{j=1}^n a_{\delta_{1j}...\delta_{nj}} x_j$$

is called the *linear part* of a polynomial a and

 $\frac{\partial a}{\partial x_i} = \sum_j (j+1)b_{j+1}x_i^j$ is a (partial) derivative of a polynomial a in a variable x_i .

If $\alpha = (\alpha_1, \ldots, \alpha_n) \in V_a$ and $c_i := \frac{\partial a}{\partial x_i}(\alpha)$. Then $t_{\alpha}(a) := \sum_i c_i x_i - \sum_i c_i \alpha_i = \sum_i c_i (x_i - \alpha_i)$ is called a *tangent* of a (or V_a) at the point α , and we say that a (or V_a) is *smooth* at α if $t_{\alpha}(a) \neq 0$, and *singular* at α if $t_{\alpha}(a) = 0$.

Definition. Polynomial a (or variety V_a) is

- *smooth* if it is smooth at all points $\alpha \in V_a$ and

- singular if \exists a singular point $\alpha \in V_a$ (such an α is called a singularity of V_a).

Observation. If $a \in K[\mathbf{x}]$ and $\alpha \in V_a$, then

- (1) *a* is smooth at $\alpha \Leftrightarrow \exists i \frac{\partial a}{\partial x_i}(\alpha) \neq 0$,
- (2) $\alpha \in V_{t_{\alpha}(a)}$.

Example 6.1. Let $w = y^2 - (x^3 + x - 2) \in \mathbb{R}[x, y]$ be a short WEP. Then L(w) = -x, $\frac{\partial w}{\partial x} = -3x^2 - 1$, $\frac{\partial w}{\partial y} = 2y$. For $\alpha = (1, 0) \in V_w$ we get $t_{\alpha}(w) = -4(x - 1)$.

Lemma 6.2. Let $a \in \overline{K}[\mathbf{x}], \alpha \in \mathbb{A}^n$, and $\sigma \in \operatorname{Aff}_n(\overline{K})$. Then

- (1) $t_{\alpha}(a) = \tau_{-\alpha}^*(L(\tau_{\alpha}^*(a)))$, whenever $\alpha \in V_a$,
- (2) $\alpha \in V_{\sigma^*(a)} \Leftrightarrow \sigma(\alpha) \in V_a$; in such a case $t_\alpha(\sigma^*(a)) = \sigma^*(t_{\sigma(\alpha)}(a))$,
- (3) $\sigma(V_{\sigma^{*}(a)}) = V_a$,
- (4) $\sigma^*(a)$ is singular at $\alpha \in V_{\sigma^*(a)} \Leftrightarrow a$ is singular at $\sigma(\alpha) \in V_a$.

Corollary 6.3. Let $w, \tilde{w} \in K[x, y]$ be K-equivalent WEPs. Then w is smooth $\Leftrightarrow \tilde{w}$ is smooth.

Recall that a polynomial is *separable* if all its rots in its splitting field are simple and the field is *perfect*, provided all its irreducible polynomials separable.

Proposition 6.4. If $w = y^2 - f(x)$ is a WEP for $f(x) \in K[x]$, then w has at most 1 singularity. If, furthermore, $charK \neq 2$, then

- (1) w is smooth $\Leftrightarrow f$ is separable,
- (2) a singularity is K-rational whenever K is perfect.

Example 6.5. (1) $y^2 - (x^3 + 1) \in \mathbb{R}[x, y]$ is a smooth short WEP,

- (2) $(y+1)^2 (x^3+1) \in \mathbb{F}_3[x,y]$ is a singular WEP with the singularity (2,2),
- (3) $y^2 (x^3 x^2 x + 1) \in \mathbb{R}[x, y]$ is a singular WEP with the singularity (1, 0).

7. Coordinate rings

Let us denote $\mathbf{x} := (x_1, \ldots, x_n)$ and \mathbb{A}^n is an affine space over \overline{K} .

T&N. Let $U \subseteq \mathbb{A}^n$ and $\alpha \in \mathbb{A}^n$. Then

$$I_U = \{ a \in K[\mathbf{x}] \mid a(\alpha) = 0 \forall \alpha \in U \}, \overline{I}_U = \{ a \in \overline{K}[\mathbf{x} \mid a(\alpha) = 0 \forall \alpha \in U \}$$

and $I_{\alpha} = I_{\{\alpha\}}, \, \overline{I}_{\alpha} = \overline{I}_{\{\alpha\}}.$

Observation. (1) If *I* is an ideal of $K[\mathbf{x}]$ such that $I \cap K[x_i] = (a_i) \neq 0 \ \forall i$, then $K[\mathbf{x}]/I$ is generated as a *K*-space by the set $\{\prod_i x_i^{j_i} \mid j_i < \deg(a_i)\}$, hence $\dim_K K[\mathbf{x}]/I \leq \prod_i \deg(a_i) < \infty$.

(2) If R is a domain and a K-algebra satisfying $\dim_K R < \infty$, then $K[\alpha]$ is a field for every $\alpha \in R$, thus R is a field as well.

Lemma 7.1. Let $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{A}^n$

(1) I_{α} is a maximal ideal,

(2) $\alpha \in \mathbb{A}^n(K) \Leftrightarrow K + I_\alpha = K[\mathbf{x}] \Leftrightarrow I_\alpha = (x_1 - \alpha_1, \dots, x_n - \alpha_n).$

Lemma 7.2. Let $K \leq L$ be an extension such that $[L:K] < \infty$ and I an ideal of $K[\mathbf{x}]$. (1) $(IL[\mathbf{x}]) \cap K[\mathbf{x}] = I$, (2) if I is prime with $I \cap K[x_i] \neq 0$ for all i = 1, ..., n, then there exists $\alpha \in \mathbb{A}^n$ for which $I = I_{\alpha}$.

Lemma 7.3. If $a, b \in K[x, y] \setminus K$ are coprime, then $(a, b) \cap K[x] \neq 0 \neq (a, b) \cap K[y]$.

Theorem 7.4. Let P be a nonzero prime ideal of K[x, y]. Then

- (1) either P is maximal, then it is not principal and there exists $\gamma \in \mathbb{A}^2$ for which $P = I_{\gamma}$,
- (2) or P = (p) for some irreducible $p \in K[x, y]$.

Note that V_P is finite for P maximal, and if $p, q \in K[x, y]$ are non-associated irreducible, $V_{(p)}$ is infinite and $V_{\{p,q\}} = V_p \cap V_q$ finite.

Example 7.5. For a WEP $w = y^2 - (x^3 + 1) \in \mathbb{R}[x, y]$ for example ideals

$$(w) \subseteq (y, x+1) = I_{(-1,0)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y^2 + 1, x + \sqrt[3]{2}) = I_{(-\sqrt[3]{2},i)}, \quad (y, x^2 - x + 1) = I_u, \quad (y, x^2 -$$

 $u = (e^{\frac{\pi}{3}i}, 0)$, are prime.

T&N. Let $C = V_a$ be an affine planar curve for $a \in K[x, y]$ such that $I_C = (a)$. Then $K[C] = K[x, y]/I_C = K[x, y]/(a)$ is a coordinate ring of the curve C. The curve C is said to be *irreducible* if K[C] is a domain and an element $p(x, y) + I_C$ is called a *polynomial* at C for any $p \in K[x, y]$.

If w is a WEP, then V_w is called a *Weierstrass curve*.

Observation. Let $a \in K[x, y]$ be irreducible, $C = V_a$ and $I_C = (a)$.

- (1) C is irreducible $\Leftrightarrow I_C = (a)$ is prime $\Leftrightarrow a$ is irreducible,
- (2) the map $\iota: K[C] \to \overline{K}^C$ given by the rule $\iota(p+(a))(\alpha) = p(\alpha)$ for each $\alpha \in C$ is a well-defined injective map.

T&N. If $a \in K[x, y]$ is irreducible and $C = V_a$, then the field of fractions

$$K(C) = \{ \frac{n+(a)}{d+(a)} \mid n \in K[x, y], d \in K[x, y] \setminus \{a\} \}$$

of K[C] is said to be a function field of the irreducible curve C.

Proposition 7.6. Let $a \in K[x, y]$ be irreducible, $C = V_a$, $\alpha = x + (a)$, $\beta = y + (a) \in K[C]$. Then $K(C) = K(\alpha, \beta)$ is an AFF over K and α is transcendental over $K \Leftrightarrow [K(C) : K(\alpha)] = \deg_y a > 0$.

Corollary 7.7. Let $K \leq L$. Then $\exists \alpha, \beta \in L$ such that $L = K(\alpha, \beta)$ is an AFF over $K \Leftrightarrow \exists$ an irreducible affine curve $C \subset \mathbb{A}^2$ satisfying $L \cong_K K(C)$.

T&N. Let $w \in K[x, y]$, L is an AFF over K and $\alpha, \beta \in L$. We say that an AFF L is given by (the equation) $w(\alpha, \beta) = 0$ (over K), if

- (1) $L = K(\alpha, \beta),$
- (2) w is irreducible,
- (3) $w(\alpha,\beta) = 0.$

Example 7.8. If $w \in K[x, y]$ is irreducible and $\alpha = x + (w)$, $\beta = y + (w)$, then $K(V_w)$ is given by $w(\alpha, \beta) = 0$ over K.

8. Absolutely irreducible polynomials

T&N. $f \in K[x, y]$ is called *absolutely irreducible*, if f is irreducible in the domain $\overline{K}[x, y]$.

Example 8.1. The polynomial $x^2 + y^2$ is irreducible but not absolutely irreducible in $\mathbb{R}[x, y]$ ($\mathbb{F}_3[x, y]$), since $x^2 + y^2 = (x + iy)(x - iy)$ in $\mathbb{C}[x, y]$ (*i* stands for an element of the order 4 in $\mathbb{F}_9^* \subset \overline{\mathbb{F}}_3$).

Polynomial $x^2 + y$ is absolutely irreducible in $\mathbb{R}[x, y]$ ($\mathbb{F}_3[x, y]$).

Lemma 8.2. If for $f, g \in K[x]$ holds true that deg $g \leq 1$ and deg $f \geq 3$ is odd, then $w = y^2 + yg(x) - f(x)$ is absolutely irreducible in K[x, y].

Proposition 8.3. Let $w \in K[x, y]$ be irreducible and \tilde{K} be the field of constants of the AFF $K(V_w)$ over K. Then $K = \tilde{K} \Leftrightarrow w$ is irreducible in $\tilde{K}[x, y]$.

Corollary 8.4. If $w \in K[x, y]$ is a WEP and $C = V_w$ is a Weierstrass curve, then w is absolutely irreducible and all elements $K(C) \setminus K$ are transcendental over K.

Example 8.5. Let $w = y^2 + yx + x^3 + 1 \in \mathbb{F}_2[x, y]$ be a WEP and denote L the fraction field of $\mathbb{F}_2[x, y]/(w)$, hence L is the function field of the curve V_w , which is an AFF over \mathbb{F}_2 by 7.6. Since w is absolutely irreducible by 8.2, we can compute the field of constants $\widetilde{\mathbb{F}}_2 = \mathbb{F}_2$ using 8.3. Since for example polynomials $x^2 + x + 1$ and $x^3 + x + 1$ has no root in \mathbb{F}_2 they have no root in L, so both are irreducible over L.

9. Places determined by a pair

In this section, L denotes an AFF over K given by $w(\alpha, \beta) = 0$ with deg $(w) \ge 2$.

Observation. Let $a \in K[x, y] \subseteq L[x, y]$, $\sigma \in Aff_2(K)$, and $\tilde{\alpha}, \tilde{\beta} \in L$. Denote by $\overline{\sigma} \in Aff_2(L)$ the unique extension of σ and put $u = \sigma^*(x)(\tilde{\alpha}, \tilde{\beta}), v = \sigma^*(y)(\tilde{\alpha}, \tilde{\beta})$. Then

(1) $(\sigma^{-1})^*(a(\sigma^*(x), \sigma^*(y))) = a(x, y),$ (2) $w(x, y) = a(\sigma^*(x), \sigma^*(y)) \Leftrightarrow a = (\sigma^{-1})^*(w),$ (3) $\overline{\sigma}^*(a) = \sigma^*(a) \in K[x, y].$ (4) $(u, v) = (\sigma^*(x)(\tilde{\alpha}, \tilde{\beta}), \sigma^*(y)(\tilde{\alpha}, \tilde{\beta})) = \overline{\sigma}(\tilde{\alpha}, \tilde{\beta}),$ (5) $(\tilde{\alpha}, \tilde{\beta}) = \overline{\sigma}^{-1}(u, v),$ hence $K(\tilde{\alpha}, \tilde{\beta}) = K(u, v)$ (6) $(\sigma^{-1})^*(w)(u, v) = w(\overline{\sigma}^{-1}(u, v)) = w(\tilde{\alpha}, \tilde{\beta}).$

We will use notation $\overline{\sigma}$ from the last observation in the sequel. Put mult(0) = ∞ .

Lemma 9.1. Let w be smooth at $\gamma = (\gamma_1, \gamma_2) \in V_w(K)$, $A \in GL_2(K)$, $\sigma := \vartheta_A \tau_{-\gamma}$ and put $(u, v) = \overline{\sigma}(\alpha, \beta)$ and $f_{\sigma} = (\sigma^{-1})^*(w)$. Then

- (1) L is an AFF over K given by $f_{\sigma}(u, v) = 0$,
- (2) \exists a matrix A such that $f_{\sigma} = yg(x, y) + h(x) + y$ where $h \in K[x] \setminus \{0\}, g \in K[x, y],$ mult $(h) \ge 2$, mult $(g) \ge 1$,
- (3) if $t_{\gamma}(f) = a_1(x \gamma_1) + a_2(y \gamma_2)$, then A is a matrix from (2) $\Leftrightarrow A = \begin{pmatrix} b_1, b_2 \\ a_1, a_2 \end{pmatrix}$ for $(b_1, b_2) \in K^2 \setminus \text{Span}_{K}((a_1, a_2)).$

Let us suppose that L is an AFF over K given by $w(\alpha, \beta) = 0$ with $\deg(w) \ge 2$ and simultaneously by f(u, v) = 0, where $f = yg(x, y) + h(x) + y \in K[x, y]$, $h \in K[x] \setminus \{0\}$, $g \in K[x, y]$, mult $(h) \ge 2$, mult $(g) \ge 1$.

Put m := mult(h) (which is finite by 9.1).

T&N. Let
$$a = \sum_{i,j\geq 0} a_{ij} x^i y^j \in K[x,y] \setminus \{0\}$$
, then define:
 $\mu(a) := \text{mult}(a(x, y^m)),$
 $s(a) := \{(i, j) \in \mathbb{Z}^2 | i, j \geq 0, i + jm = \mu(a)\},$
 $S(a) := \sum_{(i,j)\in s(a)} a_{ij} x^i y^j.$

Observation. Let $a, b = \sum_{i,j} b_{ij} x^i y^j \in K[x, y] \setminus \{0\}$ and $i, j, k, l \ge 0$. Then

- (1) $\operatorname{mult}(a \cdot b) = \operatorname{mult}(a) + \operatorname{mult}(b),$ and if $\operatorname{mult}(a) < \operatorname{mult}(b),$ then $\operatorname{mult}(a + b) = \operatorname{mult}(a),$ (2) $\mu(a \cdot b) = \operatorname{mult}(a(x, y^m) \cdot b(x, y^m)) = \operatorname{mult}(a(x, y^m)) + \operatorname{mult}(b(x, y^m)) = \mu(a) + \mu(b),$
- and if $\mu(a) < \mu(b)$, then $\mu(a+b) = \mu(a) \ge \operatorname{mult}(a)$,
- (3) If $(i+jm)+(k+lm) = \mu(a)+\mu(b) = \mu(ab)$ and $(i+jm) > \mu(a) \Rightarrow (k+lm) < \mu(b) \Rightarrow b_{kl} = 0$, hence

$$S(a)S(b) = \sum_{(i,j)\in s(a)} \sum_{(k,l)\in s(b)} a_{ij}b_{kl}x^{i+k}y^{j+l} = \sum_{(q,r)\in s(ab)} x^q y^r \sum_{(i,j)+(k,l)=(q,r)} a_{ij}b_{kl} = S(ab),$$
(4) $\mu(a) = \mu(S(a))$, and if $\mu(a) < \mu(b)$, then $S(a+b) = S(a)$.

T&N. Denote by Λ the K-endomorphism of K[x, y] defined for each $a \in K[x, y]$ by the rule

$$\Lambda(a(x,y)) := a(x, -h(x) - yg(x,y)).$$

Lemma 9.2. $\mu(\Lambda(x^iy^j)) = i + jm$ and there exists $\lambda \in K \setminus \{0\}$ such that $S(\Lambda(x^iy^j)) = \lambda x^{i+jm}$ for each $i, j \ge 0$.

Example 9.3. Let $w = (y + x + 1)^2 - (x^3 + 2x + 1) \in \mathbb{R}[x, y]$.

Since $gcd(x^3+2x+1, 3x^2+2) = 1$, the polynomial w is a smooth WEP and it holds that $f = \frac{1}{2}w = \frac{1}{2}(y^2+x^2+2yx+2y-x^3) = y(x+\frac{1}{2}y)+\frac{1}{2}(x^2-x^3)+y$. so f = yg(x,y)+h(x)+y for $g = x + \frac{1}{2}y$ and $h = \frac{1}{2}(x^2-x^3)$. Note that mult(g) = 1 and m = mult(h) = 2. Then compute

$$\begin{split} \mu(g) &= \text{mult}(x + \frac{1}{2}y^2) = 1, \ S(g) = x, \\ \mu(h) &= \text{mult}(h) = 2, \ S(h) = \frac{1}{2}x^2, \\ \mu(x^3y^2) &= 3 + 2 \cdot 2 = 7, \ \mu(x^2y^3) = 2 + 3 \cdot 2 = 8 \Rightarrow \mu(x^3y^2 + x^2y^3) = 7, \\ S(\Lambda(x^3y^2 + x^2y^3)) &= S(\Lambda(x^3y^2)) = \frac{1}{4}x^7 \text{ by } 9.2. \end{split}$$

Observation. Let $a = \sum_{ij} a_{ij} x^i y^j \in K[x, y] \setminus \{0\}, u, v \in P \in \mathbb{P}_{L/K}$ and t = a(u, v).

- (1) $\Lambda(a)(u,v) = a(u, -h(u) vg(u,v)) = a(u,v),$
- (2) $m\nu_P(u) = \nu_P(h(u)) = \nu_P(v(-g(u,v)-1)) = \nu_P(v) + \nu_P(-g(u,v)-1) = \nu_P(v)$ by 4.9,
- (3) $\nu_P(t) \ge \min\{\nu_P(u^i v^j) \mid a_{ij} \ne 0\} = \min\{(i+mj)\nu_P(u) \mid a_{ij} \ne 0\} = \mu(a)\nu_P(u),$ hence $\mu(a) \le \frac{\nu_P(t)}{\nu_P(u)}.$

T&N. Put
$$\mu(t) = \max\{\mu(a) \mid a \in K[x, y] : a(u, v) = t\}$$
 for each $t \in K[u, v]$.

Lemma 9.4. Let $t \in K[u, v] \setminus \{0\}$ and $k := \mu(t)$. Then there exist $\lambda \in K^*$ and $b \in K[x, y]$ satisfying $\mu(b) > k$ and $t = \lambda u^k + b(u, v)$.

Theorem 9.5. There exists a unique $P \in \mathbb{P}_{L/K}$ such that $u, v \in P$. Furthermore, it holds true that $\nu_P(u) = 1$, $\nu_P(v) = m$ and $\nu_P(r \cdot s^{-1}) = \mu(r) - \mu(s)$ for each $r, s \in K[u, v] \setminus \{0\}$.

Example 9.6. Consider a polynomial $f = y(x + \frac{1}{2}y) + \frac{1}{2}(x^2 - x^3) + y$ from 9.3. Then $L = \mathbb{R}(u, v)$ for u = x + (f), v = y + (f) and let P be the uniquely determined place from 9.5 Then $\nu_P(u) = 1$ and $\nu_P(v) = \text{mult}(h) = 2$. Let us compute $\nu_P(u^2 + v)$ and $\nu_P(u^2 + 2v)$:

$$\begin{split} f(u,v) &= 0 \Rightarrow v = -v(u + \frac{1}{2}v) + \frac{1}{2}(u^3 - u^2), \text{ hence} \\ \nu_P(u^2 + v) &= \nu_P(\frac{1}{2}u^2 - vu - \frac{1}{2}v^2 + \frac{1}{2}u^3) = \min(2,3,4,3) = 2 \text{ and} \\ \nu_P(u^2 + 2v) &= \nu_P(u^3 - 2vu - v^2) = \nu_P(u(u^3 - 2v) - v^2) = \min(3,4) = 3 \text{ since } \nu_P(u^2 - 2v) = \\ \nu_P(-u^3 + 2vu + v^2 + 2u^2) = \min(2,3,4,3) = 2 \text{ and so } \nu_P(u(u^3 - 2v)) = 3. \end{split}$$

Theorem 9.7. Let w be smooth at $\gamma = (\gamma_1, \gamma_2) \in V_w(K)$.

- (1) There exists a unique $P \in \mathbb{P}_{L/K}$ satisfying $\nu_P(\alpha \gamma_1) > 0$ and $\nu_P(\beta \gamma_2) > 0$.
- (2) If $l = l_0 + l_1 x + l_2 y \in K[x, y]$ where $l_0, l_1, l_2 \in K$ then it holds for P from (1):

$$\nu_P(l(\alpha,\beta)) \begin{cases} = 0 & \text{if } l(\gamma) \neq 0\\ = 1 & \text{if } l(\gamma) = 0 \text{ and } l \notin (t_\gamma(w))\\ \ge 2 & \text{if } l(\gamma) = 0 \text{ and } l \in (t_\gamma(w)) \end{cases}$$

T&N. If $p \in K[x]$ and $\gamma \in K$, denote by $\operatorname{mult}_{\gamma}(p) = \operatorname{mult}(\tau_{-\gamma}^*(p))$ the multiplicity of a root γ of p, i.e the non-negative integer k satisfying $(x - \gamma)^k | p$ and $(x - \gamma)^{k+1} \not p$.

Observation. If $p, s \in K[x]$, $g \in K[x, y]$, $\gamma \in K$ is a root of s, $\operatorname{mult}_{\gamma}(g(x - \gamma, s(x))) \geq \operatorname{mult}(g)$.

This year we omit the proof of the following fact:

Proposition 9.8. Let $\gamma = (\gamma_1, \gamma_2) \in V_w(K)$, $\frac{\partial w}{\partial y}(\gamma) \neq 0$, $\lambda, \mu \in K$ satisfy $l = y - \lambda x - \mu$ and $l(\gamma) = 0$, and $(\alpha - \gamma_1, \beta - \gamma_2) \subset P \in \mathbb{P}_{L/K}$. Then $\nu_P(l(\alpha, \beta)) = \text{mult}_{\gamma_1}(w(x, \lambda x + \mu))$.

Example 9.9. Let $f = y^2 + xy + x^5 + 32 \in \mathbb{R}[x, y]$, then f is an absolutely irreducible by 8.2. Denote by L the AFF over \mathbb{R} given by $f(\alpha, \beta) = 0$ for $\alpha = x + (f)$ and $\beta = y + (f) \in \mathbb{R}[x, y]/(f)$. Since $(-2, 2) \in V_f$ and $\frac{\partial f}{\partial x} = y + 5x^4$, $\frac{\partial f}{\partial y} = 2y + x$, we get $\frac{\partial f}{\partial x}(-2, 2) = 82$, $\frac{\partial f}{\partial y}(-2, 2) = 2$ and $t = t_{(-2,2)}(f) = 82x + 2y + 160$.

By 9.7 there exists the unique $P \in \mathbb{P}_{L/K}$ containing $\alpha + 2, \beta - 2$. For $u = \beta + 41\alpha + 80 = \frac{1}{2}t(\alpha, \beta)$ we determine the value $\nu_P(u)$ by applying 9.8: $\hat{f} = f(x, -41x - 80) = x^5 + 40 \cdot 41x^2 - 80 \cdot 81 + 80^2 + 32$. Since $0 = \hat{f}(-2) = \hat{f}'(-2) \neq \hat{f}''(-2)$ we get $\nu_P(u) = 2$.

10. LOCALIZATION IN A COORDINATE RING

Let us suppose again that L is an AFF over K given by $w(\alpha, \beta) = 0$ with deg $(w) \ge 2$ and by f(u, v) = 0, where $f = yg(x, y) + h(x) + y \in K[x, y]$, $h \in K[x] \setminus \{0\}$, $g \in K[x, y]$, $m = \text{mult}(h) \ge 2$, $\text{mult}(g) \ge 1$. **T&N.** Let $\gamma = (\gamma_1, \gamma_2) \in V_w(K) \subset \mathbb{A}^2(K)$. Then $(w) \subseteq I_\gamma = (x - \gamma_1, y - \gamma_2)$. Denote by $R_\gamma := K[x, y]_{(I_\gamma)} = \{\frac{a}{b} \in K(x, y) \mid a, b \in K[x, y] : b(\gamma) \neq 0\}$

the localization of K[x, y] in the maximal ideal I_{γ} , $(I_{\gamma}) = \{\frac{a}{b} \in R_{\gamma} \mid a \in I_{\gamma}, b(\gamma) \neq 0\}$ denotes the (unique) maximal ideal of R_{γ} and $\omega_{\gamma} : R_{\gamma} \to L$ is a ring homomorphism defined by the rule $\omega_{\gamma}(\frac{a}{b}) = \frac{a(\alpha,\beta)}{b(\alpha,\beta)}$. Then let us denote

$${}_{w}\mathcal{O}_{\gamma} = \omega_{\gamma}(R_{\gamma}) = \{\rho \in L \mid \exists r \in R_{\gamma} : \omega_{\gamma}(r) = \rho\},\$$
$${}_{w}P_{\gamma} = \omega_{\gamma}((I_{\gamma})) = \{\rho \in L \mid \exists r \in (I_{\gamma}) : \omega_{\gamma}(r) = \rho\}.$$

If w is fixed we will write \mathcal{O}_{γ} instead ${}_{w}\mathcal{O}_{\gamma}$ and P_{γ} instead ${}_{w}P_{\gamma}$.

Observation. If $\gamma \in V_w(K)$, $\sigma \in \operatorname{Aff}_2(K)$ such that $f = (\sigma^{-1})^*(w)$ and $\sigma(\gamma) = (0,0)$ and denote $\mathcal{O}_{\gamma} =_w \mathcal{O}_{\gamma}$, $P_{\gamma} =_w P_{\gamma}$, then

- (1) \mathcal{O}_{γ} is a local ring with the maximal ideal P_{γ} ,
- (2) $\mathcal{O}_{\gamma} = K + P_{\gamma}$, hence $\dim_K(\mathcal{O}_{\gamma}/P_{\gamma}) = 1$,
- (3) $\mathcal{O}_{\gamma} = {}_{f}\mathcal{O}_{(0,0)} \text{ a } P_{\gamma} = {}_{f}P_{(0,0)}.$

Lemma 10.1. If w is singular at $\gamma \in V_w(K)$, then \mathcal{O}_{γ} is not a valuation ring.

Example 10.2. Let $w = (y+1)^2 - (x+2)^3$ and L be an AFF over \mathbb{F}_5 given by $w(\alpha, \beta) = 0$ for $\alpha = x + (w)$ and $\beta = y + (w) \in K[x, y]/(w)$ (cf. 7.8). Then $(3, 4) \in V_w(\mathbb{F}_5)$ is a singularity of w and by the proof of 10.1 $\frac{\alpha+2}{\beta+1} \notin wO_{(3,4)}$ and $\frac{\beta+1}{\alpha+2} \notin wO_{(3,4)}$.

Lemma 10.3. Let $u, v \in P \in \mathbb{P}_{L/K}$ and $z \in K[u, v] \setminus \{0\}$. Then $\exists a, b \in K[x, y] \setminus I_{(0,0)}$ (i.e. $\operatorname{mult}(a) = \operatorname{mult}(b) = 0$) such that $\frac{z}{u^{\nu_P(z)}} = \frac{a(u, v)}{b(u, v)} \in {}_{f}\mathcal{O}^*_{(0,0)} = {}_{f}\mathcal{O}_{(0,0)} \setminus {}_{f}P_{(0,0)}$.

Proposition 10.4. Let w be smooth at $\gamma = (\gamma_1, \gamma_2) \in V_w(K)$, and $(\alpha - \gamma_1, \beta - \gamma_2) \subseteq P \in \mathbb{P}_{L/K}$. Then

- (1) $\exists \tilde{u} \in P_{\gamma}$ such that $\nu_P(\tilde{u}) = 1$ and $z\tilde{u}^{-\nu_P(z)} \in \mathcal{O}^*_{\gamma}$ for each $z \in K[\alpha, \beta] \setminus \{0\}$,
- (2) $P = P_{\gamma}$,
- (3) $\mathcal{O}_P = \mathcal{O}_{\gamma}$.

Example 10.5. Consider $f = y^2 + xy + x^5 + 32 \in \mathbb{R}[x, y]$ from 9.9, where *L* is an AFF over \mathbb{R} given by $f(\alpha, \beta) = 0$. Put $t = t_{(-2,2)}(f) = 82x + 2y + 160$ and compute $P = P_{(-2,2)} \in \mathbb{P}_{L/\mathbb{R}}$. Since (-2, 2) is a zero of both lines x + 2, x + y, and $x + 2, x + y \notin (t)$, 9.7 implies that $\nu_P(\alpha + 2) = \nu_P(\alpha + \beta) = 1$.

9.7 implies that $\nu_P(\alpha + 2) = \nu_P(\alpha + \beta) = 1.$ Hence $P_{(-2,2)} = (\alpha + 2) = \{(\alpha + 2)\frac{p(\alpha,\beta)}{q(\alpha,\beta)} \mid q(-2,2) \neq 0\}.$

Observation. Let $0 \neq M \subsetneq K[\alpha, \beta]$ be a prime ideal and $\hat{K} = K[\alpha, \beta]/M$. Then

(1) M a maximal ideal of $K[\alpha, \beta]$ and $\hat{K} = K[x, y]/I_{\gamma}$ for some $\exists \gamma \in V_w$ by 7.4,

- (2) $\hat{K} = K[\alpha + M, \beta + M]$ is a field and $[\hat{K} : K] < \infty$,
- (3) $\alpha + M, \beta + M$ are algebraic over K,
- (4) $[\hat{K}:K] = 1 \Leftrightarrow \exists (\gamma_1, \gamma_2) \in V_w(K)$ such that $M = (\alpha \gamma_1, \beta \gamma_2)$ by 7.1(2) and (1).

Lemma 10.6. Let $P \in \mathbb{P}_{L/K}$ and $\tilde{P} = P \cap K[\alpha, \beta]$.

- (1) If $K[\alpha,\beta] \subseteq \mathcal{O}_P$, then \tilde{P} is a maximal ideal of $K[\alpha,\beta]$, $\dim_K(K[\alpha,\beta]/\tilde{P}) < \infty$, $\nu_P(\alpha) \ge 0$, and $\nu_P(\beta) \ge 0$.
- (2) If $K[\alpha, \beta] \not\subseteq \mathcal{O}_P$, then $\tilde{P} = 0$ and either $\nu_P(\alpha) < 0$ or $\nu_P(\beta) < 0$.
- (3) If $K[\alpha, \beta] \not\subseteq \mathcal{O}_P$ and w is a WEP, then $3\nu_P(\alpha) = 2\nu_P(\beta) < 0$.

T&N. Denote $\mathbb{P}_{L/K}^{(1)} := \{ P \in \mathbb{P}_{L/K} \mid \deg P = 1 \}.$

Theorem 10.7. Let $P \in \mathbb{P}_{L/K}^{(1)}$ and a polynomial w be smooth at all points of $\gamma \in V_w(K)$. Then the following conditions are equivalent:

- (1) $K[\alpha,\beta] \subseteq \mathcal{O}_P$,
- (2) \exists a unique $(\gamma_1, \gamma_2) \in V_w(K)$ for which $\nu_P(\alpha \gamma_1) > 0$ and $\nu_P(\beta \gamma_2) > 0$,
- (3) \exists a unique $\gamma \in V_w(K)$ for which $P = P_{\gamma}$.

Corollary 10.8. If a WEP w is smooth at all points $\gamma \in V_w(K)$ and $P \in \mathbb{P}^{(1)}_{L/K}$ then either $\exists \gamma \in V_w(K)$ for which $P = P_{\gamma}$ or $\alpha^{-1}, \beta^{-1} \in P$.

11. WEAK APPROXIMATION THEOREM

L is an AFF over K with the field of constants K.

Observation. Let $a, b \in L$.

- (1) If $a \notin \tilde{K}$, then $\exists P \in \mathbb{P}_{L/K}$ such that $\nu_P(a) > 0$ by 3.6,
- (2) $\tilde{K}^* = \{s \in L \mid \nu_P(s) = 0 \ \forall P \in \mathbb{P}_{L/K}\}$ by (1) and 4.8,
- (3) if $P \in \mathbb{P}_{L/K}$ satisfies $\nu_P(a) \neq 0 \neq \nu_P(b)$, then $\nu_P(a+b^k) = \min(\nu_P(a), k\nu_P(b))$ for all but one k by 4.6, hence $\exists k_0$ such that the equality holds $\forall k \geq k_0$.

Lemma 11.1. Let $n \ge 1$ and $P_1, \ldots, P_n \in \mathbb{P}_{L/K}$ be pairwisely distinct places. If $\nu_i := \nu_{P_i}$ for all $i, a_1, \ldots, a_n \in L$ and $z \in \mathbb{Z}$, then

- (1) $\exists s \in L^*$ such that $\nu_1(s) > 0$ and $\nu_i(s) < 0$ for each $i = 2, \ldots, n$,
- (2) $\exists t \in L$ such that $\nu_i(t-a_i) > z$ for each $i = 1, \ldots, n$.

Theorem 11.2 (Weak Approximation Theorem). Let $n \ge 1$ and $P_1, \ldots, P_n \in \mathbb{P}_{L/K}$ be pairwise distinct places. If $a_1, \ldots, a_n \in L$ and $z_1, \ldots, z_n \in \mathbb{Z}$, then there exists $s \in L$ such that $\nu_{P_i}(s - a_i) = z_i$ for all $i = 1, \ldots, n$.

Corollary 11.3. $\mathbb{P}_{L/K}$ is infinite.

T&N. If W is a subspace of a K-space V, we say that B is *linearly independent/LI* (a *basis*) of V modulo W if $\{b + W \mid b \in B\}$ forms a linearly independent set (a basis) of the factor V/W.

Corollary 11.4. If $n \ge 1$, $e \ge 0$ and P, P_1, \ldots, P_n are pairwise distinct, then \exists a basis B of the K-algebra \mathcal{O}_P modulo P such that $B \subset P_j^e \setminus P_j^{e+1} \ \forall j = 1, \ldots, n$.

Observation. Let $P \in \mathbb{P}_{L/K}$ and $b_1, \ldots, b_n \in \mathcal{O}_P$ is linearly independent modulo P over $K, t \in P, \nu_P(t) = 1, \lambda_i, \lambda_{ij} \in K$ for $i = 1, \ldots, n, j = 0, \ldots, e-1$ and $\exists i : \lambda_i \neq 0$ and $\exists (i, j) : \lambda_{ij} \neq 0$. Then

(1) $\nu_P(\sum_i \lambda_i b_i) = 0$, since $\sum_i \lambda_i b_i \notin P$, (2) $\nu_P(\sum_i \lambda_i b_i t^j) = \nu_P(\sum_i \lambda_i b_i) + \nu_P(t^j) = j$,

- (3) $\nu_P(\sum_{ij} \lambda_{ij} b_i t^j) = \min\{j \mid \exists i : \lambda_{ij} \neq 0\}$ by 4.6,
- (4) $\{b_i t^j \mid i = 1, ..., n, j = 0, ..., e 1\}$ is linearly independent modulo P^e .

Proposition 11.5. Let $P_1, \ldots, P_n \in \mathbb{P}_{L/K}$ be pairwise distinct places for $n \geq 1$. If $s \in \bigcap_{i=1}^n P_i$, then $[L:K(s)] \geq \sum_{i=1}^n \nu_{P_i}(s) \deg P_i$.

Corollary 11.6. If $s \in L^*$, then the set $\{P \in \mathbb{P}_{L/K} \mid \nu_P(s) \neq 0\}$ is finite.

Corollary 11.7. If w is a WEP and L is given by $w(\alpha, \beta) = 0$, then there exists unique $P_{\infty} \in \mathbb{P}_{L/K}$ such that $\alpha^{-1} \in P_{\infty}$ or $\beta^{-1} \in P_{\infty}$. Furthermore, $P_{\infty} \in \mathbb{P}_{L/K}^{(1)}$, $\nu_{P_{\infty}}(\alpha) = -2$ and $\nu_{P_{\infty}}(\beta) = -3$.

T&N. The uniquely determined place from 11.7 is denoted by P_{∞} .

Proposition 11.8. If w is a smooth WEP at $V_w(K)$, then

$$\mathbb{P}_{L/K}^{(1)} = \{P_{\infty}\} \cup \{P_{\gamma} \mid \gamma \in V_w(K)\}.$$

Example 11.9. Let $f = y^2 + y - (x^3 + 1) = y^2 + y + x^3 + 1 \in \mathbb{F}_2[x, y]$ and $\alpha := x + (f)$, $\beta := y + (f) \in \mathbb{F}_2[x, y]/(f)$. Then f is a Weierstrass equation polynomial and $L = \mathbb{F}_2(\alpha, \beta)$ is an AFF over \mathbb{F}_2 given by $f(\alpha, \beta) = 0$.

Let $P \in \mathbb{P}_{L/K}$ of degree 1. Then $\mathbb{P}_{L/K}^{(1)} = \{P_{(1,0)}, P_{(1,1)}, P_{\infty}\}$ by 11.8, since $V_f(\mathbb{F}_2) = \{(1,0), (1,1)\}.$

By 11.3 $\mathbb{P}_{L/K}$ is infinite, hence other places are of degree greater than 1, for example for each irreducible $m \in \mathbb{F}_2[x]$ of degree greater than 1, there exists $P_m \in \mathbb{P}_{L/K}$ such that $m(\alpha) \in P_m$, thus deg $P_m \ge \text{deg}(m) > 1$.

12. Divisors

Let L be an AFF over K and \tilde{K} its field of constants in this section.

Definition. Let $\text{Div}(L/K) = \{\sum_{P \in \mathbb{P}_{L/K}} a_p P \mid a_p \in \mathbb{Z}\}$ denote the free abelian group with the free basis $\mathbb{P}_{L/K}$ (hence only finitely many a_p 's are non-zero) and operations

$$\sum_{P \in \mathbb{P}_{L/K}} a_p P \pm \sum_{P \in \mathbb{P}_{L/K}} b_p P = \sum_{P \in \mathbb{P}_{L/K}} (a_p \pm b_p) P, \quad \underline{0} = \sum_{P \in \mathbb{P}_{L/K}} 0 P.$$

A formal sum $\sum_{P \in \mathbb{P}_{L/K}} a_p P$ is called a *divisor* (of the AFF *L* over *K*). Degree of a divisor is defined by $\deg_K(\sum_{P \in \mathbb{P}_{L/K}} a_p P) := \sum_{P \in \mathbb{P}_{L/K}} a_p \deg_K(P)$.

Example 12.1. $\sum_{P \in \mathbb{P}_{L/K}} \nu_p(r) P$ is a divisor by 11.6 for each $r \in L^*$ and note that $\sum_{P \in \mathbb{P}_{L/K}} \nu_P(a) P = \underline{0} \Leftrightarrow \nu_P(a) = 0 \ \forall P \in \mathbb{P}_{L/K} \Leftrightarrow a \in \tilde{K}.$

T&N. A divisor $\sum_{P \in \mathbb{P}_{L/K}} \nu_p(r) P$ for $r \in L^*$ is called *principal* divisor and it is denoted by (r) and let $\operatorname{Princ}(L/K) := \{(r) \mid r \in L^*\}$ be the set of all principal divisors of L over K.

Observation. Put $k = [\tilde{K} : K] < \infty$, $P \in \mathbb{P}_{L/K}$, $A \in \text{Div}(L/K)$.

- (A1) $\mathbb{P}_{L/\tilde{K}} = \mathbb{P}_{L/K}$ and $\text{Div}(L/\tilde{K}) = \text{Div}(L/K)$,
- (A2) $\deg_K P = \dim_K \mathcal{O}_P / P = k \cdot \deg_{\tilde{K}} P$ and $\deg_K(A) = k \cdot \deg_{\tilde{K}}(A)$,

- (A3) $\deg_K : \operatorname{Div}(L/K) \to \mathbb{Z}$ is a group homomorphism,
- (A4) the map $r \to (r)$ forms a homomorphism of $(L^*, \cdot, {}^{-1}, 1)$ and $(\text{Div}(L/K), +, -, \underline{0})$ since $(rs) = \sum_{P \in \mathbb{P}_{L/K}} \nu_p(rs)P = \sum_{P \in \mathbb{P}_{L/K}} (\nu_p(r) + \nu_p(s))P = (r) + (s),$
- (A5) Princ(L/K) is a subgroup of Div(L/K) where $-(r) = (r^{-1})$ and $\underline{0} = (1)$, furthermore, $(r) = (s) \Leftrightarrow \exists \lambda \in \tilde{K}^*$ satisfying $r = \lambda s$.

T&N. Let
$$A = \sum_{P \in \mathbb{P}_{L/K}} a_p P$$
, $B = \sum_{P \in \mathbb{P}_{L/K}} b_p P \in \text{Div}(L/K)$. Then let us denote:

$$\max(A,B) := \sum_{P \in \mathbb{P}_{L/K}} \max(a_p, b_p) P, \quad \min(A,B) := \sum_{P \in \mathbb{P}_{L/K}} \min(a_p, b_p) P,$$

 $A_+ := \max(A, \underline{0}), A_- := -\min(A, \underline{0}) = (-A)_+, \text{ and } A \text{ is called positive if } A = A_+.$ Define relations \leq and \sim on Div(L/K): $A \leq B$ if $a_p \leq b_p \ \forall \ P \in \mathbb{P}_{L/K}, \ A \sim B$ if

 $A - B \in \operatorname{Princ}(L/K). \geq \text{denotes the opposite relation.}$ Denote $\mathcal{L}(A) := \{r \in L^* \mid (r) + A \geq \underline{0}\} \cup \{0\}.$

Observation. Let $r \in L^*$ and $A \in Div(L/K)$.

- (B1) ~ is a congruence on Div(L/K) and \leq is an ordering on Div(L/K) compatible with the operation + (i.e. $A \leq B, C \leq D \Rightarrow A + C \leq B + D$ for $A, B, C, D \in \mathbb{P}_{L/K}$),
- (B2) if $r \in L \setminus \tilde{K}$, then $(r) \geq \underline{0}$ by Lemma 4.9(1),
- (B3) $\mathcal{L}(A)$ is a K-space and so K-space and

$$\mathcal{L}(\underline{0}) := \{ r \in L^* \mid (r) + (1) \ge \underline{0} \} \cup \{ 0 \} = K.$$

T&N. Cl(L/K) := Div(L/K)/Princ(L/K) is called the *class group* of the AFF *L* over *K*. If $A \in \text{Div}(L/K)$, then $\mathcal{L}(A)$ is said to be *Riemann-Roch space* of the divisor *A* and $l(A) = \dim_{L/K} A := \dim_K \mathcal{L}(A)$.

If K = K, then L is a full constant AFF.

Observation. Let $i \leq j \in \mathbb{Z}$, $(p) = P \in \mathbb{P}_{L/K}$ and denote $P^i = p^i \mathcal{O}_P$.

- (C1) The map $\psi_j : \mathcal{O}_P/P \to P^{j-1}/P^j$ determined by the rule $\psi_j(a+P) = ap^{j-1} + P^j$ is an isomorphism of K-spaces,
- (C2) deg $P = \dim_K \mathcal{O}_P / P = \dim_K P^{j-1} / P^j$,
- (C3) $\dim_K(P^i/P^j) = \sum_{k=i+1}^j \dim(P^{k-1}/P^k) = (j-i) \deg P.$

Lemma 12.2. If $A, B \in \text{Div}(L/K)$ such that $A \leq B$, then $\mathcal{L}(A)$ is a subspace of $\mathcal{L}(B)$ and $\dim_K(\mathcal{L}(B)/\mathcal{L}(A)) \leq \deg_K(B-A)$.

Lemma 12.3. If $\mathbb{P}_{L/K}^{(1)} \neq \emptyset$, then $K = \tilde{K}$

We will suppose in the rest of the lecture that $K = \tilde{K}$, i.e. L is a full constant AFF.

Proposition 12.4. If $A, B \in \text{Div}(L/K)$, then

- (D1) $1 \le l(A) \le \deg A + 1$ if $A \ge \underline{0}$,
- (D2) l(A) = 0, if $A < \underline{0}$,
- (D3) $l(A) \le l(A_+) < \infty$,
- (D4) $\deg A l(A) \le \deg B l(B)$, if $A \le B$.

Lemma 12.5. If $s \in L \setminus K$, then $\exists B \in \text{Div}(L/K)$ such that $B \ge 0$ and for each $k \ge 0$:

(1) $(k+1)[L:K(s)] \le l(k \cdot (s)_{-} + B),$ (2) $(k+1)[L:K(s)] \le k \cdot \deg((s)_{-}) + \deg B + 1,$ (3) $k[L:K(s)] - l(k \cdot (s)_{-}) \le \deg B - [L:K(s)].$

Theorem 12.6. If $s \in L \setminus K$ then $\deg((s)_{-}) = \deg((s)_{+}) = [L : K(s)]$ and $\deg((s)) = 0$.

Corollary 12.7. If $A \sim B$, then deg $A = \deg B$ and dim_{L/K} $A = \dim_{L/K} B$.

Example 12.8. Let *L* be an AFF over \mathbb{F}_2 given by $w(\alpha, \beta) = 0$ for $w = y^2 + y - (x^3 + 1) \in \mathbb{F}_2[x, y]$ as in 11.9. We will compute principal divisors $(\alpha + 1)$ and (α) .

(a) By 12.6

$$\deg((\alpha+1)_{+}) = \sum_{P: \ \alpha+1 \in P} \nu_{P}(\alpha+1) \deg P = [L: \mathbb{F}_{2}(\alpha+1)] = [L: \mathbb{F}_{2}(\alpha)] = 2.$$

Since $\alpha + 1 \in P_{(1,0)} \cap P_{(1,1)}$ and $\nu_{P_{\infty}}(\alpha + 1) = \nu_{P_{\infty}}(\alpha) = -2$ by 11.7, we get

$$(\alpha + 1) = 1 \cdot P_{(1,0)} + 1 \cdot P_{(1,1)} - 2 \cdot P_{\infty}.$$

(b) Again by 12.6 is $\deg((\alpha)_+) = \sum_{P: \alpha \in P} \nu_P(\alpha) \deg P = [L: \mathbb{F}_2(\alpha)] = 2$ and $\alpha \notin P$ for all $P \in \mathbb{P}_{L/K}^{(1)}$, hence there exists a unique P such that $\alpha \in P$ and $\deg P = 2$, which means that

$$(\alpha) = 1 \cdot P - 2 \cdot P_{\infty}.$$

Observation. For $A, B \in Div(L/K)$ it holds:

- (D5) $l(A) \ge 1 \Leftrightarrow \exists s \in L^*$ such that $s \in \mathcal{L}(A) \Leftrightarrow \exists s \in L^*$ such that $A + (s) \ge \underline{0}$,
- (D6) $l(B A) \ge 1 \Leftrightarrow \exists s \in L^*$ such that $A (s) \le B \Leftrightarrow \exists A' \in \text{Div}(L/K)$ such that $A \sim A' \le B$,
- (D7) if $l(B A) \ge 1$, then deg $A l(A) \le \deg A' l(A') \le \deg B l(B)$ for A' from (D6) by (D4),
- (D8) if deg A < 0, then deg $(A + (s)) = \deg A < 0 \quad \forall s \in L^*$, hence l(A) = 0,
- (D9) $\mathcal{L}((s)) = \{r \in L^* \mid (rs) \ge \underline{0}\} \cup \{0\} = Ks^{-1}(=\{ks^{-1} \mid k \in K\}) \ \forall s \in L^*.$

Lemma 12.9. If $A \in \text{Div}(L/K)$ such that deg A = 0, then

- (1) $l(A) \in \{0, 1\},\$
- (2) $l(A) = 1 \Leftrightarrow A \in \operatorname{Princ}(L/K).$

Theorem 12.10 (Riemann). There exists an integer γ such that for each $A \in \text{Div}(L/K)$

$$\deg(A) - l(A) < \gamma.$$

Definition. The minimal possible γ such that $\deg(A) - l(A) < \gamma$ for each $A \in \text{Div}(L/K)$, which exists by Theorem 12.10, is called the *genus* of the AFF L over \tilde{K} . Furthermore, $i(A) := g - 1 - \deg(A) + l(A) \ge 0$ is said to be the *index of specialty* of A (A is called *special* if i(A) > 0 and A is called *nonspecial* if i(A) = 0).

Corollary 12.11. Let $A, D \in \text{Div}(L/K)$ and suppose deg(D) - l(D) = g - 1 for the genus g.

(E1) $g > \deg(\underline{0}) - l(\underline{0}) = -1$, hence $g \ge 0$,

- (E2) $\deg(A D) l(A D) \le g 1$, hence $l(A D) \ge \deg(A) \deg(D) g + 1$,
- (E3) if $\deg(A) \ge \deg(D) + g$, then $l(A D) \ge 1$ by (E2),

- (E4) if either $l(A D) \ge 1$ or $D \le A$ then by (D4) and (D6) $g 1 = \deg(D) l(D) \le \deg(A) l(A) \le g 1$, hence $\deg(A) l(A) = g 1$ and i(A) = 0,
- (E5) if $\deg(D) + g \le \deg(A)$, then $l(A D) \ge 1$ by (E3), thus $l(A) = \deg(A) g + 1$ and i(A) = 0 by (E4).

13. Adèles and Weil differentials

We suppose that L is a full constant AFF over $K = \tilde{K}$ of genus g.

T&N. Let $\mathbb{P} := \mathbb{P}_{L/K}$ and consider the Cartesian power $L^{\mathbb{P}}$ as an *L*-algebra with component-wise defined operations where $l \to l \cdot 1 \in L^{\mathbb{P}}$ identifies elements of *L* with constants of $L^{\mathbb{P}}$. Let $A = \sum_{P \in \mathbb{P}_{L/K}} a_p P \in \text{Div}(L/K)$. Then

$$\mathcal{A}_{L/K}(A) := \{ f \in L^{\mathbb{P}} \mid \nu_P(f(P)) + a_P \ge 0 \ \forall P \in \mathbb{P} \}.$$

An element of $\mathcal{A}_{L/K} = \bigcup_{B \in \text{Div}(L/K)} \mathcal{A}_{L/K}(B)$ is called *adèle*.

If $P = (p) \in \mathbb{P}_{L/K}$, then $P^k = p^k \mathcal{O}_P = \{r \in L \mid \nu_P(r) \ge k\}$ for each $k \in \mathbb{Z}$.

Observation. Let $r \in L$, $f \in L^{\mathbb{P}_{L/K}}$, $A = \sum_{P \in \mathbb{P}_{L/K}} a_p P \in \text{Div}(L/K)$ and $s \in L^*$.

- (1) $f \in \mathcal{A}_{L/K} \Leftrightarrow \{P \in \mathbb{P} \mid \nu_P(f(P)) < 0\}$ is finite, hence $r \in \mathcal{A}_{L/K}$ by 11.6,
- (2) $\mathcal{A}_{L/K}$ is a subalgebra of the *L*-algebra $L^{\mathbb{P}_{L/K}}$,
- (3) $\mathcal{A}_{L/K}(A) = \prod_{P \in \mathbb{P}_{L/K}} P^{-a_P}$ is a subspace of the K-space $\mathcal{A}_{L/K}$ and $\mathcal{A}_{L/K}(A) \cap L = \mathcal{L}(A)$.

Lemma 13.1. Let $A = \sum_{P \in \mathbb{P}_{L/K}} a_p P$, $B = \sum_{P \in \mathbb{P}_{L/K}} b_p P \in \text{Div}(L/K)$ and $s \in L^*$.

- (1) $A \leq B \Rightarrow \mathcal{A}_{L/K}(A) \subseteq \mathcal{A}_{L/K}(B)$ and $\dim_K(\mathcal{A}_{L/K}(B)/\mathcal{A}_{L/K}(A)) = \deg(B-A),$
- (2) $A \leq B \Rightarrow \dim_K((\mathcal{A}_{L/K}(B) + L)/(\mathcal{A}_{L/K}(A) + L)) = i(A) i(B),$
- (3) $\mathcal{A}_{L/K}(A) \cap \mathcal{A}_{L/K}(B) = \mathcal{A}_{L/K}(\min(A, B)),$ $\mathcal{A}_{L/K}(A) + \mathcal{A}_{L/K}(B) = \mathcal{A}_{L/K}(\max(A, B)),$
- (4) $\dim_K(\mathcal{A}_{L/K}/(\mathcal{A}_{L/K}(A)+L)) = i(A),$
- (5) $\mathcal{A}_{L/K} = \mathcal{A}_{L/K}(A) + L \Leftrightarrow i(A) = 0,$
- (6) $s\mathcal{A}_{L/K}(A) = \mathcal{A}_{L/K}(A (s)).$

T&N. Let $A \in \text{Div}(L/K)$. Then $\Omega_{L/K}(A) := (\mathcal{A}_{L/K}(A) + L)_K^o = \{\omega \in \mathcal{A}_{L/K}^* \mid \omega(\mathcal{A}_{L/K}(A) + L) = 0, \}$

 $\Omega_{L/K} := \bigcup_{B \in \operatorname{Div}(L/K)} \Omega_{L/K}(B) = \{ \omega \in \mathcal{A}_{L/K}^* \mid \omega(L) = 0, \exists B \in \operatorname{Div}(L/K) : \omega(\mathcal{A}_{L/K}(B)) = 0 \}$

We define $\forall \omega \in \Omega_{L/K}$ and $\forall s \in L^*$ multiplication on $\Omega_{L/K}$ by the rules $(s \cdot \omega)(t) = \omega(st)$ $\forall s \in L^*$ and $0 \cdot \omega = 0$. Elements of $\Omega_{L/K}$ are called *Weil differentials* (of the AFF).

Corollary 13.2. Let $A, B \in \text{Div}(L/K)$ a $s \in L^*$.

- (1) $\dim_K(\Omega(A)) = \dim(\mathcal{A}_{L/K}/(\mathcal{A}_{L/K}(A) + L)) = i(A)$ by 1.4(2), 13.1(4),
- (2) $A \le B \Rightarrow \Omega_{L/K}(B) \subseteq \Omega_{L/K}(A)$ by 1.4(3, 13.1(1)),
- (3) $\Omega_{L/K}(A) \cap \Omega_{L/K}(B) = (\mathcal{A}_{L/K}(A) + \mathcal{A}_{L/K}(B) + L)^o = \Omega_{L/K}(\max(A, B)),$ $\Omega_{L/K}(A) + \Omega_{L/K}(B) = ((\mathcal{A}_{L/K}(A) + L) \cap (\mathcal{A}_{L/K}(B) + L))^o \subseteq \Omega_{L/K}(\min(A, B))$ by 1.4(1),(4), 13.1(3), (4) $\Omega_{L/K}(A) = \Omega_{L/K}(A) + \Omega_{L/K}(B) + \Omega_{L/K}(B)$
- (4) $s\Omega_{L/K}(A) = (s^{-1}(\mathcal{A}_{L/K}(A))^o = \Omega_{L/K}(A + (s) \text{ by } 1.5(3), 13.1(6),$

(5) $\Omega_{L/K}$ forms an *L*-space by 1.5, (3) a (4).

Lemma 13.3. If $\omega \in \Omega_{L/K} \setminus \{0\}$, then there exists a unique $W \in \text{Div}(L/K)$ such that $\omega(\mathcal{A}_{L/K}(W)) = 0$ and each $A \in \text{Div}(L/K)$ satisfies $A \leq W$ whenever $\omega(\mathcal{A}_{L/K}(A)) = 0$.

T&N. Let $\omega \in \Omega_{L/K} \setminus \{0\}$. The divisor W from 13.3 uniquely determined by ω is called the *canonical divisor* of ω and it is denoted by (ω) .

Let us define a map $\Psi_{\omega} : L \to \Omega_{L/K}$ by $\Psi_{\omega}(s) = s \cdot \omega \ \forall s \in L$.

Lemma 13.4. Let $\omega, \tilde{\omega} \in \Omega_{L/K} \setminus \{0\}$ and $A \in \text{Div}(L/K)$. Then

(1)
$$(s\omega) = (s) + (\omega) \ \forall s \in L^*,$$

(2) Ψ_{ω} is *L*-linear and so *K*-linear embedding and $\Psi_{\omega}(\mathcal{L}((\omega) - A)) \subseteq \Omega_{L/K}(A)$,

(3) $\exists B \in \text{Div}(L/K)$ such that $\Psi_{\omega}(\mathcal{L}((\omega) - B)) \cap \Psi_{\tilde{\omega}}(\mathcal{L}((\tilde{\omega}) - B)) \neq 0.$

Theorem 13.5. Let $\omega \in \Omega_{L/K} \setminus \{0\}$ and $A \in \text{Div}(L/K)$, then

- (1) $\dim_L(\Omega_{L/K}) = 1,$
- (2) Ψ_{ω} induces a K-isomorphism $\mathcal{L}((\omega) A) \to \Omega_{L/K}(A)$.

As a consequence we can easily see that all the canonical divisors form exactly one coset modulo Princ(L/K).

The following two results will be skipped this year.

Lemma 13.6. Let $S \subseteq \mathbb{P}_{L/K}$, $P_1, \ldots, P_n \in S$ be pairwise distinct places, $a_1, \ldots, a_n \in L$ and $z \in \mathbb{Z}$. Then there exists $t \in L$ such that $\nu_{P_i}(t - a_i) > z \quad \forall i = 1, \ldots, n \text{ and } \nu_P(t) \ge 0$ $\forall P \in S \setminus \{P_1, \ldots, P_n\}.$

Theorem 13.7 (Strong Approximation Theorem). Let $S \subsetneq \mathbb{P}_{L/K}$, $P_1, \ldots, P_n \in S$ be pairwise distinct places. If $a_1, \ldots, a_n \in L$ and $z_1, \ldots, z_n \in \mathbb{Z}$, then $\exists s \in L$ such that $\nu_{P_i}(s - a_i) = z_i$ for each $i = 1, \ldots, n$ and $\nu_P(s) \ge 0$ for each $P \in S \setminus \{P_1, \ldots, P_n\}$.

14. RIEMANN-ROCH THEOREM

L is a full constant AFF over $K = \tilde{K}$ of genus g.

Theorem 14.1 (Riemann-Roch). If W is a canonical divisor and $A \in \text{Div}(L/K)$, then

$$l(A) = \deg A + l(W - A) + 1 - g.$$

If we put $W = \underline{0}$ and W = A, then we get the following consequence:

Corollary 14.2.] If $W \in \text{Div}(L/K)$ is canonical, then l(W) = g, deg W = 2g - 2, $i(W) = g - 1 - \deg W + l(W) = 1$.

Corollary 14.3 (Main consequence of the Riemann-Roch Theorem). If deg $A \ge 2g - 1$ for $A \in \text{Div}(L/K)$, then $l(A) = \deg A + 1 - g$.

Lemma 14.4. Let $P \in \mathbb{P}_{L/K}^{(1)}$, $h \in \mathbb{Z}$, $h \ge 0$, $s \in L$. Then

- (1) $s \in \mathcal{L}(iP) \setminus \mathcal{L}((i-1)P) \Leftrightarrow (s)_{-} = iP$, where $i \ge 1$,
- (2) if $\exists k \ge 0$ such that $l(iP) \ge i h + 1$ for each $i \ge k$, then $g \le h$,
- (3) if for each $i \ge h+1$ there exists $s_i \in L$ such that $(s_i)_- = iP$, then $g \le h$.

Example 14.5. Recall that the field K(x) is an AFF over K and by 4.7

 $\mathbb{P}_{K(x)/K} = \{P_p \mid p \in K[x] \text{ is monic irreducible }\} \cup \{P_\infty\}$

where P_p is the maximal ideal of the localization with $\nu_{P_p} = \nu_p$ and P_{∞} is given by the discrete valuation $\nu_{\infty}(\frac{a}{b}) = \deg(b) - \deg(a)$. Then $\nu_p(x^i) \ge 0$ for each $i \ge 0$ and p is irreducible monic. Furthermore $\nu_{\infty}(x^i) = -i$ for each $i \ge 0$, hence $(x^i)_- = iP_{\infty}$. Thus K(x) is of genus 0 by 14.4(3).

For every $s \in K(x)^*$ there exist $k \in K^*$, irreducible, pairwisely non-associated polynomials $p_i \in K[x]$ and exponents $e_i \in \mathbb{Z}$, for which $s = k \prod_i p_i^{e_i}$. If we put $d = \sum_i e_i \deg p_i$, then $(s) = \sum_i e_i P_{p_i} - dP_{\infty}$ forms a principal divisor and it holds $e_i = \nu_{p_i}(s) = \nu_{P_{p_i}}(s)$. This presents a way of searching of an element of L determining a divisor of degree 0, which is in this case necessarily principal.

Proposition 14.6. Let $\mathbb{P}_{L/K}^{(1)} \neq \emptyset$. Then $g = 0 \Leftrightarrow$ there exists $s \in L$ such that L = K(s).

15. Elliptic function fields

Let L be an AFF over K of genus g.

Definition. L is called an *elliptic function field* (EFF) over K, if it is of genus 1 and $\mathbb{P}_{L/K}^{(1)} \neq \emptyset$.

Observation. If *L* is an EFF over *K* and $P \in \mathbb{P}_{L/K}^{(1)}$, then is *L* full constant by 12.3, and $l(iP) = \deg(iP) = i$ for each $i \geq 1$ by 14.3, hence $K = \mathcal{L}(1P) \subsetneqq \mathcal{L}(2P) \subsetneqq \mathcal{L}(3P)$.

Proposition 15.1. If *L* is an EFF over *K* and $P \in \mathbb{P}_{L/K}^{(1)}$, then $\forall u \in \mathcal{L}(2P) \setminus \mathcal{L}(1P)$ and $v \in \forall \mathcal{L}(3P) \setminus \mathcal{L}(2P)$ there exists a WEP $w \in K[x, y]$ and $\lambda \in K^*$ such that *L* is given by $w(\lambda u, \lambda v) = 0$.

Corollary 15.2. Every EFF is given by a Weierstrass equation (i.e. there are a WEP w and elements α, β such that the EFF is given by $w(\lambda u, \lambda v) = 0$).

Recall that if w is smooth at $V_w(K)$, then $\mathbb{P}_{L/K}^{(1)} = \{P_\infty\} \cup \{P_\gamma \mid \gamma \in V_w(K)\}$ by 11.8.

Lemma 15.3. If $w \in K[x, y]$ is a WEP and L over K is given by $w(\alpha, \beta) = 0$ and it is not an EFF, then g = 0, and $\exists s \in L$ and $\exists a, b \in K[x]$, for which L = K(s), $\alpha = a(s)$, $\beta = b(s)$ and $\deg a = 2$, $\deg b = 3$.

Theorem 15.4. Let L be given by $w(\alpha, \beta) = 0$ for a WEP $w \in K[x, y]$. Then L is an EFF $\Leftrightarrow w$ is smooth at $V_w(K)$.

Example 15.5. (1) Let $w = y^2 + y + x^3 + 1 \in \mathbb{F}_2[x, y]$ is a WEP from 11.9. Since it is smooth at rational points $V_w(\mathbb{F}_2) = \{(1, 0), (1, 1)\}$, then by 15.4 the genus of $\mathbb{F}_2(V_w)$ is 1, hence it is an EFF and $\mathbb{F}_2(s) \subsetneq \mathbb{F}_2(V_w)$ for each $s \in \mathbb{F}_2(V_w)$.

(2) Let $w = y^2 + x^3 + x + 1 \in \mathring{\mathbb{F}}_2[x, y]$ be a WEP. Since it is singular at $(1, 1) \in V_w(\mathbb{F}_2)$. Hence by 15.4 it is of genus 0 and there exists $s \in \mathbb{F}_2(V_w)$ such that $\mathbb{F}_2(s) = \mathbb{F}_2(V_w)$. It is easy to compute that e.g. $s = \frac{\beta+1}{\alpha+1}$ for $\alpha = x + (w)$, $\beta = y + (w)$, hence $\mathbb{F}_2(V_w) = \mathbb{F}_2(\alpha, \beta)$ is given by $w(\alpha, \beta) = 0$.

In the rest of the section L is an EFF over K.

T&N. The factor group $\operatorname{Pic}^{0}(L/K) := \operatorname{Ker}(\operatorname{deg})/\operatorname{Princ}(L/K)$ is called the *Picard group* and $[A] := A + \operatorname{Princ}(L/K)$ denotes the cosets of $\operatorname{Pic}^0(L/K)$ and a mapping $\Psi_Q : \mathbb{P}_{L/K}^{(1)} \to$ $\operatorname{Pic}^{0}(L/K)$ is given by the rule

$$\Psi_Q(P) := [P - Q] \text{ for } Q \in \mathbb{P}^{(1)}_{L/K}.$$

Lemma 15.6. Let $P, Q \in \mathbb{P}_{L/K}^{(1)}$, and $A \in \text{Div}(L/K)$.

- (1) if $P Q \in Princ(L/K)$, then P = Q,
- (2) if deg A = 1, then there exist a unique place $Q \in \mathbb{P}_{L/K}^{(1)}$ such that $P A \in$ Princ(L/K),
- (3) the mapping $\Psi_Q : \mathbb{P}_{L/K}^{(1)} \to \operatorname{Pic}^0(L/K)$ is a bijection.

T&N. We define for a fixed $Q \in \mathbb{P}_{L/K}^{(1)}$ operations by the rule $P_1 \oplus P_2 = \Psi_Q^{-1}(\Psi_Q(P_1) +$ $\Psi_Q(P_2)$) and $\ominus P = \Psi_Q^{-1}(-\Psi_Q(P)).$

Corollary 15.7. If $Q, P_0, P_1, \ldots, P_n \in \mathbb{P}_{L/K}^{(1)}$, then

- (1) $(\mathbb{P}_{L/K}^{(1)}, \oplus, \ominus, Q)$ forms an abelian group and Ψ_Q is a group isomorphism,
- (2) $P_1 \oplus P_2 = P_0 \Leftrightarrow [P_1 + P_2] = [P_0 + Q],$ (3) $P_1 \oplus \cdots \oplus P_n = P_0 \Leftrightarrow -P_0 + (1 n)Q + \sum_{i=1}^n P_i \in \operatorname{Princ}(L/K).$

In the rest, L denotes an EFF over K given by $w(\alpha, \beta) = 0$ for a WEP w.

Definition. Let us consider on $\mathbb{P}_{L/K}^{(1)} = \{P_{\infty}\} \cup \{P_{\gamma} \mid \gamma \in V_w(K)\}$ (from 11.8) a group structure determined by $\Psi_{P_{\infty}}$, put $E(K) = V_w(K) \cup \{\infty\}$ and define operations \oplus, \ominus on E(K):

$$\begin{split} \gamma \oplus \delta &= \eta \Leftrightarrow P_{\gamma} \oplus P_{\delta} = P_{\eta} \Leftrightarrow [P_{\gamma} + P_{\delta}] = [P_{\eta} + P_{\infty}], \\ \ominus \gamma &= \delta \Leftrightarrow \ominus P_{\gamma} = P_{\delta} \Leftrightarrow [P_{\gamma} + P_{\delta}] = [2P_{\infty}]. \end{split}$$

Now we formulate a consequence of main results of the course, including 9.7, 11.8 and 12.5:

Proposition 15.8. Let $\gamma = (\gamma_1, \gamma_2) \in V_w(K), l_0 + l_1 x + l_2 y \in K[x, y]$ such that $l_0, l_1, l_2 \in V_w(K)$ K and $(l_1, l_2) \neq (0, 0)$, and put $V = V_w(K) \cap V_l(K)$.

- (1) $(E(K), \oplus, \odot, \infty)$ is an abelian group isomorphic to Ker(deg)/Princ(L/K),
- (2) $\gamma \in V_l(K) \Leftrightarrow \nu_{P_{\gamma}}(l(\alpha,\beta)) \ge 1 \Leftrightarrow 1P_{\gamma} \le (l(\alpha,\beta))_+,$
- (3) $\gamma \in V_l(K)$ and $l \in (t_{\gamma}(w)) \Leftrightarrow \nu_{P_{\gamma}}(l(\alpha,\beta)) \ge 2 \Leftrightarrow 2P_{\gamma} \le (l(\alpha,\beta))_+,$
- (4) $(l(\alpha,\beta))_{-} = 2P_{\infty}$ whenever $l_2 = 0$, and $(l(\alpha,\beta))_{-} = 3P_{\infty}$ otherwise,
- (5) if $l_2 = 0$, then $l \in (x \gamma_1)$ and $\exists ! \delta \in V$ such that $(l(\alpha, \beta)) = P_{\gamma} + P_{\delta} 2P_{\infty}$, i.e. $\ominus \gamma = \delta$ for $V = \{\gamma, \delta\},\$
- (6) if $l_2 \neq 0$ and $\delta \in V$ such that $P_{\gamma} + P_{\delta} \leq (l(\alpha, \beta))_+$ then $\exists ! \eta \in V$ such that $(l(\alpha, \beta)) = P_{\gamma} + P_{\delta} + P_{\eta} - 3P_{\infty}$, i.e. $\gamma \oplus \delta \oplus \eta = \infty$ for $V = \{\gamma, \delta, \eta\}$.

The rest was not presented at the lecture this year.

Corollary 15.9. If $K \subseteq F \subseteq \overline{K}$ is a field extension, then E(K) is a subgroup of E(F).

Denote by $w = y^2 + a_1 x y + a_3 y - (x^3 + a_2 x^2 + a_4 x + a_6) \in K[x, y]$ for a WEP smooth at $V_w(K)$.

Theorem 15.10. $(E(K), \oplus, \oplus, \infty)$ is a commutative group and for $\gamma = (\gamma_1, \gamma_2)$, $\delta = (\delta_1, \delta_2)$, $\eta = (\eta_1, \eta_2) \in V_w(K)$ it holds:

(1) $\ominus \gamma = (\gamma_1, -\gamma_2 - a_1\gamma_1 - a_3),$ (2) if $\gamma \neq \ominus \delta$ and $\gamma \oplus \delta = \eta$, then $\eta = (-\gamma_1 - \delta_1 + \lambda^2 + a_1\lambda - a_2, \lambda(\gamma_1 - \eta_1) - \gamma_2 - a_1\eta_1 - a_3),$ where (a) $\lambda = \frac{\delta_2 - \gamma_2}{\delta_1 - \gamma_1}$ if $\gamma_1 \neq \delta_1,$ (b) $\lambda = \frac{3\gamma_1^2 + 2a_2\gamma_1 - a_1\gamma_2 + a_4}{2\gamma_2 + a_1\gamma_1 + a_3}$ if $\gamma_1 = \delta_1.$

Example 15.11. Let $w = y^2 - x^3 - 1 \in \mathbb{F}_5[x]$ be a WEP. Since $(x^3 + 1)' = 3x^2$ and 0 is not a root of $x^3 + 1$, w is smooth.

Since $E(\mathbb{F}_5) = \{(0,1), (0,4), (4,0), (2,2), (2,3), \infty\}$ is a commutative group of the order 6, we know that $E(\mathbb{F}_5) \cong \mathbb{Z}_6$. By applying 15.7 we compute:

 $(0,1) = \ominus(0,4) \ (4,0) \oplus (4,0) = (2,2) \oplus (2,3) = \infty \text{ and } (0,4) \oplus (4,0) = (2,3).$

Contents

Motivation		1
1.	Algebras over a field	1
2.	Algebraic function fields	2
3.	Valuation rings	3
4.	Discrete valuation rings	5
5.	Weierstrass equations	7
6.	Singularities	9
7.	Coordinate rings	10
8.	Absolutely irreducible polynomials	12
9.	Places determined by a pair	12
10.	Localization in a coordinate ring	14
11.	Weak Approximation Theorem	16
12.	Divisors	17
13.	Adèles and Weil differentials	20
14.	Riemann-Roch Theorem	21
15.	Elliptic function fields	22