All steps should be explained in detail (preferably by references to assertions, examples, or/end exercises).

1. CFF Homework

To be submitted till 30th March, 9 AM.
1.1. Let V be a vector space over a field K, A and B subspaces of V and recall that $A^{o}=\left\{f \in V^{*} \mid f(A)=0\right\}$. Prove that $A^{o} \cap B^{o} \subseteq(A+B)^{o}$.

5 points
1.2. For the extension $\mathbb{F}_{2} \subseteq \mathbb{F}_{8}$ of Galois fields (of orders 2 and 8) show that $\mathbb{F}_{8}(x)$ is an AFF over \mathbb{F}_{2} and determine its field of constants $\tilde{\mathbb{F}}_{2}$. Describe set of all polynomials $p \in \mathbb{F}_{8}[x] \subseteq \mathbb{F}_{8}(x)$ such that $\left[\mathbb{F}_{8}(x): \mathbb{F}_{2}(p)\right]<\infty$.

5 points
1.3. If L is an AFF over K, P is its place, $a \in L$ satisfies $a^{2} \in P^{3} \backslash P^{6}$ and ν_{P} is a NDV determined by the place P, compute (a) $\nu_{P}(a)$, (b) $\nu_{P}\left(a^{-2}+1+a^{5}\right)$, (c) $\nu_{P}\left(a^{3}\left(1+a^{2}\right)^{2}\right)$.

5 points

2. CFF Homework

To be submitted till 20th April, 9 AM.
2.1. Find a short WEP which is \mathbb{F}_{3}-equivalent to the WEP

$$
w=y^{2}+y(2 x+1)-\left(x^{3}+2 x^{2}+2 x\right) \in \mathbb{F}_{3}[x, y] .
$$

5 points
2.2. Find all singularities of the WEP $w \in \mathbb{F}_{3}[x, y]$ from 2.1 and one maximal ideal of $\mathbb{F}_{3}[x, y]$ containing w.
2.3. Decide whether the WEP is $y^{2}-\left(x^{3}+4 x^{2}-x-4\right) \in K[x, y]$ is smooth if (a) $K=\mathbb{Q}$, (b) $K=\mathbb{F}_{5}$.

3. CFF Homework

To be submitted till 17th May, 5:30 PM.
3.1. Let $w=y^{2}-\left(x^{3}+2 x^{2}+1\right) \in \mathbb{R}[x, y]$ be a WEP and L an AFF over \mathbb{R} given by $w(\alpha, \beta)=0$ for $\alpha=x+(w)$ and $\beta=y+(w) \in \mathbb{R}[x, y] /(w)$. If ν is a NDV on the AFF L over \mathbb{R} such that $\nu(\alpha-1)>0$ and $\nu(\beta-2)>0$, determine all $\left(l_{0}, l_{1}, l_{2}\right) \in \mathbb{R}^{3}$ for which $\nu\left(l_{0}+l_{1} \alpha+l_{2} \beta\right)=1$.
3.2. Let $f=y(x+2 y)+\left(x^{3}+x^{5}\right)+y \in \mathbb{F}_{5}[x, y], u=x+(f), v=y+(f)$ and $L=\mathbb{F}_{5}(u, v)$ be an AFF over \mathbb{F}_{5} given by $f(u, v)=0$. If P is a place containing u, v, then compute $\nu_{P}(u), \nu_{P}(v), \nu_{P}\left(u^{4}+v\right), \nu_{P}(u v+1)$.

5 points
3.3. Prove Lemma 10.6(3): If L is an AFF over K given by $w(\alpha, \beta)=0$ for a WEP w, $P \in \mathbb{P}_{L / K}$ and $K[\alpha, \beta] \nsubseteq \mathcal{O}_{P}$, then $3 \nu_{P}(\alpha)=2 \nu_{P}(\beta)<0$. (Hint: Apply Lemma 10.6(2) and the hypothesis $f(\alpha)=\beta(g(\alpha, \beta)+\beta)$ where $w=y^{2}+y g(x, y)-f(x)$ for $\operatorname{deg} f=3$ and $\operatorname{deg} g \leq 1$ to show that assumptions $\nu_{P}(\alpha)<0 \leq \nu_{P}(\beta), \nu_{P}(\alpha) \geq 0>\nu_{P}(\beta)$ and $\nu_{P}(\alpha) \leq \nu_{P}(\beta)<0$ implies contradictions.)

5 points

4. CFF Homework

To be submitted before the end of June, but not later then during your first attempt to pass the exam
4.1. Determine divisor $(\alpha-\beta-3)$ as an element of free group $\operatorname{Div}(L / \mathbb{Q})$ in the AFF L over \mathbb{Q} given by $f(\alpha, \beta)=0$, if you know that f a smooth WEP and there are no $\gamma \in V_{f}(\mathbb{Q})$ satisfying $l(\gamma)=f(\gamma)=0$ for $l(x, y)=x-y-3$.

Hint: Proceed as in 12.8 and use that $\nu_{P}(\alpha-\beta-3)<0$ if ν_{P} is negative for a summand and compute negative $\nu_{P}(\alpha-\beta-3)$ using 11.7. Then show by 9.7 that there is no place of degree 1 containing $\alpha-\beta-3$ and compute positive part of $(\alpha-\beta-3)$.

5 points
4.2. Compute $\left|\left\{P \in \mathbb{P}_{L / \mathbb{F}_{2}} \mid \beta^{-3} \in P\right\}\right|$ for the AFF L given by $w(\alpha, \beta)=0$ over \mathbb{F}_{2} for $w=y^{2}+y+x^{3}+1 \in \mathbb{F}_{2}[x, y]$.

5 points
4.3. Prove Lemma 13.1(4): If $A=\sum_{P \in \mathbb{P}_{L / K}} a_{p} P$, then $\operatorname{dim}_{K}\left(\mathcal{A}_{L / K} /\left(\mathcal{A}_{L / K}(A)+L\right)\right)=$ $i(A)$.
(Hint: First, suppose that $i(A)=0$ and prove that $\mathcal{A}_{L / K}=\mathcal{A}_{L / K}(A)+L$: for $f \in$ $\mathcal{A}_{L / K}$ define $D=\sum_{P \in \mathbb{P}_{L / K}} d_{p} P$ by $d_{p}:=\max \left(0, a_{p},-\nu_{P}(f(P))\right)$, and then show that $f \in \mathcal{A}_{L / K}(D)+L=\mathcal{A}_{L / K}(A)+L$ using 13.1(2). Finally, for general A, find B such that $B \geq A, i(B)=0$ using (E5), then by applying first part for B and 13.1(2) prove the assertion.)

