Tasks for the CFF course

1. Tests

1.1. Algebras over a field.

1. If $A \leq B$ are subspaces of a vector space V, what is the relations of sets V^{*}, A^{o} a B° ?

1.2. Algebraic function fields.

2. If R is a domain with the field of fractions K, what is the relations of linear independence over R and over K ?
3. Define an algebraic function field.
4. Give two non-isomorphic examples of an algebraic function field over \mathbb{F}_{5}.
5. Define a field of constant \tilde{K} of an AFF L over K. What is the relation of \tilde{K} and K ?
6. Characterize transcendental elements of algebraic function fields by degree of extensions.

1.3. Valuation rings.

7. Define a valuation ring and describe a non-trivial example of it.
8. Describe relations between maximality of subring of a field and valuation rings.
9. Describe elements of noetherian local domain with a principal maximal ideal.

1.4. Discrete valuation rings.

10. Describe a discrete valuation ring by property of ideals.
11. Write an example of a normalized discrete valuation on a fraction field $K(x)$.
12. Define a discrete valuation ring and describe a non-trivial example of it.
13. Describe all discrete valuation on an AFF $K(x)$ over K.
14. Define a notion of a place of an AFF and the degree of a place.
15. Describe a notion of discrete valuation.
16. What is the relation between places and a corresponding discrete valuation rings?
17. What is the relation between places and a corresponding discrete valuations?
1.5. Weierstrass equations.
18. What does it mean that two WEPs are K-equivalent?
19. What is a Weierstrass equation polynomial?
20. Let $w(x, y) \in \mathbb{C}[x, y]$ be a WEP. Are $w(x, y)$ and $w(x, 1-y) \mathbb{C}$-equivalent? Explain your answer.
21. Are \mathbb{F}_{5}-equivalent polynomials $y^{2}-x^{3}$ and $y^{2}-\left(x^{3}+1\right) \in \mathbb{F}_{5}[x, y]$? Explain your answer.
22. Write one equivalent condition of K-equivalence of WEPs.

1.6. Singularities.

23. Define singular and smooth points and explain how they can be transformed using affine homomorphisms.
24. Define a notion of a tangent and singular and smooth points.
25. Find all singular points of a Weierstrass equation polynomial $y^{2}-(x-2)^{3}$ over \mathbb{R}.

1.7. Coordinate rings.

26. Find prime ideals $0 \neq P \subsetneq Q$ of the ring $\mathbb{C}[x, y]$ such that $P \subseteq\left(x^{2}-y^{2}\right) \subseteq Q$.
27. Describe all prime ideals of a domain $K[x, y]$ for a field K.
28. What does it mean that an AFF L is over K given by $w(\alpha, \beta)=0$?
1.8. Absolutely irreducible polynomials.
29. What is an absolutely irreducible polynomial? Which WEPs are absolutely irreducible?
30. Describe all algebraic elements of an AFF L over K pro a WEP.

1.9. Places determined by a pair.

31. What is m-weighted multiplicity μ of a polynomial $a(x, y)$?
32. For $w=y g(x, y)+h(x)+y \in K[x, y]$ where $h \in K[x], g \in K[x, y], m:=\operatorname{mult}(h) \geq 2$, $\operatorname{mult}(g) \geq 1$, and L is an AFF over K given by $w(\alpha, \beta)=0$ formulate the assertion describing places containing α a β.
33. Let f be smooth at $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{f}(K), L$ be an AFF given by $f(\alpha, \beta)=0$ and $l=l_{0}+l_{1} x+l_{2} y \in$ $K[x, y]$. Formulate the existence theorem about places P for which $\nu_{P}\left(\alpha-\gamma_{1}\right)>0 \nu_{P}\left(\beta-\gamma_{2}\right)>0$. How to compute $\nu_{P}(l(\alpha, \beta))$?
1.10. Localization in a coordinate ring.
34. Describe the sets P_{γ} or/and \mathcal{O}_{γ} for points γ.
35. For which points γ is a ring \mathcal{O}_{γ} valuation?
36. For which points γ and places P are \mathcal{O}_{γ} and \mathcal{O}_{P} valuation?
37. Describe all places corresponding to smooth rational points.

1.11. Weak Approximation Theorem.

38. Formulate The Weak Approximation Theorem.
39. Write an example of AFF such that $\mathbb{P}_{L / K}$ is infinite and $\mathbb{P}_{L / K}^{(1)}$ is finite.
40. Describe all places of degree 1 over a smooth WEP.

1.12. Divisors.

41. Define the group of divisors.
42. What is the relation of the group of principal divisors over an AFF L over K the group L^{*} ?
43. What is a principal divisor?
44. Compute a principal divisor (π) over a field \mathbb{R}.
45. Compute a negative part of a principal divisor $(x)_{-}$of the AFF $K(x)$ over K.
46. Define a Riemann-Roch space $\mathcal{L}(A)$ of a divisor A and compute $\mathcal{L}(\underline{0})$ of an AFF over \mathbb{C}.
47. Formulate the assertion about the degree of a positive and negative part of a principal divisor.
48. What is the degree of a principal divisor?
49. Formulate Riemann theorem. and explain what is the genus.
50. Define genus of an AFF.

1.13. Adèles and Weil differentials.

51. Define the notion of adeles.
52. Define index of specialization.
53. What is a Weil differential?
54. What is a canonical divisor?
55. Characterize the dimension of a space of Weil differentials $\Omega_{L / K}$.
56. Characterize the dimension of a space of Weil differentials $\Omega_{L / K}(A)$ for a divisor A.

1.14. Riemann-Roch Theorem.

57. Formulate the Riemann-Roch Theorem (about relation of dimension of Riemann-Roch spaces and degrees of divisors).
58. Formulate the main consequence of the Riemann-Roch Theorem.
59. Determine $l(W), \operatorname{deg}(W)$ a $i(W)$ for a canonical divisor W using the genus.
60. Write an example of an AFF of genus 0 .

1.15. Elliptic function fields.

61. Define an elliptic function field.
62. Find an example of an elliptic function field.
63. Define the Picard group $P^{0}(L / K)$ of an AFF L over K.
64. Characterize elliptic function fields over a WEP w
65. Describe a group structure on a curve given by a WEP by divisors.

2. Types of computational tasks

1. Compute the field of constants $\tilde{\mathbb{R}}$ of the $\mathrm{AFF} \mathbb{C}(x)$ over \mathbb{R}.
2. For a place P of an AFF L over \mathbb{Q} and $a \in L$ satisfying $a \in P^{4} \backslash P^{5}$ compute $\nu_{P}(a), \nu_{P}\left(a^{-1}+3\right)$, $\nu_{P}\left(a^{2}+3 a^{3}\right)$.
3. For the Weierstrass polynomial $w=y^{2}-y-\left(x^{3}+x^{2}+1\right) \in \mathbb{F}_{5}[x, y]$ find an \mathbb{F}_{5}-equivalent short WEP.
4. Find at least 3 maximal ideals in $\mathbb{R}[x, y]$ containing the WEP $w=y^{2}-\left(x^{3}+1\right)$.
5. Decide whether is the WEP $y^{2}-y x-\left(x^{3}+2\right) \in \mathbb{F}_{5}[x, y]$ smooth.
6. Find all singularities of the WEP $y^{2}+y(2 x+1)-\left(x^{3}+2 x^{2}+2 x\right) \in \mathbb{F}_{3}[x, y]$.
7. If $\nu_{P}(a)=3$ for a place P of an AFF, compute $\nu_{P}\left(a^{3}+a\right)$ and $\nu_{P}\left(a^{-2}+a^{-1}\right)$.
8. Find all places of the $\operatorname{AFF} \mathbb{R}(x)$ over \mathbb{R} containing $x^{3}-1$ and a place Q, for which $\nu_{Q}\left(x^{3}-1\right)<0$.
9. Describe a principal divisor $(\alpha-\beta-3)$ of an AFF L over \mathbb{Q} given by $f(\alpha, \beta)=0$, if you know that f is a smooth WEP and there is no $\gamma \in V_{f}(\mathbb{Q})$ satisfying $l(\gamma)=f(\gamma)=0$ for $l(x, y)=x-y-3$.
10. Let w be a smooth WEP and L be an AFF over \mathbb{F}_{32} given by $w(\alpha, \beta)=0$. Compute $\operatorname{deg}(\alpha \beta), \operatorname{deg}(\alpha \beta)_{+}$, and $\operatorname{deg}\left(\alpha^{-1}\right)_{-}$.
11. If $f=y^{2}-\left(x^{3}-x+1\right) \in \mathbb{C}[x, y]$ a $A=1 P_{(1,1)}+3 P_{(0,1)}+5 P_{(-1,1)}-8 P_{\infty}$, explain, why is A well-defined divisor and compute $\operatorname{deg}(A)$. Is A principal?
12. Consider the AFF given by $f(\alpha, \beta)=0$ for $f=y^{2}+y+x^{3}+1 \in \mathbb{F}_{2}[x, y]$. Compute degrees of positive and negative parts of principal divisors $(\alpha+1)$ and (α).
13. For $f=y^{2}+4 x^{3}+x^{2}+3 \in \mathbb{F}_{5}[x, y]$ compute the genus of an AFF over \mathbb{F}_{5} given by $f(\alpha, \beta)=0$.
14. If $w=y^{2}-x^{3} \in \mathbb{F}_{5}[x, y]$, describe \mathbb{F}_{5}-isomorphism of fields $\mathbb{F}_{5}(z) \rightarrow \mathbb{F}_{5}\left(V_{w}\right)$.
15. Decide whether $\mathbb{F}_{2}\left(V_{w}\right)$ is an EFF if $f=y^{2}-\left(x^{3}+x\right) \in \mathbb{F}_{3}[x, y]$.

3. Sketch of proofs of key results

2. Formulate and proof characterization transcendental elements of algebraic function fields by degree of extensions and roots.

The corresponding claim: 2.8
3. Formulate and proof the assertion about existence of valuation (over)rings.

The corresponding claim: 3.6
4. If L is an AFF over $K, P \in \mathbb{P}_{L / K}$, prove that \mathcal{O}_{P} is a uniquely defined discrete valuation ring and that $\operatorname{deg} P$ is finite.

The corresponding claim: 4.8
5. Describe all prime ideals of a domain $K[x, y]$ and prove your assertion.

The corresponding claim: 7.4
6. Let $w=y g(x, y)+h(x)+y \in K[x, y]$ where $h \in K[x], g \in K[x, y], m:=\operatorname{mult}(h) \geq 2$, $\operatorname{mult}(g) \geq 1$ and L be an AFF over K given by $w(\alpha, \beta)=0$. Formulate and prove the assertion describing places containing α and β and the corresponding discrete valuation.

The corresponding claim: 9.5
7. For an AFF given by $w(\alpha, \beta)=0$ a bod $\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K)$ formulate and prove the assertion describing the valuation of $l_{1} \alpha+l_{2} \beta+l_{0}$ in place containing $\alpha-\gamma_{1}$ and $\beta-\gamma_{2}$

The corresponding claim: 9.7
8. Describe places of degree one corresponding to a WEP smooth at rational points and prove your assertion. The corresponding claim: 10.7
9. Formulate and prove the Weak Approximation Theorem and its consequence about number of places. Corresponding claims: 11.2, 11.3
10. Formulate and prove the theorem on the degree of the positive and negative part of a principal divisor.

Corresponding claim: 12.6
11. Formulate and prove Riemann theorem and explain what is the genus.

Corresponding claim: 12.10
12. Describe the structure of vector spaces of Weil differentials $\Omega_{L / K}$ and $\Omega_{L / K}(A)$ as subspaces of the space L.

Corresponding claim: 13.5
13. Formulate and prove the Riemann-Roch Theorem and its main consequence (about relation of dimension of Riemann-Roch spaces and degrees of divisors).

Corresponding claims: 14.1, 14.3
14. Characterize elliptic function fields by a property of WEP. Prove your assertion.

Corresponding claim: 15.4

