Tasks for the CFF course

1. Tests

1.1. Algebras over a field.

1. If $A \leq B$ are subspaces of a vector space V, what is the relations of sets V^* , A^o a B^o ?

1.2. Algebraic function fields.

2. If R is a domain with the field of fractions K, what is the relations of linear independence over R and over K?

- 3. Define an algebraic function field.
- **4.** Give two non-isomorphic examples of an algebraic function field over \mathbb{F}_5 .
- 5. Define a field of constant \tilde{K} of an AFF L over K. What is the relation of \tilde{K} and K?
- 6. Characterize transcendental elements of algebraic function fields by degree of extensions.

1.3. Valuation rings.

7. Define a valuation ring and describe a non-trivial example of it.

- 8. Describe relations between maximality of subring of a field and valuation rings.
- 9. Describe elements of noetherian local domain with a principal maximal ideal.

1.4. Discrete valuation rings.

- 10. Describe a discrete valuation ring by property of ideals.
- 11. Write an example of a normalized discrete valuation on a fraction field K(x).
- 12. Define a discrete valuation ring and describe a non-trivial example of it.
- **13.** Describe all discrete valuation on an AFF K(x) over K.
- 14. Define a notion of a place of an AFF and the degree of a place.
- 15. Describe a notion of discrete valuation.
- **16.** What is the relation between places and a corresponding discrete valuation rings?
- 17. What is the relation between places and a corresponding discrete valuations?

1.5. Weierstrass equations.

- 18. What does it mean that two WEPs are K-equivalent?
- **19.** What is a Weierstrass equation polynomial?
- **20.** Let $w(x,y) \in \mathbb{C}[x,y]$ be a WEP. Are w(x,y) and w(x,1-y) C-equivalent? Explain your answer.
- **21.** Are \mathbb{F}_5 -equivalent polynomials $y^2 x^3$ and $y^2 (x^3 + 1) \in \mathbb{F}_5[x, y]$? Explain your answer.
- 22. Write one equivalent condition of K-equivalence of WEPs.
- 1.6. Singularities.
- 23. Define singular and smooth points and explain how they can be transformed using affine homomorphisms.
- 24. Define a notion of a tangent and singular and smooth points.
- **25.** Find all singular points of a Weierstrass equation polynomial $y^2 (x-2)^3$ over \mathbb{R} .

1.7. Coordinate rings.

- **26.** Find prime ideals $0 \neq P \subsetneq Q$ of the ring $\mathbb{C}[x, y]$ such that $P \subseteq (x^2 y^2) \subseteq Q$.
- **27.** Describe all prime ideals of a domain K[x, y] for a field K.

28. What does it mean that an AFF L is over K given by $w(\alpha, \beta) = 0$?

1.8. Absolutely irreducible polynomials.

- **29.** What is an absolutely irreducible polynomial? Which WEPs are absolutely irreducible?
- **30.** Describe all algebraic elements of an AFF L over K pro a WEP.

1.9. Places determined by a pair.

31. What is *m*-weighted multiplicity μ of a polynomial a(x, y)?

32. For $w = yg(x, y) + h(x) + y \in K[x, y]$ where $h \in K[x]$, $g \in K[x, y]$, $m := \text{mult}(h) \ge 2$, $\text{mult}(g) \ge 1$, and L is an AFF over K given by $w(\alpha, \beta) = 0$ formulate the assertion describing places containing $\alpha \neq \beta$.

33. Let f be smooth at $\gamma = (\gamma_1, \gamma_2) \in V_f(K)$, L be an AFF given by $f(\alpha, \beta) = 0$ and $l = l_0 + l_1 x + l_2 y \in K[x, y]$. Formulate the existence theorem about places P for which $\nu_P(\alpha - \gamma_1) > 0$ $\nu_P(\beta - \gamma_2) > 0$. How to compute $\nu_P(l(\alpha, \beta))$?

1.10. Localization in a coordinate ring.

- **34.** Describe the sets P_{γ} or/and \mathcal{O}_{γ} for points γ .
- **35.** For which points γ is a ring \mathcal{O}_{γ} valuation?
- **36.** For which points γ and places P are \mathcal{O}_{γ} and \mathcal{O}_{P} valuation?
- 37. Describe all places corresponding to smooth rational points.

1.11. Weak Approximation Theorem.

- 38. Formulate The Weak Approximation Theorem.
- **39.** Write an example of AFF such that $\mathbb{P}_{L/K}$ is infinite and $\mathbb{P}_{L/K}^{(1)}$ is finite.
- 40. Describe all places of degree 1 over a smooth WEP.
- 1.12. Divisors.
- 41. Define the group of divisors.
- **42.** What is the relation of the group of principal divisors over an AFF L over K the group L^* ?
- **43.** What is a principal divisor?
- **44.** Compute a principal divisor (π) over a field \mathbb{R} .
- **45.** Compute a negative part of a principal divisor $(x)_{-}$ of the AFF K(x) over K.
- **46.** Define a Riemann-Roch space $\mathcal{L}(A)$ of a divisor A and compute $\mathcal{L}(\underline{0})$ of an AFF over \mathbb{C} .
- 47. Formulate the assertion about the degree of a positive and negative part of a principal divisor.
- 48. What is the degree of a principal divisor?
- 49. Formulate Riemann theorem. and explain what is the genus.
- **50.** Define genus of an AFF.

1.13. Adèles and Weil differentials.

- **51.** Define the notion of adeles.
- 52. Define index of specialization.
- 53. What is a Weil differential?
- 54. What is a canonical divisor?
- **55.** Characterize the dimension of a space of Weil differentials $\Omega_{L/K}$.
- **56.** Characterize the dimension of a space of Weil differentials $\Omega_{L/K}(A)$ for a divisor A.

1.14. Riemann-Roch Theorem.

57. Formulate the Riemann-Roch Theorem (about relation of dimension of Riemann-Roch spaces and degrees of divisors).

- 58. Formulate the main consequence of the Riemann-Roch Theorem.
- **59.** Determine l(W), deg(W) a i(W) for a canonical divisor W using the genus.
- 60. Write an example of an AFF of genus 0.

1.15. Elliptic function fields.

- **61.** Define an elliptic function field.
- 62. Find an example of an elliptic function field.
- **63.** Define the Picard group $P^0(L/K)$ of an AFF L over K.
- **64.** Characterize elliptic function fields over a WEP w
- 65. Describe a group structure on a curve given by a WEP by divisors.

2. Types of computational tasks

1. Compute the field of constants \mathbb{R} of the AFF $\mathbb{C}(x)$ over \mathbb{R} .

2. For a place P of an AFF L over \mathbb{Q} and $a \in L$ satisfying $a \in P^4 \setminus P^5$ compute $\nu_P(a)$, $\nu_P(a^{-1}+3)$, $\nu_P(a^2+3a^3)$.

- **3.** For the Weierstrass polynomial $w = y^2 y (x^3 + x^2 + 1) \in \mathbb{F}_5[x, y]$ find an \mathbb{F}_5 -equivalent short WEP.
- 4. Find at least 3 maximal ideals in $\mathbb{R}[x, y]$ containing the WEP $w = y^2 (x^3 + 1)$.
- 5. Decide whether is the WEP $y^2 yx (x^3 + 2) \in \mathbb{F}_5[x, y]$ smooth.
- **6.** Find all singularities of the WEP $y^2 + y(2x+1) (x^3 + 2x^2 + 2x) \in \mathbb{F}_3[x, y]$.
- 7. If $\nu_P(a) = 3$ for a place P of an AFF, compute $\nu_P(a^3 + a)$ and $\nu_P(a^{-2} + a^{-1})$.
- 8. Find all places of the AFF $\mathbb{R}(x)$ over \mathbb{R} containing $x^3 1$ and a place Q, for which $\nu_Q(x^3 1) < 0$.

9. Describe a principal divisor $(\alpha - \beta - 3)$ of an AFF L over \mathbb{Q} given by $f(\alpha, \beta) = 0$, if you know that f is a smooth WEP and there is no $\gamma \in V_f(\mathbb{Q})$ satisfying $l(\gamma) = f(\gamma) = 0$ for l(x, y) = x - y - 3.

10. Let w be a smooth WEP and L be an AFF over \mathbb{F}_{32} given by $w(\alpha, \beta) = 0$. Compute $\deg(\alpha\beta)$, $\deg(\alpha\beta)_+$, and $\deg(\alpha^{-1})_-$.

11. If $f = y^2 - (x^3 - x + 1) \in \mathbb{C}[x, y]$ a $A = 1P_{(1,1)} + 3P_{(0,1)} + 5P_{(-1,1)} - 8P_{\infty}$, explain, why is A well-defined divisor and compute deg(A). Is A principal?

12. Consider the AFF given by $f(\alpha, \beta) = 0$ for $f = y^2 + y + x^3 + 1 \in \mathbb{F}_2[x, y]$. Compute degrees of positive and negative parts of principal divisors $(\alpha + 1)$ and (α) .

- **13.** For $f = y^2 + 4x^3 + x^2 + 3 \in \mathbb{F}_5[x, y]$ compute the genus of an AFF over \mathbb{F}_5 given by $f(\alpha, \beta) = 0$.
- 14. If $w = y^2 x^3 \in \mathbb{F}_5[x, y]$, describe \mathbb{F}_5 -isomorphism of fields $\mathbb{F}_5(z) \to \mathbb{F}_5(V_w)$.
- **15.** Decide whether $\mathbb{F}_2(V_w)$ is an EFF if $f = y^2 (x^3 + x) \in \mathbb{F}_3[x, y]$.

3. Sketch of proofs of key results

2. Formulate and proof characterization transcendental elements of algebraic function fields by degree of extensions and roots.

The corresponding claim: 2.8

3. Formulate and proof the assertion about existence of valuation (over)rings.

The corresponding claim: 3.6

4. If L is an AFF over $K, P \in \mathbb{P}_{L/K}$, prove that \mathcal{O}_P is a uniquely defined discrete valuation ring and that deg P is finite.

The corresponding claim: 4.8

5. Describe all prime ideals of a domain K[x, y] and prove your assertion.

The corresponding claim: 7.4

6. Let $w = yg(x, y) + h(x) + y \in K[x, y]$ where $h \in K[x]$, $g \in K[x, y]$, $m := \text{mult}(h) \ge 2$, $\text{mult}(g) \ge 1$ and L be an AFF over K given by $w(\alpha, \beta) = 0$. Formulate and prove the assertion describing places containing α and β and the corresponding discrete valuation.

The corresponding claim: 9.5

7. For an AFF given by $w(\alpha, \beta) = 0$ a bod $(\gamma_1, \gamma_2) \in V_w(K)$ formulate and prove the assertion describing the valuation of $l_1\alpha + l_2\beta + l_0$ in place containing $\alpha - \gamma_1$ and $\beta - \gamma_2$

The corresponding claim: 9.7

- Describe places of degree one corresponding to a WEP smooth at rational points and prove your assertion. The corresponding claim: 10.7
- 9. Formulate and prove the Weak Approximation Theorem and its consequence about number of places. Corresponding claims: 11.2, 11.3
- Formulate and prove the theorem on the degree of the positive and negative part of a principal divisor. Corresponding claim: 12.6
- 11. Formulate and prove Riemann theorem and explain what is the genus.

Corresponding claim: 12.10

12. Describe the structure of vector spaces of Weil differentials $\Omega_{L/K}$ and $\Omega_{L/K}(A)$ as subspaces of the space L.

Corresponding claim: 13.5

13. Formulate and prove the Riemann-Roch Theorem and its main consequence (about relation of dimension of Riemann-Roch spaces and degrees of divisors).

Corresponding claims: 14.1, 14.3

14. Characterize elliptic function fields by a property of WEP. Prove your assertion.

Corresponding claim: 15.4