
19.02.

1 Basic notions

1.1. Describe sets Vf and Vf (R) if

(a) f = x2 − y2 ∈ R[x, y],

(b) f = (x2 − y2)(x+ y) ∈ R[x, y],

(c) f = x3 − y3 ∈ R[x, y]

(a) Since linear polynomials x+y and x−y are irreducible and x2−y2 = (x+y)(x−y),
we have irreducible decomposition of the curve:

Vx2−y2 = Vx+y ∪ Vx−y, Vx2−y2(R) = Vx+y(R) ∪ Vx−y(R),

where Vx+y = SpanC((1,−1)) and Vx−y = SpanC((1, 1)) are complex lines and Vx+y(R) =
SpanR((1,−1)) and Vx−y(R) = SpanR((1, 1)) are real lines.
(b) Since√

((x2 − y2)(x+ y)) =
√

((x− y)(x+ y)2) = ((x− y)(x+ y)) = (x2 − y2),

we have the same irreducible decomposition of Vf and Vf (R) into two lines as in (a)

V(x2−y2)(x+y) = Vx+y ∪ Vx−y, V(x2−y2)(x+y)(R) = Vx+y(R) ∪ Vx−y(R),

(c) We can easily calculate the decomposition of x3 − y3 into linear factors in C[x, y]:

x3 − y3 = (x− y)(x2 + xy + y2) = (x− y)(x+ (
1

2
+

√
3

2
i)y)(x+ (

1

2
−

√
3

2
i)y),

hence Vx3−y3 = Vx−y∪Vx+( 1
2
+

√
3

2
i)y

∪V
x+( 1

2
−

√
3
2
i)y
is an irreducible decomposition into three

complex lines. If we consider Vx3−y3(R) = Vx−y(R) ∪ Vx2+xy+y2(R). Now revoking linear
algebra we can show that the real quadratic form g2 = x2 + xy+ y2 is positively definite,
since its matrix (

1 1
2

1
2

1

)
∼s

(
1 0
0 3

4

)
is positively definite, hence {(x, y) ∈ R2 | g2(x, y) = 0} = {(0, 0)}. It means that
Vx3−y3(R) = Vx−y(R) = SpanR((1, 1)) is a real line.

26.02.

1.2. Describe the function field K(Vf ) for a general field K and

(a) f = x+ y,

(b) f = ax+ by + c where (a, b) ̸= (0, 0).
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First note that any non-constant linear polynomial is irreducible and that the function
field K(Vf ) is a filed of fractions of the coordinate ring K[Vf ]. So it is enough to describe
coordinate rings.
(a) To find the coordinate ring K[Vx+y] ∼= K[x, y]/(x+ y), we intend to use the First

Isomorphism Theorem. Consider evaluating homomorphism φ : K[x, y] → K[x] given by
φ(p) = p(x,−x), then, obviously x+y ∈ ker(φ), hence (x+y) ⊆ ker(φ). If q(y) ∈ ker(φ),
where we consider q as o polynomial in variable y with coefficients in the domain K[x],
we can observe that −x is a root of q, thus (y + x) | q and so q ∈ (x + y). Since φ(p) is
surjective and we have shown that ker(φ) = (x+ y) and the First Isomorphism Theorem
gives us

K[Vx+y] ∼= K[x, y]/(x+ y) = K[x, y]/ ker(φ) ∼= K[x].

It means that the function field K(Vx+y) is isomorphic to the field of rational functions
in one variable K(x).
(b) W.l.o.g we may suppose that b ̸= 0, otherwise we switch the variables x and y.

We repeat the arguments of (a) for the evaluating homomorphism ψ : K[x, y] → K[x]
given by the rule ψ(p) = p(x,−a

b
x− c

b
), which is onto K[x]. Then ker(ψ) = (ax+ by+ c)

and by the First Isomorphism Theorem we get the isomorphism.

K[Vax+by+c] ∼= K[x, y]/(ax+ by + c) = K[x, y]/ ker(ψ) ∼= K[x].

Thus K(Vax+by+c) ∼= K(x) again.

1.3. Let p be a prime number, q = pn for n ∈ N and f ∈ Fq[x] \ Fq.

(a) If f is irreducible, describe a rupture field of f .

(b) If f is irreducible, describe a splitting field of f .

(c) For which k does the field Fqk contain a root of f?

(d) Construct an algebraic closure of the field Fp.

(a), (b) We know that the factor ring Fq[x]/(f) is a field containing a root of f , i.e. a
rupture field of f . Note that Fq[x]/(f) ∼= Fqdeg f is even a splitting filed of polynomials f
and xq

deg f − x and that f | xqdeg f − x in Fq[x].
(c) Since Fqk is a splitting filed of a polynomial xq

k −x =
∏

a∈F
qk
x−a and it contains

all roots of irreducible polynomials of degree dividing k, Fqk contain a root of f if and
only if deg gcd(f, xq

k − x) > 0, which is true if and only if there exists an irreducible
factor of f of degree dividing k.
(d) Recall that Fpk! is a subfield of Fp(k+1)! since Fpa ≤ Fpb iff a | b. Put K =

⋃
k∈N Fpk! .

Observer that for each α ∈ K there exists m for which α is a root of the polynomial
xp

m − x, hence K ⊆ Fp. On the other hand let f ∈ K[x]. Then there exist k such that
f ∈ Fpk! [x] and by (c) there is l ≤ deg f such that Fpk!l ≤ Fp(kl)! ≤ K contains a root of
f . This proves that K is an algebraic closure of the field Fp.

05.03.

1.4. Let f ∈ R[x, y] and F ∈ R[X, Y, Z] be its homogenization. Describe sets VZ , Vf (R),
and points in infinity of VF and VF (R) if
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(a) f = x2 + y2 − 1,

(b) f = x2 + y.

First observe that

VZ = {(a : b : c) ∈ P2 | c = 0} = {(a : b : 0) ∈ P2 | (a, b) ∈ C2 \ (0, 0)} = P2 \ A2.

(a) Clearly, Vf (R) is a unit circle. Now, we can easily determine the homogenization
F = X2 + Y 2 − Z2 of f . The points in infinity VF ∩ VZ of VF are those satisfying
X2+Y 2 = Z2 = 0. Since X2+Y 2 = (X+iY )(X−iY ), we get that VF ∩VZ = {(1,±i, 0)}
and VF (R) ∩ VZ = ∅
(b) This time Vf (R) forms a parabola satisfying the equation y = −x2. Since the

homogenization of f is the polynomial F = X2 + Y Z and the points in infinity VF ∩ VZ
of VF satisfy the equality X2 + Y Z = X2 = 0, we can easily compute that VF ∩ VZ =
VF (R) ∩ VZ = {(0, 1, 0)}.

1.5. Let β = x3+1
(x2−1)2

∈ R(x). Calculate in the function field R(x) over R the values of
valuations:

(a) vx+1(β),

(b) vx−1(β),

(c) vx(β),

(d) vx2−x+1(β).

Recall that vp(a) = max(k | pk | a) and vp(ab ) = vp(a)− vp(b) for a, b ∈ R[x] \ {(0)}.
(a) vx+1(β) = vx+1(x

2 − 1)− vx+1(x
2 − 1)2 = 1− 2 = −1.

(b) vx−1(β) = vx−1(x
2 − 1)− vx−1(x

2 − 1)2 = 0− 2 = −2.
(c) vx(β) = vx(x

2 − 1)− vx(x
2 − 1)2 = 0− 0 = 0.

(d) vx2−x+1(β) = vx2−x+1(x
2 − 1)− vx2−x+1(x

2 − 1)2 = 1− 0 = 1.

1.6. Let v∞ : K(x) → Z ∪ {∞} be defined by the rules

v∞(0) = ∞, v∞(
a

b
) = deg(b)− deg(a)

for all a, b ∈ K[x]\{(0)}. Prove that v∞ is a normalized discrete valuation on the function
field K(x) over a field K.

First observe that the definition of v∞ is correct. If a, b, c, d ∈ K[x] \ {(0)} satisfies
a
b
= c

d
then

v∞(
a

b
) = deg(b)− deg(a) = deg(d)− deg(c) = v∞(

c

d
).

since ad = bc and so deg(a) + deg(d) = deg(b) + deg(c).
Let a, b, c, d ∈ K[x] \ {(0)}. Then

v∞(
a

b

c

d
) = v∞(

ac

bd
) = deg(bd)−deg(ac) = deg(b)+deg(d)−deg(a)−deg(c) = v∞(

a

b
)+v∞(

c

d
)

and

v∞(
a

b
+
c

d
) = v∞(

ad+ bc

bd
) = deg(b) + deg(d)− deg(ad+ bc).
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As deg(ad+ bc) ≤ max(deg(ad), deg(bc)) = max(deg(a) + deg(d), deg(b) + deg(c)) we get
that

v∞(
a

b
+
c

d
) = deg(b) + deg(d)− deg(ad+ bc) ≥

deg(b) + deg(d)−min(deg(a) + deg(d), deg(b) + deg(c)) =

= min(deg(b)− deg(a), deg(d)− deg(c)) = min(v∞(
a

b
), v∞(

c

d
)).

Finally note that v∞( 1
x
) = 1 and that v∞(a) = ∞ if and only if a = 0, which finishes the

proof that all axioms (DV1)–(DV4) are satisfied.

12.03.

2 Weierstrass equations

2.1. Find a short WEP which is R-equivalent to the WEP

w = y2 + y(2x+ 2)− (x3 − 4x2 + 1) ∈ R[x, y].

We apply standard linear algebra machinery of Lemma 2.1. First, we remove the

term 2xy. Let A =

(
1 0
−1 1

)
∈ U2(R), which represents replacement of y by y − x and

compute

ϑ∗
A(w) = (y − x)2 + (y − x)(2x+ 2)− (x3 − 4x2 + 1) = y2 + 2y − (x3 − 3x2 + 2x+ 1).

Now we use b = (1,−1) to exclude monomials y and x2:

τ ∗b ϑ
∗
A(w) = (y− 1)2 +2(y− 1)− ((x+1)3 − 3(x+1)2 +2(x+1)+ 1) = y2 − (x3 − x+2).

2.2. Show that the real polynomial w̃ = y2 − (x3 − x+ 2) is

(a) R-equivalent to y2 − (x3 − 1
16
x+ 1

32
),

(b) C-equivalent to y2 − (x3 − x− 2).

(a) It is enough to take the matrix A1 =

(
4 0
0 8

)
and compute ϑ∗

A1
(w̃) = 64y2 −

64(x3 − 1
16
x+ 1

32
), hence y2 − (x3 − x+ 2) and y2 − (x3 − 1

16
x+ 1

32
) are R-equivalent by

the Fact from the lecture where we take c = 2 and d = 0.

(b) Now, we chose the complex matrix A2 =

(
−1 0
0 i

)
and calculate

ϑ∗
A2
(w̃) = −y2 − (−x3 + x+ 2).

Then the same argument as in (a) proves that C-equivalence of w̃ and y2−(x3−x−2).

19.03.
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2.3. Decide which of the following WEPs are smooth and find all singularities of singular
ones:

(a) y2 − (x3 + 1) ∈ R[x, y],

(b) (y + 1)2 − (x3 + 1) ∈ F3[x, y],

(c) y2 − (x3 − x2 − x+ 1) ∈ R[x, y],

(d) y2 + y(2x+ 2)− (x3 − 4x2 + 1) ∈ R[x, y] (from 2.1).

(a) y2 − (x3 + 1) ∈ R[x, y] is a smooth short WEP by Proposition 2.2 since the
polynomial x3 + 1 is separable. The same result follows from the Corollary 2.3 as

4 · 03 + 27 · 12 = 1 ̸= 0.

(b) w = (y + 1)2 − (x3 + 1) ∈ F3[x, y] is a singular WEP, since w is F3-equivalent to
y2 − (x3 + 1) and the polynomial x3 + 1 = (x+ 1)3 has the root 2 of multiplicity 3. It is
easy to see that the only singularity is (2, 2),
(c) y2 − (x3 − x2 − x + 1) ∈ R[x, y] is also a singular WEP, since the root 1 of

x3 − x2 − x+ 1 has the multiplicity 2. Then the singularity is (1, 0).
(d) Using the equivalent short form y2 − (x3 − x + 2) computed in 2.1 we can easily

see that the polynomial f = x3 − x+ 2 is separable. Indeed, the roots of f ′ = 3x− 1 are
± 1√

3
and f(± 1√

3
) ̸= 0, so there is no multiple root of f . This means that y2− (x3−x+2)

is smooth by Proposition 2.2, hence y2 + y(2x + 2) − (x3 − 4x2 + 1) is smooth by Fact
from the lecture.

2.4. Let f = y− x3 ∈ C[x, y]. Find all singularities of Vf and of the projective extension
VF .

Since ∂f
∂y

= 1, the tangent tα(f) ̸= 0 for each α ∈ Vf , hence Vf is a smooth affine
curve.
Clearly, F = Y Z2 −X3. Then VF ∩ VF = {(0 : 1 : 0)} since

F (α : β : 0) = 0 ⇔ α3 = 0 ⇔ α = 0 ⇔ (α : β : 0) = (0 : 1 : 0).

We calculate
∂F

∂X
= −3X2,

∂F

∂Y
= Z2,

∂F

∂Z
= 2Y Z,

and so t(0:1:0)(F ) = 0. Thus F is singular at (0 : 1 : 0) and VF is a singular projective
curve.

26.03.

2.5. For the elliptic curve C given by the WEP w = y2− (x3+x+2) ∈ F5[x, y] compute
the tables of the group operations ⊖, ⊕ on C(F5).
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Note that f = x3 + x + 2 = (x + 1)(x2 − x + 2) where x2 − x + 2 is irreducible in
F5[x, y], which means that f is a separable polynomial. Hence w is a smooth WEP and
so Vw is an elliptic curve. Now, we compute f(x) for all x ∈ F5:

0 1 2 −2 −1
x3 0 1 −2 2 −1
f(x) 2 −1 2 2 0

Since y2 ∈ {0, 1,−1}, we can easily find all zeros

Vw(F5) = {(1, 2), (1,−2), (−1, 0)},

which means that the group C(F5) = {o, (1, 2), (1,−2), (−1, 0)} is of the order 4. Since w
is of a short form, we know that ⊖(x, y) = (x,−y) hence we have the table of the unary
operation

⊖ o (1, 2) (1,−2) (−1, 0)
o (1,−2) (1, 2) (−1, 0)

From the table we can see that the group has exactly one element (−1, 0) of the order 2,
so C(F5) ∼= Z4 is a cyclic group. We can directly draw the table of the operation ⊕

⊕ o (1, 2) (1,−2) (−1, 0)

o o (1, 2) (1,−2) (−1, 0)
(1, 2) (1, 2) (−1, 0) o (1,−2)
(1,−2) (1,−2) o (−1, 0) (1, 2)
(−1, 0) (−1, 0) (1,−2) (1, 2) o

2.6. Describe the group C(F7) of the elliptic curve C given by the WEP w, and if it is
cyclic, find its generator.

(a) w = y2 − (x3 + 3) ∈ F7[x, y],

(b) w = y2 − (x3 + 2x2 − x− 2) ∈ F7[x, y] .

(a) First we compute a table of values

0 1 2 3 −3 −2 −1
y2 0 1 −3 2 2 −3 1
x3 0 1 1 −1 1 −1 −1
f(x) 3 −3 −3 2 −3 2 2

Since f has no root in F7 by the table, it is irreducible and so separable. It implies that
w is a smooth WEP and we can easily find all F7-rational points of the curve

Vw(F7) = {(1,±2), (2,±2), (3,±3), (−3,±2), (−2,±3), (−1,±3)}.

Since C(F7) = Vw(F7) ∪ {o} has 13 elements, it is a cyclic group and ⟨a⟩ = C(F7) for
each a ∈ Vw(F7).
(b) Since x3+2x2−x−2 = (x−1)(x+1)(x+2), the WEP is smooth and we have three

zeros (1, 0), (−1, 0), (−2, 0) compute the table of the binary group operation ⊕ on C(F7).
It remains to observe that y2 ∈ {0, 1,−3, 2} and compute f(x) for x ∈ {0, 2, 3,−3}:

0 2 3 −3
f(x) −2 −2 −2 −1
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which shows that C(F7) = {o, (1, 0), (−1, 0), (−2, 0)} is a group of the order 4. As ⊖a = a
for every a ∈ C(F7), we can see that C(F7) ∼= Z2 × Z2

2.7. For the curve Vw from 2.6(a) describe all points of

(a) secant passing points (1, 2) and (3, 3), and compute (1, 2)⊕ (3, 3),

(b) tangent at the point (1, 2), and compute (1, 2)⊕ (1, 2) = [2](1, 2).

(a) It is easy to calculate the slope λ = 2−3
1−3

= −3. Then the secant Vy+3x+2 contains
all points (x, y) satisfying y = −3x− 2, hence

Vy+3x+2 = {(0,−2), (1, 2), (2,−1), (3, 3), (−3, 0), (−2,−3), (−1, 1)}.

To find (1, 2) ⊕ (3, 3) we can either find Vy+3x+2 ∩ Vw = {(1, 2), (3, 3), (−2,−3)}, hence
(1, 2)⊕ (2, 3) = ⊖(−2,−3) = (−2, 3) or we can apply formula

γ1 = λ2 − α1 − β1 = 2− 1− 3 = −2, γ2 = λ(α1 − γ1)− α2 = −3(1 + 2)− 2 = −4 = 3,

and (1, 2)⊕ (2, 3) = (γ1, γ2).

02.04.

(b) This time we calculate the slope λ = 3·12
2·2 = −1, hence the tangent is

Vy+x−3 = {(0, 3), (1, 2), (2, 1), (3, 0), (−3,−1), (−2,−2), (−1,−3)}.

and [2](1, 2) = (γ1, γ2) = (−1, 3) as

γ1 = λ2 − 2α1 = 1− 2 = −1, γ2 = λ(α1 − γ1)− α2 = −1(1 + 1)− 2 = 3.

09.04.

3 Montgomery curves

3.1. Find the Montgomery’s ladder for (a) n = 98, (b) n = 137

(a) Note that l2(98) = ⌊log2(98)⌋ + 1 = 7 and recall that the Montgomery’s ladder
{(ni, n

′
i)}7i=1 is done by the recurrent condition ni−1 = ⌊ni

2
⌋ and by n′

i = ni + 1. Thus we
can easily compute

i 7 6 5 4 3 2 1
ni 98 49 24 12 6 3 1
n′
i 99 50 25 13 7 4 2

(b) This time l2(137) = ⌊log2(137)⌋ + 1 = 8, hence the table of the Montgomery’s
ladder is

i 8 7 6 5 4 3 2 1
ni 137 68 34 17 8 4 2 1
n′
i 138 69 35 18 9 5 3 2
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3.2. Describe the calculation of [98]P for an element P of Montgomery curve of order
greater then 98 using the Montgomery’s ladder.

From the calculation of the Montgomery’s ladder in 3.1 we obtain the binary notation
(98)2 = a6a5a4a3a2a1a0 = 1100010 for 98 =

∑6
i=0 ai2

i. Recall that the run of calculation
([nj]P, [n

′
j]P ]), depends on the value of the bit a7−j, namely

• if a7−j = 0 then [nj]P = [2][nj−1]P and [n′
j]P = [nj−1]P ⊕ [n′

j−1]P ,
• if a7−j = 1 then [nj]P = [nj−1]P ⊕ [n′

j−1]P and [n
′
j]P = [2][n′

j−1]P .
Thus we can describe the calculation in the following table, where we denote Pj =

[nj]P and P ′
j = [n′

j]P :

j 1 2 3 4 5 6 7
a7−j 1 1 0 0 0 1 0
nj 1 1 + 2 2 · 3 2 · 6 2 · 12 24 + 25 2 · 49
n′
j 2 2 · 2 3 + 4 6 + 7 12 + 13 2 · 25 49 + 50

Pj P P1 ⊕ P ′
1 [2]P2 [2]P3 [2]P4 P5 ⊕ P ′

5 [2]P6

P ′
j [2]P [2]P ′

1 P2 ⊕ P ′
2 P3 ⊕ P ′

3 P4 ⊕ P ′
4 [2]P ′

5 P6 ⊕ P ′
6

16.04.

3.3. Decide whether the WEP w = y2−f ∈ F5[x, y] is F5-equivalent to some Montgomery
polynomial if

(a) f = x3 + 1,

(b) f = x3 + 2,

(c) f = x3 + x,

(d) f = x3 + x+ 1,

(e) f = x3 + x+ 2.

We apply Proposition 4.5 from the lecture (M.5 in the lecture notes) which says that
smooth WEP w = y2 − f is F5-equivalent to some Montgomery polynomial if and only
if there exists a root ζ ∈ F5 of f such that f ′(ζ) is a non-zero square in F5. Note that if
we find all F5-rational roots ζ of f and check whether f ′(ζ) ̸= 0, we will know that w is
smooth.
Observe that 1 = 12 = (−1)2,−1 = (2)2 = (−2)2 are all non-zero squares in F5. We

will search all F5-rational roots ζ of f and check whether f ′(ζ) = ±1:
(a) The only F5-rational root of f = x3 + 1 is −1, f ′ = 3x2 and f ′(−1) = −2, which

means that w is not F5-equivalent to any Montgomery polynomial.
(b) The only F5-rational root of f = x3 + 2 is 2, and f ′(2) = 2, hence w is not

F5-equivalent to any Montgomery polynomial.
(c)The polynomial y2 − (x3 + x) is already a Montgomery polynomial (for A = 0,

B = 1), so the answer is yes.
(d) The polynomial x3 + x+ 1 has no F5-rational root, thus the answer is no.
(e) Since −1 is F5-rational root of f = x3 + x + 2, the derivative f ′ = 3x2 + 1 has

no F5-rational root, and f ′(−1) = −1, the WEP w is F5-equivalent to some Montgomery
polynomial.
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3.4. Find a Montgomery polynomial F5-equivalent to a WEP w ∈ F5[x, y] if

(a) w = y2 − (x3 + x+ 2),

(b) w = y2 − (x3 + 2x2 − x− 2).

(a) We have found the root −1 of f = x3 + x+ 2 in the previous task and we use the
idea of the proof of Proposition 4.5/M.5 and Lemma 4.1. First substitute x − 1 into f
and we get f̂ = f(x− 1) = x3+2x2−x. Now, if we put x3+2x2− 1 = x3+ABx2+B2x,
we can easily calculate B = ±2 and A = 2 · (±2) = ±1, hence by Lemma 4.1 we get

y2 − (x3 + x+ 2) ∼F5 2y
2 − (x3 + x2 + x)(∼F5 −2y2 − (x3 − x2 + x)).

(b) As in 3.3 we find roots ±1, −2 of

f = x3 + 2x2 − x− 2 = (x+ 1)(x− 1)(x+ 2).

Since f ′ = 3x2 − x− 1, we calculate f ′(1) = 1 and f ′(−1) = f ′(−2) = −2. As f ′(1) = 1
is a square, we substitute x → x + 1 and we obtain f̃ = f(x + 1) = x3 + x. We can see
that the F5-equivalent WEP y2 − f̃ = y2 − (x3 + x) is already Montgomery (cf. 3.3(c)),
so we are done, i.e. y2 − (x3 + 2x2 − x− 2) ∼F5 y

2 − (x3 + x).

3.5. Decide whether there exists c ∈ F7 such that the WEP y2 − (x3 − c) ∈ F7[x, y] is
F7-equivalent to some Montgomery polynomial.

Assume that there exists a root ζ ∈ F7 of f = x3 − c and b ∈ F7 such that

f ′(ζ) = 3ζ2 = b2 ∈ F∗
7.

Then 3 = b2

ζ2
= ( b

ζ
)2, which contradicts to the fact that 1, 2, 4 are the only non-zero

squares in the field F7.

3.6. Explain for an arbitrary field K why Montgomery polynomials m and m̃ are K-
equivalent if

m = By2 − (x3 + Ax2 + x) and m̃ = −By2 − (x3 − Ax2 + x) ∈ K[x, y].

It is enough to consider the affine transformation (x, y) → (−x,−y), on m:

m(−x,−y) = By2 − (−x3 + Ax2 − x) = −(−By2 − (x3 − Ax2 + x)) = (−1) · m̃

and note that B ∈ K∗, A ̸= ±2 if and only if −B ∈ K∗, −A ̸= ±2.

4 Edwards curves

4.1. Show that the polynomial x2 + y2 ∈ R[x, y] is irreducible but it is not absolutely
irreducible.

Clearly, x2+y2 = (x+ iy)(x− iy) ∈ C[x, y], which shows that x2+y2 is not absolutely
irreducible.
If x2 + y2 = g1g2 is a nontrivial decomposition in R[x, y], then it is a nontrivial

decomposition in C[x, y] which would be associated to the prime decomposition x2+y2 =
(x+ iy)(x− iy). Hence gi∥(x+ iy) which contradicts to the fact that gi ∈ R[x, y], and so
x2 + y2 is irreducible in R[x, y].

9
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4.2. Let f = y2 + ax2 − (1 + dx2y2) ∈ R[x, y] and F = (Y 2 + aX2)Z2 − (Z4 + dX2Y 2)
be the homogenization of f . Find all points of VF ∩ VZ and decide which are smooth.

Since (a : b : c) ∈ VF ∩ VZ if and only if c = da2b2 = 0 if and only if c = a = 0 or
c = b = 0, we get VF ∩ VZ = {(1 : 0 : 0), (0 : 1 : 0)}.
We can compute

∂F

∂X
= 2X(aZ2 − dY 2),

∂F

∂Y
= 2Y (Z2 − dY 2),

∂F

∂Z
= 2Z(Y 2 + aX2)− 4Z3,

∂F

∂X
(1, 0, 0) =

∂F

∂Y
(1, 0, 0) =

∂F

∂Z
(1, 0, 0) = 0,

∂F

∂X
(0, 1, 0) =

∂F

∂Y
(0, 1, 0) =

∂F

∂Z
(0, 1, 0) = 0,

hence both the points (1 : 0 : 0) and (0 : 1 : 0) are singularities.

4.3. For the Montgomery curve given by 3y2−(x3+3x2+x) ∈ F7[x, y] find a birationally
equivalent (a) generalized Edwards curve (b) Edwards curve.

(a) We simply apply Theorem 5.8 (E.7) for A = B = 3:

(a, d) =

(
A+ 2

B
,
A− 2

B

)
=

(
3 + 2

3
,
3− 2

3

)
= (4, 5),

thus the birationally equivalent generalized Edwards curve satisfies the equation

4x2 + y2 = 1 + 5x2y2.

(b) This time we use the linear transformation x→ 2x to receive a birationally equiv-
alent Edwards curve given by x2 + y2 = 1− x2y2, where the coefficient d is transformed
by the rule d→ b

22
(see Lemma 5.5 (E.4)).

4.4. For the Edwards curve given by the polynomial x2 + y2 − x2y2 ∈ F7[x, y] compute a
birationally equivalent Montgomery curve.

We apply the formulas from Theorem 5.8 (E.7) again

(A,B) =

(
2(a+ d)

a− d
,

4

a− d

)
=

(
2(1− 1)

1 + 1
,

4

1 + 1

)
= (0, 2),

hence we have found a birationally equivalent Montgomery curve given by the polynomial
2y2 − (x3 + x).

4.5. If C is a curve given by the WEP w ∈ F7[x, y], decide whether there exists a
birationally equivalent generalized Edwards curve. If yes, find its polynomial.

(a) w = y2 − (x3 + 2),

(b) w = y2 − (x+ 2)3,

(c) w = y2 − (x3 − x+ 1).
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(a) Since x3 ∈ {0,±1}, the polynomial f = x3 +2 has no F7-rational root, hence w is
not F7-equivalent to any Montgomery polynomial, which means that w is not Vw is not
birationally equivalent to any generalized Edwards curve.
(b) This time w is not smooth since the polynomial f = (x + 2)3 is not separable.

Now, the same argument as in (a) shows that Vw is not birationally equivalent to any
generalized Edwards curve.
(c) Let f = x3 − x+ 1. Note that (2, 0) ∈ Vw, hence f(2) = 0. Since f ′ = 3x2 − 1, we

have f ′(2) = 4 = 22. Using the transformation x→ x+ 2 we get the F7-equivalent WEP
y2− (x3−x2+4x) = y2− (x3+ABx2+B2x), which is F7-equivalent to the Montgomery
polynomial By2−(x3+Ax2+x) = 2y2−(x3+3x2+x). Now it remains to apply Theorem
5.8 (E.7) as in 4.3 to show that a birationally equivalent generalized Edwards curve exists
and it is given by the equality 6x2 + y2 = 1 + 4x2y2 since (6, 4) = (3+2

2
3−2
2
).
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