1 Basic notions

1.1. Describe sets V_f and $V_f(\mathbb{R})$ if

(a)
$$f = x^2 - y^2 \in \mathbb{R}[x, y],$$

(b)
$$f = (x^2 - y^2)(x + y) \in \mathbb{R}[x, y],$$

(c)
$$f = x^3 - y^3 \in \mathbb{R}[x, y]$$

(a) Since linear polynomials x+y and x-y are irreducible and $x^2-y^2 = (x+y)(x-y)$, we have irreducible decomposition of the curve:

$$V_{x^2-y^2} = V_{x+y} \cup V_{x-y}, \quad V_{x^2-y^2}(\mathbb{R}) = V_{x+y}(\mathbb{R}) \cup V_{x-y}(\mathbb{R}),$$

where $V_{x+y} = \operatorname{Span}_{\mathbb{C}}((1,-1))$ and $V_{x-y} = \operatorname{Span}_{\mathbb{C}}((1,1))$ are complex lines and $V_{x+y}(\mathbb{R}) = \operatorname{Span}_{\mathbb{R}}((1,-1))$ and $V_{x-y}(\mathbb{R}) = \operatorname{Span}_{\mathbb{R}}((1,1))$ are real lines.

(b) Since

$$\sqrt{((x^2 - y^2)(x + y))} = \sqrt{((x - y)(x + y)^2)} = ((x - y)(x + y)) = (x^2 - y^2),$$

we have the same irreducible decomposition of V_f and $V_f(\mathbb{R})$ into two lines as in (a)

$$V_{(x^2-y^2)(x+y)} = V_{x+y} \cup V_{x-y}, \quad V_{(x^2-y^2)(x+y)}(\mathbb{R}) = V_{x+y}(\mathbb{R}) \cup V_{x-y}(\mathbb{R}),$$

(c) We can easily calculate the decomposition of $x^3 - y^3$ into linear factors in $\mathbb{C}[x, y]$:

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2}) = (x - y)(x + (\frac{1}{2} + \frac{\sqrt{3}}{2}i)y)(x + (\frac{1}{2} - \frac{\sqrt{3}}{2}i)y),$$

hence $V_{x^3-y^3} = V_{x-y} \cup V_{x+(\frac{1}{2}+\frac{\sqrt{3}}{2}i)y} \cup V_{x+(\frac{1}{2}-\frac{\sqrt{3}}{2}i)y}$ is an irreducible decomposition into three complex lines. If we consider $V_{x^3-y^3}(\mathbb{R}) = V_{x-y}(\mathbb{R}) \cup V_{x^2+xy+y^2}(\mathbb{R})$. Now revoking linear algebra we can show that the real quadratic form $g_2 = x^2 + xy + y^2$ is positively definite, since its matrix

$$\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} \sim_s \begin{pmatrix} 1 & 0 \\ 0 & \frac{3}{4} \end{pmatrix}$$

is positively definite, hence $\{(x,y) \in \mathbb{R}^2 \mid g_2(x,y) = 0\} = \{(0,0)\}$. It means that $V_{x^3-y^3}(\mathbb{R}) = V_{x-y}(\mathbb{R}) = \operatorname{Span}_{\mathbb{R}}((1,1))$ is a real line. \Box

26.02.

1.2. Describe the function field $K(V_f)$ for a general field K and

- (a) f = x + y,
- (b) f = ax + by + c where $(a, b) \neq (0, 0)$.

First note that any non-constant linear polynomial is irreducible and that the function field $K(V_f)$ is a filed of fractions of the coordinate ring $K[V_f]$. So it is enough to describe coordinate rings.

(a) To find the coordinate ring $K[V_{x+y}] \cong K[x,y]/(x+y)$, we intend to use the First Isomorphism Theorem. Consider evaluating homomorphism $\varphi : K[x,y] \to K[x]$ given by $\varphi(p) = p(x, -x)$, then, obviously $x+y \in \ker(\varphi)$, hence $(x+y) \subseteq \ker(\varphi)$. If $q(y) \in \ker(\varphi)$, where we consider q as o polynomial in variable y with coefficients in the domain K[x], we can observe that -x is a root of q, thus $(y+x) \mid q$ and so $q \in (x+y)$. Since $\varphi(p)$ is surjective and we have shown that $\ker(\varphi) = (x+y)$ and the First Isomorphism Theorem gives us

$$K[V_{x+y}] \cong K[x,y]/(x+y) = K[x,y]/\ker(\varphi) \cong K[x].$$

It means that the function field $K(V_{x+y})$ is isomorphic to the field of rational functions in one variable K(x).

(b) W.l.o.g we may suppose that $b \neq 0$, otherwise we switch the variables x and y. We repeat the arguments of (a) for the evaluating homomorphism $\psi : K[x, y] \to K[x]$ given by the rule $\psi(p) = p(x, -\frac{a}{b}x - \frac{c}{b})$, which is onto K[x]. Then $\ker(\psi) = (ax + by + c)$ and by the First Isomorphism Theorem we get the isomorphism.

$$K[V_{ax+by+c}] \cong K[x,y]/(ax+by+c) = K[x,y]/\ker(\psi) \cong K[x].$$

Thus $K(V_{ax+by+c}) \cong K(x)$ again.

1.3. Let p be a prime number, $q = p^n$ for $n \in \mathbb{N}$ and $f \in \mathbb{F}_q[x] \setminus \mathbb{F}_q$.

- (a) If f is irreducible, describe a rupture field of f.
- (b) If f is irreducible, describe a splitting field of f.
- (c) For which k does the field \mathbb{F}_{q^k} contain a root of f?
- (d) Construct an algebraic closure of the field \mathbb{F}_p .

(a), (b) We know that the factor ring $\mathbb{F}_q[x]/(f)$ is a field containing a root of f, i.e. a rupture field of f. Note that $\mathbb{F}_q[x]/(f) \cong \mathbb{F}_{q^{\deg f}}$ is even a splitting filed of polynomials f and $x^{q^{\deg f}} - x$ and that $f \mid x^{q^{\deg f}} - x$ in $\mathbb{F}_q[x]$.

(c) Since \mathbb{F}_{q^k} is a splitting filed of a polynomial $x^{q^k} - x = \prod_{a \in \mathbb{F}_{q^k}} x - a$ and it contains all roots of irreducible polynomials of degree dividing k, \mathbb{F}_{q^k} contain a root of f if and only if deg gcd $(f, x^{q^k} - x) > 0$, which is true if and only if there exists an irreducible factor of f of degree dividing k.

(d) Recall that $\mathbb{F}_{p^{k!}}$ is a subfield of $\mathbb{F}_{p^{(k+1)!}}$ since $\mathbb{F}_{p^a} \leq \mathbb{F}_{p^b}$ iff $a \mid b$. Put $K = \bigcup_{k \in \mathbb{N}} \mathbb{F}_{p^{k!}}$. Observer that for each $\alpha \in K$ there exists m for which α is a root of the polynomial $x^{p^m} - x$, hence $K \subseteq \overline{\mathbb{F}_p}$. On the other hand let $f \in K[x]$. Then there exist k such that $f \in \mathbb{F}_{p^{k!}}[x]$ and by (c) there is $l \leq \deg f$ such that $\mathbb{F}_{p^{k!l}} \leq \mathbb{F}_{p^{(kl)!}} \leq K$ contains a root of f. This proves that K is an algebraic closure of the field \mathbb{F}_p .

05.03.

1.4. Let $f \in \mathbb{R}[x, y]$ and $F \in \mathbb{R}[X, Y, Z]$ be its homogenization. Describe sets V_Z , $V_f(\mathbb{R})$, and points in infinity of V_F and $V_F(\mathbb{R})$ if

(a) $f = x^2 + y^2 - 1$,

(b) $f = x^2 + y$.

First observe that

$$V_Z = \{ (a:b:c) \in \mathbb{P}^2 \mid c = 0 \} = \{ (a:b:0) \in \mathbb{P}^2 \mid (a,b) \in \mathbb{C}^2 \setminus (0,0) \} = \mathbb{P}^2 \setminus \mathbb{A}^2.$$

(a) Clearly, $V_f(\mathbb{R})$ is a unit circle. Now, we can easily determine the homogenization $F = X^2 + Y^2 - Z^2$ of f. The points in infinity $V_F \cap V_Z$ of V_F are those satisfying $X^2 + Y^2 = Z^2 = 0$. Since $X^2 + Y^2 = (X + iY)(X - iY)$, we get that $V_F \cap V_Z = \{(1, \pm i, 0)\}$ and $V_F(\mathbb{R}) \cap V_Z = \emptyset$

(b) This time $V_f(\mathbb{R})$ forms a parabola satisfying the equation $y = -x^2$. Since the homogenization of f is the polynomial $F = X^2 + YZ$ and the points in infinity $V_F \cap V_Z$ of V_F satisfy the equality $X^2 + YZ = X^2 = 0$, we can easily compute that $V_F \cap V_Z = V_F(\mathbb{R}) \cap V_Z = \{(0,1,0)\}$.

1.5. Let $\beta = \frac{x^3+1}{(x^2-1)^2} \in \mathbb{R}(x)$. Calculate in the function field $\mathbb{R}(x)$ over \mathbb{R} the values of valuations:

- (a) $v_{x+1}(\beta)$,
- (b) $v_{x-1}(\beta)$,
- (c) $v_x(\beta)$,
- (d) $v_{x^2-x+1}(\beta)$.

Recall that
$$v_p(a) = \max(k \mid p^k \mid a)$$
 and $v_p(\frac{a}{b}) = v_p(a) - v_p(b)$ for $a, b \in \mathbb{R}[x] \setminus \{(0)\}$.
(a) $v_{x+1}(\beta) = v_{x+1}(x^2 - 1) - v_{x+1}(x^2 - 1)^2 = 1 - 2 = -1$.
(b) $v_{x-1}(\beta) = v_{x-1}(x^2 - 1) - v_{x-1}(x^2 - 1)^2 = 0 - 2 = -2$.
(c) $v_x(\beta) = v_x(x^2 - 1) - v_x(x^2 - 1)^2 = 0 - 0 = 0$.
(d) $v_{x^2-x+1}(\beta) = v_{x^2-x+1}(x^2 - 1) - v_{x^2-x+1}(x^2 - 1)^2 = 1 - 0 = 1$.

1.6. Let $v_{\infty}: K(x) \to \mathbb{Z} \cup \{\infty\}$ be defined by the rules

$$v_{\infty}(0) = \infty, \quad v_{\infty}(\frac{a}{b}) = \deg(b) - \deg(a)$$

for all $a, b \in K[x] \setminus \{(0)\}$. Prove that v_{∞} is a normalized discrete valuation on the function field K(x) over a field K.

First observe that the definition of v_{∞} is correct. If $a, b, c, d \in K[x] \setminus \{(0)\}$ satisfies $\frac{a}{b} = \frac{c}{d}$ then

$$v_{\infty}(\frac{a}{b}) = \deg(b) - \deg(a) = \deg(d) - \deg(c) = v_{\infty}(\frac{c}{d}).$$

since ad = bc and so $\deg(a) + \deg(d) = \deg(b) + \deg(c)$.

Let $a, b, c, d \in K[x] \setminus \{(0)\}$. Then

$$v_{\infty}(\frac{a}{b}\frac{c}{d}) = v_{\infty}(\frac{ac}{bd}) = \deg(bd) - \deg(ac) = \deg(b) + \deg(d) - \deg(a) - \deg(c) = v_{\infty}(\frac{a}{b}) + v_{\infty}(\frac{c}{d})$$

and

$$v_{\infty}\left(\frac{a}{b} + \frac{c}{d}\right) = v_{\infty}\left(\frac{ad + bc}{bd}\right) = \deg(b) + \deg(d) - \deg(ad + bc)$$

As $\deg(ad + bc) \leq \max(\deg(ad), \deg(bc)) = \max(\deg(a) + \deg(d), \deg(b) + \deg(c))$ we get that

$$v_{\infty}\left(\frac{a}{b} + \frac{c}{d}\right) = \deg(b) + \deg(d) - \deg(ad + bc) \ge$$
$$\deg(b) + \deg(d) - \min(\deg(a) + \deg(d), \deg(b) + \deg(c)) =$$
$$= \min(\deg(b) - \deg(a), \deg(d) - \deg(c)) = \min(v_{\infty}\left(\frac{a}{b}\right), v_{\infty}\left(\frac{c}{d}\right))$$

Finally note that $v_{\infty}(\frac{1}{r}) = 1$ and that $v_{\infty}(a) = \infty$ if and only if a = 0, which finishes the proof that all axioms (DV1)–(DV4) are satisfied.

12.03.

$\mathbf{2}$ Weierstrass equations

2.1. Find a short WEP which is \mathbb{R} -equivalent to the WEP

$$w = y^{2} + y(2x + 2) - (x^{3} - 4x^{2} + 1) \in \mathbb{R}[x, y].$$

We apply standard linear algebra machinery of Lemma 2.1. First, we remove the term 2xy. Let $A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \in U_2(\mathbb{R})$, which represents replacement of y by y - x and compute

$$\vartheta_A^*(w) = (y-x)^2 + (y-x)(2x+2) - (x^3 - 4x^2 + 1) = y^2 + 2y - (x^3 - 3x^2 + 2x + 1).$$

Now we use b = (1, -1) to exclude monomials y and x^2 :

$$\tau_b^* \vartheta_A^*(w) = (y-1)^2 + 2(y-1) - ((x+1)^3 - 3(x+1)^2 + 2(x+1) + 1) = y^2 - (x^3 - x + 2).$$

2.2. Show that the real polynomial $\tilde{w} = y^2 - (x^3 - x + 2)$ is

- (a) \mathbb{R} -equivalent to $y^2 (x^3 \frac{1}{16}x + \frac{1}{32})$,
- (b) \mathbb{C} -equivalent to $y^2 (x^3 x 2)$.

(a) It is enough to take the matrix $A_1 = \begin{pmatrix} 4 & 0 \\ 0 & 8 \end{pmatrix}$ and compute $\vartheta_{A_1}^*(\tilde{w}) = 64y^2 - 64y^2$ $64(x^3 - \frac{1}{16}x + \frac{1}{32})$, hence $y^2 - (x^3 - x + 2)$ and $y^2 - (x^3 - \frac{1}{16}x + \frac{1}{32})$ are \mathbb{R} -equivalent by the Fact from the lecture where we take c = 2 and d = 0. (b) Now, we chose the complex matrix $A_2 = \begin{pmatrix} -1 & 0 \\ 0 & i \end{pmatrix}$ and calculate

$$\vartheta_{A_2}^*(\tilde{w}) = -y^2 - (-x^3 + x + 2).$$

Then the same argument as in (a) proves that \mathbb{C} -equivalence of \tilde{w} and $y^2 - (x^3 - x - 2)$. \Box

19.03.

2.3. Decide which of the following WEPs are smooth and find all singularities of singular ones:

(a)
$$y^2 - (x^3 + 1) \in \mathbb{R}[x, y],$$

(b) $(y + 1)^2 - (x^3 + 1) \in \mathbb{F}_3[x, y],$
(c) $y^2 - (x^3 - x^2 - x + 1) \in \mathbb{R}[x, y],$
(d) $y^2 + y(2x + 2) - (x^3 - 4x^2 + 1) \in \mathbb{R}[x, y]$ (from 2.1).

(a) $y^2 - (x^3 + 1) \in \mathbb{R}[x, y]$ is a smooth short WEP by Proposition 2.2 since the polynomial $x^3 + 1$ is separable. The same result follows from the Corollary 2.3 as

$$4 \cdot 0^3 + 27 \cdot 1^2 = 1 \neq 0.$$

(b) $w = (y+1)^2 - (x^3+1) \in \mathbb{F}_3[x,y]$ is a singular WEP, since w is \mathbb{F}_3 -equivalent to $y^2 - (x^3+1)$ and the polynomial $x^3 + 1 = (x+1)^3$ has the root 2 of multiplicity 3. It is easy to see that the only singularity is (2,2),

(c) $y^2 - (x^3 - x^2 - x + 1) \in \mathbb{R}[x, y]$ is also a singular WEP, since the root 1 of $x^3 - x^2 - x + 1$ has the multiplicity 2. Then the singularity is (1, 0).

(d) Using the equivalent short form $y^2 - (x^3 - x + 2)$ computed in 2.1 we can easily see that the polynomial $f = x^3 - x + 2$ is separable. Indeed, the roots of f' = 3x - 1 are $\pm \frac{1}{\sqrt{3}}$ and $f(\pm \frac{1}{\sqrt{3}}) \neq 0$, so there is no multiple root of f. This means that $y^2 - (x^3 - x + 2)$ is smooth by Proposition 2.2, hence $y^2 + y(2x + 2) - (x^3 - 4x^2 + 1)$ is smooth by Fact from the lecture.

2.4. Let $f = y - x^3 \in \mathbb{C}[x, y]$. Find all singularities of V_f and of the projective extension V_F .

Since $\frac{\partial f}{\partial y} = 1$, the tangent $t_{\alpha}(f) \neq 0$ for each $\alpha \in V_f$, hence V_f is a smooth affine curve.

Clearly, $F = YZ^2 - X^3$. Then $V_F \cap V_F = \{(0:1:0)\}$ since

$$F(\alpha:\beta:0) = 0 \Leftrightarrow \alpha^3 = 0 \Leftrightarrow \alpha = 0 \Leftrightarrow (\alpha:\beta:0) = (0:1:0).$$

We calculate

$$\frac{\partial F}{\partial X} = -3X^2, \quad \frac{\partial F}{\partial Y} = Z^2, \quad \frac{\partial F}{\partial Z} = 2YZ,$$

and so $t_{(0:1:0)}(F) = 0$. Thus F is singular at (0:1:0) and V_F is a singular projective curve.

26.03.

2.5. For the elliptic curve C given by the WEP $w = y^2 - (x^3 + x + 2) \in \mathbb{F}_5[x, y]$ compute the tables of the group operations \ominus , \oplus on $C(\mathbb{F}_5)$.

Note that $f = x^3 + x + 2 = (x + 1)(x^2 - x + 2)$ where $x^2 - x + 2$ is irreducible in $\mathbb{F}_5[x, y]$, which means that f is a separable polynomial. Hence w is a smooth WEP and so V_w is an elliptic curve. Now, we compute f(x) for all $x \in \mathbb{F}_5$:

Since $y^2 \in \{0, 1, -1\}$, we can easily find all zeros

$$V_w(\mathbb{F}_5) = \{(1,2), (1,-2), (-1,0)\},\$$

which means that the group $C(\mathbb{F}_5) = \{o, (1, 2), (1, -2), (-1, 0)\}$ is of the order 4. Since w is of a short form, we know that $\ominus(x, y) = (x, -y)$ hence we have the table of the unary operation

From the table we can see that the group has exactly one element (-1, 0) of the order 2, so $C(\mathbb{F}_5) \cong \mathbb{Z}_4$ is a cyclic group. We can directly draw the table of the operation \oplus

\oplus	0	(1,2)	(1, -2)	(-1,0)
0	0	(1,2)	(1, -2)	(-1,0)
(1,2)	(1,2)	(-1,0)	0	(1, -2)
(1, -2)	(1, -2)	0	(-1,0)	(1,2)
(-1,0)	(-1,0)	(1, -2)	(1,2)	0

2.6. Describe the group $C(\mathbb{F}_7)$ of the elliptic curve C given by the WEP w, and if it is cyclic, find its generator.

(a)
$$w = y^2 - (x^3 + 3) \in \mathbb{F}_7[x, y],$$

(b)
$$w = y^2 - (x^3 + 2x^2 - x - 2) \in \mathbb{F}_7[x, y]$$
.

(a) First we compute a table of values

	0	1	2	3	-3	-2	-1
y^2	0	1	-3	2	2	-3	1
x^3	0	1	1	-1	1	-1	-1
f(x)	3	-3	-3	2	-3	2	2

Since f has no root in \mathbb{F}_7 by the table, it is irreducible and so separable. It implies that w is a smooth WEP and we can easily find all \mathbb{F}_7 -rational points of the curve

$$V_w(\mathbb{F}_7) = \{ (1, \pm 2), (2, \pm 2), (3, \pm 3), (-3, \pm 2), (-2, \pm 3), (-1, \pm 3) \}.$$

Since $C(\mathbb{F}_7) = V_w(\mathbb{F}_7) \cup \{o\}$ has 13 elements, it is a cyclic group and $\langle a \rangle = C(\mathbb{F}_7)$ for each $a \in V_w(\mathbb{F}_7)$.

(b) Since $x^3+2x^2-x-2 = (x-1)(x+1)(x+2)$, the WEP is smooth and we have three zeros (1,0), (-1,0), (-2,0) compute the table of the binary group operation \oplus on $C(\mathbb{F}_7)$. It remains to observe that $y^2 \in \{0,1,-3,2\}$ and compute f(x) for $x \in \{0,2,3,-3\}$:

which shows that $C(\mathbb{F}_7) = \{o, (1,0), (-1,0), (-2,0)\}$ is a group of the order 4. As $\ominus a = a$ for every $a \in C(\mathbb{F}_7)$, we can see that $C(\mathbb{F}_7) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$

2.7. For the curve V_w from 2.6(a) describe all points of

- (a) secant passing points (1, 2) and (3, 3), and compute $(1, 2) \oplus (3, 3)$,
- (b) tangent at the point (1, 2), and compute $(1, 2) \oplus (1, 2) = [2](1, 2)$.

(a) It is easy to calculate the slope $\lambda = \frac{2-3}{1-3} = -3$. Then the secant V_{y+3x+2} contains all points (x, y) satisfying y = -3x - 2, hence

$$V_{y+3x+2} = \{(0, -2), (1, 2), (2, -1), (3, 3), (-3, 0), (-2, -3), (-1, 1)\}.$$

To find $(1,2) \oplus (3,3)$ we can either find $V_{y+3x+2} \cap V_w = \{(1,2), (3,3), (-2,-3)\}$, hence $(1,2) \oplus (2,3) = \ominus (-2,-3) = (-2,3)$ or we can apply formula

 $\gamma_1 = \lambda^2 - \alpha_1 - \beta_1 = 2 - 1 - 3 = -2, \quad \gamma_2 = \lambda(\alpha_1 - \gamma_1) - \alpha_2 = -3(1+2) - 2 = -4 = 3,$ and $(1,2) \oplus (2,3) = (\gamma_1, \gamma_2).$

02.04.

(b) This time we calculate the slope $\lambda = \frac{3 \cdot 1^2}{2 \cdot 2} = -1$, hence the tangent is

$$V_{y+x-3} = \{(0,3), (1,2), (2,1), (3,0), (-3,-1), (-2,-2), (-1,-3)\}$$

and $[2](1,2) = (\gamma_1, \gamma_2) = (-1,3)$ as

$$\gamma_1 = \lambda^2 - 2\alpha_1 = 1 - 2 = -1, \quad \gamma_2 = \lambda(\alpha_1 - \gamma_1) - \alpha_2 = -1(1+1) - 2 = 3.$$

3 Montgomery curves

3.1. Find the Montgomery's ladder for (a) n = 98, (b) n = 137

(a) Note that $l_2(98) = \lfloor \log_2(98) \rfloor + 1 = 7$ and recall that the Montgomery's ladder $\{(n_i, n'_i)\}_{i=1}^7$ is done by the recurrent condition $n_{i-1} = \lfloor \frac{n_i}{2} \rfloor$ and by $n'_i = n_i + 1$. Thus we can easily compute

i	7	6	5	4	3	2	1
n_i	98	49	24	12	6	3	1
n'_i	99	50	25	13	7	4	2

(b) This time $l_2(137) = \lfloor \log_2(137) \rfloor + 1 = 8$, hence the table of the Montgomery's ladder is

i	8	7	6	5	4	3	2	1
n_i	137	68	34	17	8	4	2	1
n_i'	138	69	35	18	9	5	3	2

3.2. Describe the calculation of [98]P for an element P of Montgomery curve of order greater then 98 using the Montgomery's ladder.

From the calculation of the Montgomery's ladder in 3.1 we obtain the binary notation $(98)_2 = a_6 a_5 a_4 a_3 a_2 a_1 a_0 = 1100010$ for $98 = \sum_{i=0}^6 a_i 2^i$. Recall that the run of calculation $([n_j]P, [n'_j]P])$, depends on the value of the bit a_{7-j} , namely

• if $a_{7-j} = 0$ then $[n_j]P = [2][n_{j-1}]P$ and $[n'_j]P = [n_{j-1}]P \oplus [n'_{j-1}]P$,

• if $a_{7-j} = 1$ then $[n_j]P = [n_{j-1}]P \oplus [n'_{j-1}]P$ and $[n'_j]P = [2][n'_{j-1}]P$.

Thus we can describe the calculation in the following table, where we denote $P_j = [n_j]P$ and $P'_j = [n'_j]P$:

j	1	2	3	4	5	6	7
a_{7-j}	1	1	0	0	0	1	0
n_j	1	1 + 2	$2 \cdot 3$	$2 \cdot 6$	$2 \cdot 12$	24 + 25	$2 \cdot 49$
n'_j	2	$2 \cdot 2$	3 + 4	6 + 7	12 + 13	$2 \cdot 25$	49 + 50
$\overline{P_j}$	P	$P_1 \oplus P'_1$	$[2]P_2$	$[2]P_3$	$[2]P_4$	$P_5 \oplus P'_5$	$[2]P_6$
P'_i	[2]P	$[2]P'_1$	$P_2 \oplus P'_2$	$P_3 \oplus P'_3$	$P_4 \oplus P'_4$	$[2]P'_5$	$P_6 \oplus P'_6$
2		'					

16.04.

3.3. Decide whether the WEP $w = y^2 - f \in \mathbb{F}_5[x, y]$ is \mathbb{F}_5 -equivalent to some Montgomery polynomial if

- (a) $f = x^3 + 1$,
- (b) $f = x^3 + 2$,

(c)
$$f = x^3 + x$$
,

(d)
$$f = x^3 + x + 1$$
,

(e)
$$f = x^3 + x + 2$$
.

We apply Proposition 4.5 from the lecture (M.5 in the lecture notes) which says that smooth WEP $w = y^2 - f$ is \mathbb{F}_5 -equivalent to some Montgomery polynomial if and only if there exists a root $\zeta \in \mathbb{F}_5$ of f such that $f'(\zeta)$ is a non-zero square in \mathbb{F}_5 . Note that if we find all \mathbb{F}_5 -rational roots ζ of f and check whether $f'(\zeta) \neq 0$, we will know that w is smooth.

Observe that $1 = 1^2 = (-1)^2$, $-1 = (2)^2 = (-2)^2$ are all non-zero squares in \mathbb{F}_5 . We will search all \mathbb{F}_5 -rational roots ζ of f and check whether $f'(\zeta) = \pm 1$:

(a) The only \mathbb{F}_5 -rational root of $f = x^3 + 1$ is -1, $f' = 3x^2$ and f'(-1) = -2, which means that w is not \mathbb{F}_5 -equivalent to any Montgomery polynomial.

(b) The only \mathbb{F}_5 -rational root of $f = x^3 + 2$ is 2, and f'(2) = 2, hence w is not \mathbb{F}_5 -equivalent to any Montgomery polynomial.

(c)The polynomial $y^2 - (x^3 + x)$ is already a Montgomery polynomial (for A = 0, B = 1), so the answer is yes.

(d) The polynomial $x^3 + x + 1$ has no \mathbb{F}_5 -rational root, thus the answer is no.

(e) Since -1 is \mathbb{F}_5 -rational root of $f = x^3 + x + 2$, the derivative $f' = 3x^2 + 1$ has no \mathbb{F}_5 -rational root, and f'(-1) = -1, the WEP w is \mathbb{F}_5 -equivalent to some Montgomery polynomial.

3.4. Find a Montgomery polynomial \mathbb{F}_5 -equivalent to a WEP $w \in \mathbb{F}_5[x, y]$ if

- (a) $w = y^2 (x^3 + x + 2),$
- (b) $w = y^2 (x^3 + 2x^2 x 2).$

(a) We have found the root -1 of $f = x^3 + x + 2$ in the previous task and we use the idea of the proof of Proposition 4.5/M.5 and Lemma 4.1. First substitute x - 1 into f and we get $\hat{f} = f(x-1) = x^3 + 2x^2 - x$. Now, if we put $x^3 + 2x^2 - 1 = x^3 + ABx^2 + B^2x$, we can easily calculate $B = \pm 2$ and $A = 2 \cdot (\pm 2) = \pm 1$, hence by Lemma 4.1 we get

$$y^{2} - (x^{3} + x + 2) \sim_{\mathbb{F}_{5}} 2y^{2} - (x^{3} + x^{2} + x)(\sim_{\mathbb{F}_{5}} -2y^{2} - (x^{3} - x^{2} + x)).$$

(b) As in 3.3 we find roots ± 1 , -2 of

$$f = x^{3} + 2x^{2} - x - 2 = (x+1)(x-1)(x+2).$$

Since $f' = 3x^2 - x - 1$, we calculate f'(1) = 1 and f'(-1) = f'(-2) = -2. As f'(1) = 1 is a square, we substitute $x \to x + 1$ and we obtain $\tilde{f} = f(x+1) = x^3 + x$. We can see that the \mathbb{F}_5 -equivalent WEP $y^2 - \tilde{f} = y^2 - (x^3 + x)$ is already Montgomery (cf. 3.3(c)), so we are done, i.e. $y^2 - (x^3 + 2x^2 - x - 2) \sim_{\mathbb{F}_5} y^2 - (x^3 + x)$.

3.5. Decide whether there exists $c \in \mathbb{F}_7$ such that the WEP $y^2 - (x^3 - c) \in \mathbb{F}_7[x, y]$ is \mathbb{F}_7 -equivalent to some Montgomery polynomial.

Assume that there exists a root $\zeta \in \mathbb{F}_7$ of $f = x^3 - c$ and $b \in \mathbb{F}_7$ such that

$$f'(\zeta) = 3\zeta^2 = b^2 \in \mathbb{F}_7^*.$$

Then $3 = \frac{b^2}{\zeta^2} = (\frac{b}{\zeta})^2$, which contradicts to the fact that 1, 2, 4 are the only non-zero squares in the field \mathbb{F}_7 .

3.6. Explain for an arbitrary field K why Montgomery polynomials m and \tilde{m} are K-equivalent if

$$m = By^2 - (x^3 + Ax^2 + x)$$
 and $\tilde{m} = -By^2 - (x^3 - Ax^2 + x) \in K[x, y]$

It is enough to consider the affine transformation $(x, y) \rightarrow (-x, -y)$, on m:

$$m(-x,-y) = By^{2} - (-x^{3} + Ax^{2} - x) = -(-By^{2} - (x^{3} - Ax^{2} + x)) = (-1) \cdot \tilde{m}$$

and note that $B \in K^*$, $A \neq \pm 2$ if and only if $-B \in K^*$, $-A \neq \pm 2$.

4.1. Show that the polynomial $x^2 + y^2 \in \mathbf{R}[x, y]$ is irreducible but it is not absolutely irreducible.

Clearly, $x^2 + y^2 = (x + iy)(x - iy) \in \mathbb{C}[x, y]$, which shows that $x^2 + y^2$ is not absolutely irreducible.

If $x^2 + y^2 = g_1g_2$ is a nontrivial decomposition in $\mathbf{R}[x, y]$, then it is a nontrivial decomposition in $\mathbb{C}[x, y]$ which would be associated to the prime decomposition $x^2 + y^2 = (x + iy)(x - iy)$. Hence $g_i || (x + iy)$ which contradicts to the fact that $g_i \in \mathbf{R}[x, y]$, and so $x^2 + y^2$ is irreducible in $\mathbf{R}[x, y]$.

23.04.

4.2. Let $f = y^2 + ax^2 - (1 + dx^2y^2) \in \mathbf{R}[x, y]$ and $F = (Y^2 + aX^2)Z^2 - (Z^4 + dX^2Y^2)$ be the homogenization of f. Find all points of $V_F \cap V_Z$ and decide which are smooth.

Since $(a:b:c) \in V_F \cap V_Z$ if and only if $c = da^2b^2 = 0$ if and only if c = a = 0 or c = b = 0, we get $V_F \cap V_Z = \{(1:0:0), (0:1:0)\}$.

We can compute

$$\begin{aligned} \frac{\partial F}{\partial X} &= 2X(aZ^2 - dY^2), \quad \frac{\partial F}{\partial Y} = 2Y(Z^2 - dY^2), \quad \frac{\partial F}{\partial Z} = 2Z(Y^2 + aX^2) - 4Z^3, \\ \frac{\partial F}{\partial X}(1,0,0) &= \frac{\partial F}{\partial Y}(1,0,0) = \frac{\partial F}{\partial Z}(1,0,0) = 0, \\ \frac{\partial F}{\partial X}(0,1,0) &= \frac{\partial F}{\partial Y}(0,1,0) = \frac{\partial F}{\partial Z}(0,1,0) = 0, \end{aligned}$$

hence both the points (1:0:0) and (0:1:0) are singularities.

4.3. For the Montgomery curve given by $3y^2 - (x^3 + 3x^2 + x) \in \mathbb{F}_7[x, y]$ find a birationally equivalent (a) generalized Edwards curve (b) Edwards curve.

(a) We simply apply Theorem 5.8 (E.7) for A = B = 3:

$$(a,d) = \left(\frac{A+2}{B}, \frac{A-2}{B}\right) = \left(\frac{3+2}{3}, \frac{3-2}{3}\right) = (4,5),$$

thus the birationally equivalent generalized Edwards curve satisfies the equation

$$4x^2 + y^2 = 1 + 5x^2y^2.$$

(b) This time we use the linear transformation $x \to 2x$ to receive a birationally equivalent Edwards curve given by $x^2 + y^2 = 1 - x^2y^2$, where the coefficient d is transformed by the rule $d \to \frac{b}{2^2}$ (see Lemma 5.5 (E.4)).

4.4. For the Edwards curve given by the polynomial $x^2 + y^2 - x^2y^2 \in \mathbb{F}_7[x, y]$ compute a birationally equivalent Montgomery curve.

We apply the formulas from Theorem 5.8 (E.7) again

$$(A,B) = \left(\frac{2(a+d)}{a-d}, \frac{4}{a-d}\right) = \left(\frac{2(1-1)}{1+1}, \frac{4}{1+1}\right) = (0,2),$$

hence we have found a birationally equivalent Montgomery curve given by the polynomial $2y^2 - (x^3 + x)$.

4.5. If C is a curve given by the WEP $w \in \mathbb{F}_7[x, y]$, decide whether there exists a birationally equivalent generalized Edwards curve. If yes, find its polynomial.

10

(a) $w = y^2 - (x^3 + 2)$, (b) $w = y^2 - (x + 2)^3$, (c) $w = y^2 - (x^3 - x + 1)$. (a) Since $x^3 \in \{0, \pm 1\}$, the polynomial $f = x^3 + 2$ has no \mathbb{F}_7 -rational root, hence w is not \mathbb{F}_7 -equivalent to any Montgomery polynomial, which means that w is not V_w is not birationally equivalent to any generalized Edwards curve.

(b) This time w is not smooth since the polynomial $f = (x + 2)^3$ is not separable. Now, the same argument as in (a) shows that V_w is not birationally equivalent to any generalized Edwards curve.

(c) Let $f = x^3 - x + 1$. Note that $(2,0) \in V_w$, hence f(2) = 0. Since $f' = 3x^2 - 1$, we have $f'(2) = 4 = 2^2$. Using the transformation $x \to x + 2$ we get the \mathbb{F}_7 -equivalent WEP $y^2 - (x^3 - x^2 + 4x) = y^2 - (x^3 + ABx^2 + B^2x)$, which is \mathbb{F}_7 -equivalent to the Montgomery polynomial $By^2 - (x^3 + Ax^2 + x) = 2y^2 - (x^3 + 3x^2 + x)$. Now it remains to apply Theorem 5.8 (E.7) as in 4.3 to show that a birationally equivalent generalized Edwards curve exists and it is given by the equality $6x^2 + y^2 = 1 + 4x^2y^2$ since $(6, 4) = (\frac{3+2}{2}\frac{3-2}{2})$.