19.02.

1 Basic notions

1.1. Describe sets V; and V;(R) if
(a) f=2*—y*€R[z,yl,
(b) f=(2*—y*)(z+y) € Rlz,y,
(c) f=2a"~y’ €Rlz,y]

(a) Since linear polynomials z+y and z —y are irreducible and 2* —y? = (z+y)(z—v),
we have irreducible decomposition of the curve:

Varye = Vouy UVory, Varo 2 (R) = Vo (R) U Vo (R),
where V.., = Spanc((1, —1)) and V,_, = Spanc((1,1)) are complex lines and V,,,(R) =
Spang((1,—1)) and V,_,(R) = Spang((1, 1)) are real lines.
(b) Since

V(@2 =y (z +y) = V(lz = y) @ +y)?) = (& —y)z +y)) = (@* - ),

we have the same irreducible decomposition of V; and V;(R) into two lines as in (a)

Vier—y)aty) = Very U Ve, Vo) (ty) (R) = Vagy (R) U Ve (R),

c) We can easily calculate the decomposition of 2 — 2 into linear factors in C[z, y]:
y Y Y

1 V3. 1 V3.
oyt = (=)@t oy 97 = (@ -y + (G SO+ (G - ),
hence Vys_ys =V, , UV (1o, UV, . (1-Byy is an irreducible decomposition into three

complex lines. If we consider Vys_,3(R) = V;_(R) U V21 4,1,2(R). Now revoking linear
algebra we can show that the real quadratic form g, = 22 + 2y + 3?2 is positively definite,

since its matrix
(1)~
1 ~s 3
3 1 U

is positively definite, hence {(x,y) € R? | g2(z,y) = 0} = {(0,0)}. It means that
Vis_ys(R) =V, (R) = Spang((1,1)) is a real line. O

26.02.
1.2. Describe the function field K (V) for a general field K and

(a) f=z+y,
(b) f = ax + by + ¢ where (a,b) # (0,0).



First note that any non-constant linear polynomial is irreducible and that the function
field K (V7) is a filed of fractions of the coordinate ring K[V}]. So it is enough to describe
coordinate rings.

(a) To find the coordinate ring K[V,.,| = K[z,y]/(x +y), we intend to use the First
Isomorphism Theorem. Consider evaluating homomorphism ¢ : K|z, y|] — K|[z| given by
©(p) = p(x, —x), then, obviously z+y € ker(p), hence (z+y) C ker(p). If q(y) € ker(yp),
where we consider ¢ as o polynomial in variable y with coefficients in the domain K|z],
we can observe that —z is a root of ¢, thus (y + z) | ¢ and so ¢ € (z + y). Since ¢(p) is
surjective and we have shown that ker(p) = (z +y) and the First Isomorphism Theorem
gives us

K[V = Klz,yl/(x +y) = Klz,y]/ ker(p) = Klz].

It means that the function field K(V,4,) is isomorphic to the field of rational functions
in one variable K (z).

(b) W.Lo.g we may suppose that b # 0, otherwise we switch the variables x and y.
We repeat the arguments of (a) for the evaluating homomorphism ¢ : K|z,y] — K|z]

given by the rule ¥(p) = p(x, —¢x — §), which is onto K[z]. Then ker(¢) = (ax + by +c)

and by the First Isomorphism Theorem we get the isomorphism.

K[Vaziby+e] = Kz, y]/(az + by + ¢) = K[z,y]/ ker(v) = Klz].
Thus K (Vagiby+e) = K(x) again. O
1.3. Let p be a prime number, ¢ = p" for n € N and f € F,[z] \ F,.
(a) If f is irreducible, describe a rupture field of f.
(b) If f is irreducible, describe a splitting field of f.
(c) For which k does the field F, contain a root of f7
(d) Construct an algebraic closure of the field F,,.

(a), (b) We know that the factor ring IF,[z]/(f) is a field containing a root of f, i.e. a
rupture field of f. Note that Fy[x]/(f) = Faeer is even a splitting filed of polynomials f

deg f deg f
and 29" — z and that f | 27

(c) Since Fx is a splitting filed of a polynomial 2 — g = Haquk 2 — a and it contains

— 2z in F [z].

all roots of irreducible polynomials of degree dividing k, F » contain a root of f if and
only if degged(f, 27" — ) > 0, which is true if and only if there exists an irreducible
factor of f of degree dividing k.

(d) Recall that [Fu is a subfield of F 1) since Fpo < Fpp iff a | b. Put K = (J, oy Fpr.

Observer that for each a € K there exists m for which « is a root of the polynomial
2P — x, hence K C F,. On the other hand let f € K[z]. Then there exist k such that
f € Fyu[z] and by (c) there is [ < deg f such that Fm < F ) < K contains a root of
f. This proves that K is an algebraic closure of the field F,,. O]

05.03.

1.4. Let f € Rlz,y] and F' € R[X,Y, Z] be its homogenization. Describe sets V, V;(R),
and points in infinity of Vp and Vp(R) if



(a) f=a+y*—1,
(b) f=2*+y.
First observe that
Vy={(a:b:c)€P?|c=0}={(a:b:0)€P?|(a,b) € C*\ (0,0)} = P*\ A%

(a) Clearly, V¢(R) is a unit circle. Now, we can easily determine the homogenization
F = X? +Y? — 72 of f. The points in infinity Vz NV of Vi are those satisfying
X?4Y? =272 =0. Since X2+Y? = (X +1Y)(X —14Y), we get that VeNVz = {(1,4i,0)}
and Vp(R)NV; =10

(b) This time V;(R) forms a parabola satisfying the equation y = —a?. Since the
homogenization of f is the polynomial F' = X? 4+ Y Z and the points in infinity Vx> NV
of Vi satisfy the equality X2 +YZ = X? = 0, we can easily compute that VNV, =
Ve(R)NVz ={(0,1,0)}. O

1.5. Let g = (523’%11)2 € R(x). Calculate in the function field R(x) over R the values of

valuations:
(a) vet1(B),
(b) ve-1(B),
(c) va(B),

(d) Vg2 _g+1 (5) :

Recall that v,(a) = max(k | p* | a) and v,(%) = vy(a) — v,(b) for a,b € Rlz] \ {(0)}.
a) Voy1(B) = ver1 (22 — 1) —vp (2> = 1)2=1-2=—1.

b) v 1(B) = veq(2? = 1) —v, (2> —1)*=0—-2= -2,

) v:(B8) = vp(2? — 1) — v, (22 —1)2=0—-0=0.

d) vp2_01(B) = Va2_pr(@® = 1) —vp2_p (2> —1)2=1-0=1. O

1.6. Let vy : K(x) — Z U {oo} be defined by the rules

0(0) = 00, vc(3) = deg(b) - deg(a)
for all a,b € K[z]\{(0)}. Prove that v is a normalized discrete valuation on the function

field K (x) over a field K.

First observe that the definition of v, is correct. If a,b,c,d € K|x] \ {(0)} satisfies

7 = 5 then
vso () = deg(b) — deg(a) = deg(d) — deg(c) = vse( ).

since ad = bc and so deg(a) + deg(d) = deg(b) + deg(c).
Let a,b,c,d € K[z]\ {(0)}. Then

vae(55) = voo(5) = deg(bd) —deg(ac) = deg(b)+deg(d)—deg(a)—deg(c) = voo(})+00(5)
and d+b
voo(% + 5) = vm(%) = deg(b) + deg(d) — deg(ad + bc).

3



As deg(ad + be) < max(deg(ad), deg(bc)) = max(deg(a) + deg(d), deg(b) 4+ deg(c)) we get
that

voo(% + 2) = deg(b) + deg(d) — deg(ad + bc) >
deg(b) + deg(d) — min(deg(a) + deg(d), deg(b) + deg(c)) =
— min(deg(b) — deg(a), deg(d) — deg(c)) = min(vm(%), Uoo(g)).
Finally note that v,(1) = 1 and that v, (a) = oo if and only if a = 0, which finishes the
proof that all axioms (DV1)—(DV4) are satisfied. O

12.05.

2 Weierstrass equations
2.1. Find a short WEP which is R-equivalent to the WEP
w=1y>+y2r+2)— (2 —42® + 1) € Rz, ).

We apply standard linear algebra machinery of Lemma 2.1. First, we remove the

term 2zy. Let A = ( 1o

1 1) € Uy(R), which represents replacement of y by y — x and
compute

P(w) =y —2)? +(y—2)2x +2) — (2% —42® + 1) = y* + 2y — (2® — 32° + 2z + 1).
Now we use b = (1, —1) to exclude monomials y and z*:
iAW) = (=1’ +20y -1 = ((z+ 1)’ =3@+ 1)’ +2c+ )+ 1) =¢* - (" —x+2).

O]

2.2. Show that the real polynomial w = y? — (2® — z + 2) is

(a) R-equivalent to y* — (2* — £ + 35),

(b) C-equivalent to y* — (z* — z — 2).
4 0
0 8
64(2® — & + 53), hence y? — (2* — x4+ 2) and y? — (2® — ;50 + 55) are R-equivalent by
the Fact from the lecture where we take ¢ =2 and d = (.

-1 0) and calculate
0 =2

(a) It is enough to take the matrix A; = ( and compute 0% () = 64y* —

(b) Now, we chose the complex matrix Ay =

0, (W) = —y* = (=2’ + 2+ 2).
Then the same argument as in (a) proves that C-equivalence of w and y*— (2> —x—2). O

19.03.



2.3. Decide which of the following WEPs are smooth and find all singularities of singular
ones:

(a)

(b) (y+1)* = (¢ + 1) € Fs[z,y],

(c) y* — (2* — 2 — 2z +1) € R[z,y),

(d) v* +y(2x +2) — (2% — 42> + 1) € Rz, y] (from 2.1).

(a) y* — (23 + 1) € R[z,y] is a smooth short WEP by Proposition 2.2 since the
polynomial 2% + 1 is separable. The same result follows from the Corollary 2.3 as

4-03427-12=1+#0.

(b) w= (y+1)*— (2* + 1) € F3[z, y] is a singular WEP, since w is F3-equivalent to
y? — (23 + 1) and the polynomial z° + 1 = (z + 1)? has the root 2 of multiplicity 3. It is
easy to see that the only singularity is (2, 2),

(c) y> — (2 — 2> — z + 1) € R[z,y] is also a singular WEP, since the root 1 of
23 — 2% — x + 1 has the multiplicity 2. Then the singularity is (1,0).

(d) Using the equivalent short form y* — (z® — 2 + 2) computed in 2.1 we can easily
see that the polynomial f = 23 — x + 2 is separable. Indeed, the roots of f’ = 3z — 1 are
i\% and f(:l:\/%,:) # 0, so there is no multiple root of f. This means that 3> — (23 —z +2)
is smooth by Proposition 2.2, hence y* + y(2z + 2) — (23 — 42 + 1) is smooth by Fact
from the lecture. [

2.4. Let f = y—2a® € C[z,y|. Find all singularities of V; and of the projective extension
V.

Since ?)_5 = 1, the tangent ¢,(f) # 0 for each o € V}, hence V; is a smooth affine
curve.
Clearly, F =Y Z* — X3 Then Vp NV = {(0:1:0)} since

Fla:8:0)=02ad’=02a=0&(a:5:0)=(0:1:0).

We calculate

OF OF OF
= —3X7, =7, =2YZ,
0X )% 0z
and so t(.1.0)(#) = 0. Thus F is singular at (0 : 1 : 0) and Vp is a singular projective
curve. 0

26.03.

2.5. For the elliptic curve C' given by the WEP w = y* — (2 + x + 2) € F;[z, y] compute
the tables of the group operations ©, ® on C(Fj).



Note that f = 23 + 2 + 2 = (z + 1)(2® — x + 2) where 2% — x + 2 is irreducible in
F5|x, y], which means that f is a separable polynomial. Hence w is a smooth WEP and
so V,, is an elliptic curve. Now, we compute f(z) for all z € Fj:

oj 12 |=2|-1
25 (0] 1 |—2]2 -1
f@yl2/-1] 2120

Since y* € {0,1, —1}, we can easily find all zeros

Vw(F5) - {<17 2)7 (17 _2>7 (_17 0)}7

which means that the group C(Fs5) = {o, (1,2), (1, —2),(—1,0)} is of the order 4. Since w
is of a short form, we know that &(z, y) = (z, —y) hence we have the table of the unary
operation
olo| (1,2) [(1,-2)|(~1,0)
o] (1,-2)] (1,2) [(~1,0)

From the table we can see that the group has exactly one element (—1,0) of the order 2,
so C(F5) = Z4 is a cyclic group. We can directly draw the table of the operation &

e | o [ (L2 [(1L,-2)[(-L0)]
0 0 (1,2) | (1,-2) | (—1,0)
(1,2) (1,2) | (—1,0) 0 (1,-2) O

T2 L2 o (L0 1LY
—10) [(=L0) | =2 | @2 | o

2.6. Describe the group C(IF7) of the elliptic curve C' given by the WEP w, and if it is
cyclic, find its generator.

(a) w=1y*— (2® + 3) € Fylx,y],
(b) w=1y*— (2% +22% —x — 2) € Fylx,y] .

(a) First we compute a table of values

0l 123 |-3]-2]-1
Z o1 [=3[2 2 =3]1
2S00 1| 1 =11 |-1]-1
fx)|3|-3|-3]2 |-3| 2|2

Since f has no root in F; by the table, it is irreducible and so separable. It implies that
w is a smooth WEP and we can easily find all F7-rational points of the curve

Vo(F7) = {(1,£2), (2, £2), (3, £3), (=3, £2), (-2, £3), (—1,£3)}.

Since C(F7) = V,(F7) U {o} has 13 elements, it is a cyclic group and (a) = C(F;) for
each a € V,,(F7).

(b) Since 23 +222 —x—2 = (x—1)(z+1)(z+2), the WEP is smooth and we have three
zeros (1,0), (—1,0), (—2,0) compute the table of the binary group operation & on C(F7).
It remains to observe that 3> € {0,1, 3,2} and compute f(z) for z € {0,2,3, —3}:

0 ]2]3 -3
fl@)|—2]-2]-2]|-1
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which shows that C'(F;) = {0, (1,0),(—1,0),(—2,0)} is a group of the order 4. As ©a = a
for every a € C(F;), we can see that C'(IF;) = Zy X Zs

2.7. For the curve V,, from 2.6(a) describe all points of
(a) secant passing points (1,2) and (3, 3), and compute (1,2) & (3, 3),
(b) tangent at the point (1,2), and compute (1,2) & (1,2) = [2](1, 2).
2-3

(a) It is easy to calculate the slope A = = = —3. Then the secant V, 3,45 contains

all points (x,y) satisfying y = —3x — 2, hence

‘/;J+3:v+2 = {(07 _2)7 (17 2)7 (27 _1>7 (37 3)7 <_37 0)7 (_27 _3)7 <_17 1)}

To find (1,2) @ (3,3) we can either find V1 3,.0 NV, = {(1,2),(3,3),(—2,—3)}, hence
(1,2) ® (2,3) = ©(—2,-3) = (—2,3) or we can apply formula

71:)\2—061—51:2—1—3:—2; 72:/\<0<1—71)—042:—3(1+2>_2:—4:3>

and (1,2) @ (2,3) = (71, 72)-

02.04.
(b) This time we calculate the slope A = % = —1, hence the tangent is
Vpraos = {(0,3),(1,2), (2,1), (3,0), (=3, —1), (2, —2), (—1,-3)}.
and [2](1,2) = (71,72) = (=1,3) as
Nn=A-201=1-2=-1, p=MNag—m)—ay=—-1(1+1)—-2=3.
O
09.04.

3 Montgomery curves

3.1. Find the Montgomery’s ladder for (a) n = 98, (b) n = 137

(a) Note that 15(98) = [log,(98)] + 1 = 7 and recall that the Montgomery’s ladder
{(ni,n;)}_, is done by the recurrent condition n,_; = [% | and by n} = n; + 1. Thus we
can easily compute

i|7]6]5]4]3]2]1
n; 9814912412 /6|3 |1
n, 199502513 |7|4]2

(b) This time 5(137) = |log,(137)] + 1 = 8, hence the table of the Montgomery’s

ladder is

i| 8 |7]6]5]4]3|2]1
137683417 [8[42]1
13869 35|18 |9|5|3|2

n;
n;




3.2. Describe the calculation of [98]P for an element P of Montgomery curve of order
greater then 98 using the Montgomery’s ladder.

From the calculation of the Montgomery’s ladder in 3.1 we obtain the binary notation
(98)2 = agasagaszasaiag = 1100010 for 98 = Z?:o a;2'. Recall that the run of calculation
([ny] P, [n;]P]), depends on the value of the bit a;_;, namely

e if a;_j = 0 then [n;|P = [2][n; 1] P and [n}|P = [n; 1|P & [n]_,]P,

e if a;_j =1 then [n;]P = [n; 1]P & [n_,]P and [n}]P = [2][n]_,]P.

Thus we can describe the calculation in the following table, where we denote P; =
[n;]P and P; = [n]P:

il 2 3 4 5 6 7
ar_; | 1 1 0 0 0 1 0
n; | 1 | 1+2 | 2-3 | 2:6 | 2-12 |24+25| 2-49
n, | 2 | 2.2 | 344 | 647 [124+13] 225 |[49+50
P, | P [PoP| 2R | 217 | 2P |PoP| 2P
Pl |21P| 2P |PaP|Pse P PaP| 2P, |Psa P,
0
16.04.

3.3. Decide whether the WEP w = y*>— f € Fs[z, y] is F5-equivalent to some Montgomery
polynomial if

(a) f=2"+1,
(b
(c

) f
) f

(d) f=23+z+1,
) f

(e

We apply Proposition 4.5 from the lecture (M.5 in the lecture notes) which says that
smooth WEP w = y? — f is F5-equivalent to some Montgomery polynomial if and only
if there exists a root ¢ € F5 of f such that f’({) is a non-zero square in F5. Note that if
we find all Fs-rational roots ¢ of f and check whether f'(¢) # 0, we will know that w is
smooth.

Observe that 1 = 1% = (—1)?, -1 = (2)? = (—2)? are all non-zero squares in F5. We
will search all Fs-rational roots ¢ of f and check whether f'({) = +1:

(a) The only Fs-rational root of f = x® +1is —1, f' = 32% and f'(—
means that w is not Fs-equivalent to any Montgomery polynomial.

(b) The only Fs-rational root of f = x® + 2 is 2, and f/(2) = 2, hence w is not
F5-equivalent to any Montgomery polynomial.

(c)The polynomial y*> — (2* + ) is already a Montgomery polynomial (for A = 0,
B =1), so the answer is yes.

(d) The polynomial 2® + = + 1 has no Fs-rational root, thus the answer is no.

(e) Since —1 is Fs-rational root of f = z® + z + 2, the derivative f’ = 3z% + 1 has
no Fs-rational root, and f'(—1) = —1, the WEP w is Fs-equivalent to some Montgomery
polynomial. O]

=3 + 2,

=3 +x,

=23+ +2.

1) = —2, which



3.4. Find a Montgomery polynomial Fs-equivalent to a WEP w € Fsx, y] if
(a) w=y*— (2 + 2 +2),
(b) w=1y*— (23 +22% —x —2).

(a) We have found the root —1 of f = 2® + 2 + 2 in the previous task and we use the
idea of the proof of Proposition 4.5/M.5 and Lemma 4.1. First substitute x — 1 into f
and we get f = f(x —1) = 2° +22? — x. Now, if we put 2%+ 22% — 1 = 23+ ABx? + B2z,
we can easily calculate B = +2 and A =2 (4+2) = 41, hence by Lemma 4.1 we get

v — (2% + a4 2) ~ry 297 — (20 2? +)(~py =207 — (27— 2® 1)),
(b) As in 3.3 we find roots £1, —2 of
f=2"+20" —2-2=(z+1)(z - 1)(z +2).
Since [’ = 32? — x — 1, we calculate f/(1) =1 and f'(—=1) = f'(=2) = —2. As f'(1) =1

is a square, we substitute z — z + 1 and we obtain f = f(z + 1) = 23 + 2. We can see

that the Fs-equivalent WEP y? — f = y? — (2® + z) is already Montgomery (cf. 3.3(c)),
so we are done, i.e. y? — (2% + 222 — 2 — 2) ~p, y* — (2% + 7). O

3.5. Decide whether there exists ¢ € F; such that the WEP y? — (2* — ¢) € Fy[z,y] is
F7-equivalent to some Montgomery polynomial.

Assume that there exists a root ¢ € F; of f = 2° — ¢ and b € F; such that
f'(¢) =3¢* =" e Fy.

Then 3 = 2—2 = (%)2, which contradicts to the fact that 1,2,4 are the only non-zero
squares in the field . n

3.6. Explain for an arbitrary field K why Montgomery polynomials m and m are K-
equivalent if

m = By* — (2* + A2® + ) and m = —By? — (2* — Az* +2) € K|x,y].
It is enough to consider the affine transformation (z,y) — (—z, —y), on m:
m(—z,—y) = By? — (=2 + Ax* —2) = —(—=By* — (2" — A2® + 2)) = (=1) -
and note that B € K*, A # +2 if and only if —B € K*, —A # +2. m

4 Edwards curves

4.1. Show that the polynomial x? + y* € RJ[z,y] is irreducible but it is not absolutely
irreducible.

Clearly, 22 +y? = (z +iy)(z —iy) € C[x,y], which shows that 2?4y is not absolutely
irreducible.

If 22 + y*> = g1g9» is a nontrivial decomposition in Rl[x,y], then it is a nontrivial
decomposition in C[z, y] which would be associated to the prime decomposition 2%+ =
(x +1y)(z —iy). Hence g;||(x + iy) which contradicts to the fact that g; € R[z,y|, and so
22 + y? is irreducible in R[z, y]. O



23.04.

4.2, Let f =y* + az? — (1 + d2*y?) € Rlz,y] and F = (Y2 + aX?) 2% — (Z* + dX?Y?)
be the homogenization of f. Find all points of Vr NV, and decide which are smooth.
Since (a : b : ¢) € Vp N Vy if and only if ¢ = da?h® = 0 if and only if c = a = 0 or
c=b=0,weget Ve NV;={(1:0:0),(0:1:0)}.
We can compute

oF _ 2 2y OF _ 2 2y OF _ 2 2 3
OF oF OF
8X( ,0,0) = 8Y(100) aZ(lOO) 0,
oF _OF _OF
hence both the points (1:0:0) and (0: 1 :0) are singularities. O

4.3. For the Montgomery curve given by 3y? — (23 +3z%+1z) € Fr[z,y| find a birationally
equivalent (a) generalized Edwards curve (b) Edwards curve.

(a) We simply apply Theorem 5.8 (E.7) for A = B = 3:

wa= (252557 = (52557) - s,

thus the birationally equivalent generalized Edwards curve satisfies the equation
4% + y? =1 + 5a?y?

(b) This time we use the linear transformation # — 2z to receive a birationally equiv-
alent Edwards curve given by 22 + y?> = 1 — 22y?, where the coefficient d is transformed
by the rule d — 2 (see Lemma 5.5 (E.4)). O

4.4. For the Edwards curve given by the polynomial 2% + y? — 2%y* € F;[z,y] compute a
birationally equivalent Montgomery curve.

We apply the formulas from Theorem 5.8 (E.7) again

(4,B) = (Q(CLajj)’aid) - (2(11;11)’ 111) = (0,2)

hence we have found a birationally equivalent Montgomery curve given by the polynomial
2y? — (23 + ). O

4.5. If C is a curve given by the WEP w € Fy[z,y|, decide whether there exists a
birationally equivalent generalized Edwards curve. If yes, find its polynomial.

(a) w=y*—(2° +2),
(b) w :y2 - (l’—|—2)3,

(c) w=19y*— (2> —x+1).
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(a) Since z* € {0, +1}, the polynomial f = 2 + 2 has no F;-rational root, hence w is
not Fr-equivalent to any Montgomery polynomial, which means that w is not V,, is not
birationally equivalent to any generalized Edwards curve.

(b) This time w is not smooth since the polynomial f = (z + 2)® is not separable.
Now, the same argument as in (a) shows that V, is not birationally equivalent to any
generalized Edwards curve.

(c) Let f = 23—z + 1. Note that (2,0) € V,,, hence f(2) = 0. Since f' = 32> — 1, we
have f/(2) = 4 = 22. Using the transformation z — = + 2 we get the Fr-equivalent WEP
y? — (2® — 2? +4x) = y* — (2® + ABx? + B?z), which is Fs-equivalent to the Montgomery
polynomial By*— (z®+ Az? +z) = 2y* — (2*+ 32?4+ z). Now it remains to apply Theorem
5.8 (E.7) as in 4.3 to show that a birationally equivalent generalized Edwards curve exists

and it is given by the equality 6% + y* = 1 + 42y? since (6,4) = (%%) O
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