# On the structure of ADS and self-small abelian groups 

Jan Žemlička

TRTRT 2023, September 16, Cluj-Napoca

## Outline

ADS modules

Self-small groups and modules

The structure of ADS groups

Self-small products of finitely generated groups

References

## ADS modules

In the sequel

- $R$ denotes an associative ring with unit,
- $M$ a right $R$-module,
- a group means an abelain group (i.e. $\mathbb{Z}$-module)

A right module $M$ over $R$ is called absolute direct summand (ADS) if $M=S \oplus T^{\prime}$ for every submodules $S, T, T^{\prime}$ such that $M=S \oplus T$ and $T^{\prime}$ is a complement of $S$.

Example
(1) If every idempotent of $R$ is central (in particular if $R$ is commutative or reduced), then $R_{R}$ is ADS .
(2) Every cyclic module over commutative ring is ADS.

## ADS modules

In the sequel

- $R$ denotes an associative ring with unit,
- $M$ a right $R$-module,
- a group means an abelain group (i.e. $\mathbb{Z}$-module)

A right module $M$ over $R$ is called absolute direct summand (ADS) if $M=S \oplus T^{\prime}$ for every submodules $S, T, T^{\prime}$ such that $M=S \oplus T$ and $T^{\prime}$ is a complement of $S$.

Example
(1) If every idempotent of $R$ is central (in particular if $R$ is commutative or reduced), then $R_{R}$ is ADS.
(2) Every cyclic module over commutative ring is ADS.

## ADS modules

In the sequel

- $R$ denotes an associative ring with unit,
- $M$ a right $R$-module,
- a group means an abelain group (i.e. $\mathbb{Z}$-module)

A right module $M$ over $R$ is called absolute direct summand (ADS) if $M=S \oplus T^{\prime}$ for every submodules $S, T, T^{\prime}$ such that $M=S \oplus T$ and $T^{\prime}$ is a complement of $S$.

## Example

(1) If every idempotent of $R$ is central (in particular if $R$ is commutative or reduced), then $R_{R}$ is ADS.
(2) Every cyclic module over commutative ring is ADS.

## ADS modules

In the sequel

- $R$ denotes an associative ring with unit,
- $M$ a right $R$-module,
- a group means an abelain group (i.e. $\mathbb{Z}$-module)

A right module $M$ over $R$ is called absolute direct summand (ADS) if $M=S \oplus T^{\prime}$ for every submodules $S, T, T^{\prime}$ such that $M=S \oplus T$ and $T^{\prime}$ is a complement of $S$.

## Example

(1) If every idempotent of $R$ is central (in particular if $R$ is commutative or reduced), then $R_{R}$ is ADS.
(2) Every cyclic module over commutative ring is ADS.

## ADS condition via injectivity

A module $A$ is $B$-injective if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extendede to a homomorphism $B \leq A$.


Theorem (Alahmadi,Jain Leroy, 2012) Let $R$ be an simple ring. If $R_{R}$ is $A D S$, then either $R_{R}$ is indecomposable or $R$ is a right self-injective regular ring.

## ADS condition via injectivity

A module $A$ is $B$-injective if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extendede to a homomorphism $B \leq A$.

Theorem (Alahmadi,Jain Leroy, 2012)
The following is equivalent:

1. $M$ is $A D S$,
2. $A$ and $B$ are mutually injective modules for every
$M=A \oplus B$,
3. $A$ is a $b R$-iniective module for every $M=A \oplus B$ and $b \in B$.

Theorem (Alahmadi,Jain Leroy, 2012)
Let $R$ be an simple ring. If $R_{R}$ is $A D S$, then $\epsilon$ ither $R_{R}$ is indecomposable or $R$ is a right self-injective regular ring.

## ADS condition via injectivity

A module $A$ is $B$-injective if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extendede to a homomorphism $B \leq A$.

Theorem (Alahmadi,Jain Leroy, 2012)
The following is equivalent:

1. $M$ is $A D S$,
2. $A$ and $B$ are mutually injective modules for every $M=A \oplus B$,
3. $A$ is a bR-injective module for every $M=A \oplus B$ and $b \in B$.

Theorem (Alahmadi,Jain Leroy, 2012)
Let $R$ be an simple ring. If $R_{R}$ is $A D S$, then $\epsilon$ ither $R_{R}$ is indecomposable or $R$ is a right self-injective regular ring.

## ADS condition via injectivity

A module $A$ is $B$-injective if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extendede to a homomorphism $B \leq A$.

Theorem (Alahmadi,Jain Leroy, 2012)
The following is equivalent:

1. $M$ is $A D S$,
2. $A$ and $B$ are mutually injective modules for every $M=A \oplus B$,
3. $A$ is a $b R$-injective module for every $M=A \oplus B$ and $b \in B$.

Theorem (Alahmadi,Jain Leroy, 2012)
Let $R$ be an simple ring. If $R_{R}$ is $A D S$, then $\epsilon$ ither $R_{R}$ is indecomposable or $R$ is a right self-injective regular ring.

## ADS condition via injectivity

A module $A$ is $B$-injective if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extendede to a homomorphism $B \leq A$.
Theorem (Alahmadi,Jain Leroy, 2012)
The following is equivalent:

1. $M$ is $A D S$,
2. $A$ and $B$ are mutually injective modules for every $M=A \oplus B$,
3. $A$ is a $b R$-injective module for every $M=A \oplus B$ and $b \in B$.

Theorem (Alahmadi,Jain Leroy, 2012)
Let $R$ be an simple ring. If $R_{R}$ is $A D S$, then either $R_{R}$ is indecomposable or $R$ is a right self-injective regular ring.

## Commuting with $\operatorname{Hom}(M,-)$

Let $M$ be a module and $\mathcal{N}$ a family of abelian groups.

## Consider the mapping of abelian groups:


given by the rule $\Psi_{\mathcal{N}}\left(\left(f_{N}\right)_{N}\right)=\sum_{N} f_{N}$, where
$\sum_{N} f_{N} \in \operatorname{Hom}(A, \oplus \mathcal{N})$ is defined by $a \rightarrow \sum_{N} f_{N}(a)$ for $f_{N}$ viewed as a homomorphism into $\bigoplus \mathcal{N}$.

Lemma
The mapping $\psi_{\mathcal{N}}$ is an injective homomorphism of abelian groups for every family $\mathcal{N}$.

## Commuting with $\operatorname{Hom}(M,-)$

Let $M$ be a module and $\mathcal{N}$ a family of abelian groups.
Consider the mapping of abelian groups:

$$
\Psi_{\mathcal{N}}: \bigoplus_{N \in \mathcal{N}} \operatorname{Hom}(A, N) \rightarrow \operatorname{Hom}(A, \bigoplus \mathcal{N})
$$

given by the rule $\Psi_{\mathcal{N}}\left(\left(f_{N}\right)_{N}\right)=\sum_{N} f_{N}$, where
$\sum_{N} f_{N} \in \operatorname{Hom}(A, \oplus \mathcal{N})$ is defined by $a \rightarrow \sum_{N} f_{N}(a)$ for $f_{N}$ viewed as a homomorphism into $\oplus \mathcal{N}$.

Lemma
The mapping $\Psi_{\mathcal{N}}$ is an injective homomorphism of abelian groups for every family $\mathbb{N}$.

## Commuting with $\operatorname{Hom}(M,-)$

Let $M$ be a module and $\mathcal{N}$ a family of abelian groups.
Consider the mapping of abelian groups:

$$
\Psi_{\mathcal{N}}: \bigoplus_{N \in \mathcal{N}} \operatorname{Hom}(A, N) \rightarrow \operatorname{Hom}(A, \bigoplus \mathcal{N})
$$

given by the rule $\Psi_{\mathcal{N}}\left(\left(f_{N}\right)_{N}\right)=\sum_{N} f_{N}$, where
$\sum_{N} f_{N} \in \operatorname{Hom}(A, \bigoplus \mathcal{N})$ is defined by $a \rightarrow \sum_{N} f_{N}(a)$ for $f_{N}$ viewed as a homomorphism into $\bigoplus \mathcal{N}$.

Lemma
The mapping $\Psi_{\mathcal{N}}$ is an injective homomorphism of abelian groups for every family $\mathcal{N}$.

## General relative smallness

Let $\mathcal{C}$ be a class of modules $A$ and $B$ module. We say that $A$ is

```
C}\mathrm{ -small if }\mp@subsup{\Psi}{\mathcal{N}}{}\mathrm{ is an isomorphism }\forall\mathcal{N}\subseteq\mathcal{C}\mathrm{ ,
B-small if it is a {B}-small module,
small if it is \mathcal{N}\mathrm{ -small }\forall\mathrm{ family }\mathcal{N}\mathrm{ of,}
self-small if it is A-small.
```

Example
(1) Every finitely generated module is small, so self-small.
(2) Let $A$ and $B$ be two modules such that $\operatorname{Hom}(A, B)=0$. Then $A$ is
$B$-small.
(3) In particular, if $p, q \in \mathbb{P}$ are different primes, $A_{p}$ is an abelian
p-group and $A_{q}$ is an abelian $q$-group, then $A_{p}$ is $A_{q}$-small and
$\mathbb{Z}$-small.

## General relative smallness

Let $\mathcal{C}$ be a class of modules $A$ and $B$ module. We say that $A$ is

- $\mathcal{C}$-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq \mathcal{C}$,
$B$-small if it is a $\{B\}$-small module,
small if it is $\mathcal{N}$-small $\forall$ family $\mathcal{N}$ of, self-small if it is $A$-small.

Example
(1) Every finitely generated module is small, so self-small.
(2) Let $A$ and $B$ be two modules such that $\operatorname{Hom}(A, B)=0$. Then $A$ is
$B$-small.
(3) In particular, if $p, q \in \mathbb{P}$ are different primes, $A_{p}$ is an abelian $p$-group and $A_{q}$ is an abelian $q$-group, then $A_{p}$ is $A_{q}$-small and $\mathbb{Z}$-small.

## General relative smallness

Let $\mathcal{C}$ be a class of modules $A$ and $B$ module. We say that $A$ is

- $\mathcal{C}$-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq \mathcal{C}$,
- $B$-small if it is a $\{B\}$-small module, small if it is $\mathcal{N}$-small $\forall$ family $\mathcal{N}$ of, self-small if it is $A$-small.

Example
(1) Every finitely generated module is small, so self-small.
(2) Let $A$ and $B$ be two modules such that $\operatorname{Hom}(A, B)=0$. Then $A$ is $B$-small.
(3) In particular, if $p, q \in \mathbb{P}$ are different primes, $A_{p}$ is an abelian $p$-group and $A_{q}$ is an abelian $q$-group, then $A_{p}$ is $A_{q}$-small and $\mathbb{Z}$-small.

## General relative smallness

Let $\mathcal{C}$ be a class of modules $A$ and $B$ module. We say that $A$ is

- $\mathcal{C}$-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq \mathcal{C}$,
- $B$-small if it is a $\{B\}$-small module,
- small if it is $\mathcal{N}$-small $\forall$ family $\mathcal{N}$ of,


## self-small if it is $A$-small.

Example
(1) Every finitely generated module is small, so self-small.
(2) Let $A$ and $B$ be two modules such that $\operatorname{Hom}(A, B)=0$. Then $A$ is $B$-small.
(3) In particular, if $p, q \in \mathbb{P}$ are different primes, $A_{p}$ is an abelian $p$-group and $A_{q}$ is an abelian $q$-group, then $A_{p}$ is $A_{q}$-small and Z-small.

## General relative smallness

Let $\mathcal{C}$ be a class of modules $A$ and $B$ module. We say that $A$ is

- $\mathcal{C}$-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq \mathcal{C}$,
- $B$-small if it is a $\{B\}$-small module,
- small if it is $\mathcal{N}$-small $\forall$ family $\mathcal{N}$ of,
- self-small if it is $A$-small.



## General relative smallness

Let $\mathcal{C}$ be a class of modules $A$ and $B$ module. We say that $A$ is

- $\mathcal{C}$-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq \mathcal{C}$,
- $B$-small if it is a $\{B\}$-small module,
- small if it is $\mathcal{N}$-small $\forall$ family $\mathcal{N}$ of,
- self-small if it is $A$-small.

Example
(1) Every finitely generated module is small, so self-small.
$B$-small.
(3) In particular, if $p, q \in \mathbb{P}$ are different primes, $A_{p}$ is an abelian
$p$-group and $A_{q}$ is an abelian $q$-group, then $A_{p}$ is $A_{q}$-small and
Z-small.

## General relative smallness

Let $\mathcal{C}$ be a class of modules $A$ and $B$ module. We say that $A$ is

- $\mathcal{C}$-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq \mathcal{C}$,
- $B$-small if it is a $\{B\}$-small module,
- small if it is $\mathcal{N}$-small $\forall$ family $\mathcal{N}$ of,
- self-small if it is $A$-small.

Example
(1) Every finitely generated module is small, so self-small.
(2) Let $A$ and $B$ be two modules such that $\operatorname{Hom}(A, B)=0$. Then $A$ is $B$-small.
(3) In particular, if $p, q \in \mathbb{P}$ are different primes, $A_{p}$ is an abelian $p$-group and $A_{q}$ is an abelian $q$-group, then $A_{p}$ is $A_{q}$-small and Z-small.

## General relative smallness

Let $\mathcal{C}$ be a class of modules $A$ and $B$ module. We say that $A$ is

- $\mathcal{C}$-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq \mathcal{C}$,
- $B$-small if it is a $\{B\}$-small module,
- small if it is $\mathcal{N}$-small $\forall$ family $\mathcal{N}$ of,
- self-small if it is $A$-small.


## Example

(1) Every finitely generated module is small, so self-small.
(2) Let $A$ and $B$ be two modules such that $\operatorname{Hom}(A, B)=0$. Then $A$ is $B$-small.
(3) In particular, if $p, q \in \mathbb{P}$ are different primes, $A_{p}$ is an abelian $p$-group and $A_{q}$ is an abelian $q$-group, then $A_{p}$ is $A_{q}$-small and $\mathbb{Z}$-small.

## Criteria of self-smallness

Theorem (Arnold, Murley, 1975)
The following are equivalent for a module $A$ :

1. $A$ is not self-small,
2. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that $\operatorname{Hom}\left(A / A_{n}, A\right) \neq 0$ for each $n<\omega$,
3. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that for each $n<\omega \exists$ a nonzero $\varphi_{n} \in \operatorname{End}(A)$ satisfying $\varphi_{n}\left(A_{n}\right)=0$.

Theorem (Albrecht, Breaz, Wickless, 2009)
Let $A$ be a reduced group of finite torsion free rank with a full free subgroup $F$. The following are equivalent:

1. $A$ is self-small,
2. $\forall A_{p}$ is finite and $(A / F)_{p}$ is divisible whenever $A_{p} \neq 0$,
3. each $A_{p}$ is finite and $\operatorname{Hom}(A, t(A))$ is torsion.

## Criteria of self-smallness

Theorem (Arnold, Murley, 1975)
The following are equivalent for a module $A$ :

1. $A$ is not self-small,
2. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that $\operatorname{Hom}\left(A / A_{n}, A\right) \neq 0$ for each $n<\omega$,

Theorem (Albrecht, Breaz, Wickless, 2009)
Let $A$ be a reduced group of finite torsion free rank with a full free subgroup F. The following are equivalent:

1. A is self-small,
2. $\forall A_{p}$ is finite and $(A / F)_{p}$ is divisible whenever $A_{p} \neq 0$,
3. each $A_{p}$ is finite and $\operatorname{Hom}(A, t(A))$ is torsion.

## Criteria of self-smallness

Theorem (Arnold, Murley, 1975)
The following are equivalent for a module $A$ :

1. $A$ is not self-small,
2. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that $\operatorname{Hom}\left(A / A_{n}, A\right) \neq 0$ for each $n<\omega$,
3. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that for each $n<\omega \exists$ a nonzero $\varphi_{n} \in \operatorname{End}(A)$ satisfying $\varphi_{n}\left(A_{n}\right)=0$.

Theorem (Albrecht, Breaz, Wickless, 2009)
Let $A$ be a reduced group of finite torsion free rank with a full
free subgroup F. The following are equivalent:

1. A is self-small,
2. $\forall A_{p}$ is finite and $(A / F)_{p}$ is divisible whenever $A_{p} \neq 0$,
3. each $A_{p}$ is finite and $\operatorname{Hom}(A, t(A))$ is torsion.

## Criteria of self-smallness

## Theorem (Arnold, Murley, 1975)

The following are equivalent for a module $A$ :

1. $A$ is not self-small,
2. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that $\operatorname{Hom}\left(A / A_{n}, A\right) \neq 0$ for each $n<\omega$,
3. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that for each $n<\omega \exists$ a nonzero $\varphi_{n} \in \operatorname{End}(A)$ satisfying $\varphi_{n}\left(A_{n}\right)=0$.

Theorem (Albrecht, Breaz, Wickless, 2009)
Let $A$ be a reduced group of finite torsion free rank with a full free subgroup $F$. The following are equivalent:

1. $A$ is self-small,
> 2. $\forall A_{p}$ is finite and $(A / F)_{p}$ is divisible whenever $A_{p} \neq 0$,
> 3. each $A_{p}$ is finite and $\operatorname{Hom}(A, t(A))$ is torsion.

## Criteria of self-smallness

## Theorem (Arnold, Murley, 1975)

The following are equivalent for a module $A$ :

1. $A$ is not self-small,
2. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that $\operatorname{Hom}\left(A / A_{n}, A\right) \neq 0$ for each $n<\omega$,
3. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that for each $n<\omega \exists$ a nonzero $\varphi_{n} \in \operatorname{End}(A)$ satisfying $\varphi_{n}\left(A_{n}\right)=0$.

Theorem (Albrecht, Breaz, Wickless, 2009)
Let $A$ be a reduced group of finite torsion free rank with a full free subgroup $F$. The following are equivalent:

1. $A$ is self-small,
2. $\forall A_{p}$ is finite and $(A / F)_{p}$ is divisible whenever $A_{p} \neq 0$,

## Criteria of self-smallness

## Theorem (Arnold, Murley, 1975)

The following are equivalent for a module $A$ :

1. $A$ is not self-small,
2. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that $\operatorname{Hom}\left(A / A_{n}, A\right) \neq 0$ for each $n<\omega$,
3. $\exists$ an $\omega$-filtration $\left(A_{i} \mid i<\omega\right)$ of $A$ such that for each $n<\omega \exists$ a nonzero $\varphi_{n} \in \operatorname{End}(A)$ satisfying $\varphi_{n}\left(A_{n}\right)=0$.

Theorem (Albrecht, Breaz, Wickless, 2009)
Let $A$ be a reduced group of finite torsion free rank with a full free subgroup $F$. The following are equivalent:

1. $A$ is self-small,
2. $\forall A_{p}$ is finite and $(A / F)_{p}$ is divisible whenever $A_{p} \neq 0$,
3. each $A_{p}$ is finite and $\operatorname{Hom}(A, t(A))$ is torsion.

## Examples

## Example

If $\mathbb{P}$ denotes the set of all prime numbers, then
$M=\prod_{p \in \mathbb{P}} \mathbf{Z}_{p}$ is a self-small abelian group and
$N=\bigoplus_{p \in \mathbb{P}} \mathbf{Z}_{p}$ is not self-small and
$E \operatorname{End}_{R}(M) \cong E n d R(N)$.
Example
$\prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$ and $\mathbb{Q}$ are self-small abelian groups. Moreover,
$\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Q}, \prod_{p \in \mathbb{P}} \mathbb{Z}_{p}\right)=\prod_{p \in \mathbb{P}} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Q}, \mathbb{Z}_{p}\right)=0$. Nevertheless, the
product $\mathbb{Q} \times \Pi_{p \in \mathbb{P}} \mathbb{Z}_{p}$ is not self-small.

## Examples

## Example

If $\mathbb{P}$ denotes the set of all prime numbers, then
$M=\prod_{p \in \mathbb{P}} \mathbf{Z}_{p}$ is a self-small abelian group and
$N=\bigoplus_{p \in \mathbb{P}} \mathbf{Z}_{p}$ is not self-small and
$\operatorname{End}_{R}(M) \cong \operatorname{End}_{R}(N)$.

## Example

$\prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$ and $\mathbb{Q}$ are self-small abelian groups. Moreover, $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Q}, \prod_{p \in \mathbb{P}} \mathbb{Z}_{p}\right)=\prod_{p \in \mathbb{P}} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Q}, \mathbb{Z}_{p}\right)=0$. Nevertheless, the product $\mathbb{Q} \times \prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$ is not self-small.

## Products of self-small modules

Proposition (Dvořák, 2015)
The following conditions are equivalent for a finite system of self-small modules ( $M_{i} \mid i \leq k$ ):

1. $\prod_{i \leq k} M_{i}$ is not self-small,
2. there exist $i, j \leq k$ and a chain $N_{1} \subseteq N_{2} \subseteq \ldots \subseteq N_{n} \subseteq \ldots$ of proper submodules of $M_{i}$ such that $\bigcup_{n=1}^{\infty} N_{n}=M_{i}$ and $\operatorname{Hom}_{R}\left(M_{i} / N_{n}, M_{j}\right) \neq 0$ for each $n \in \mathbb{N}$.

## Lemma

Let $A$ be an abelian group and $\mathcal{C}$ be a set of abelian groups.
Then the following conditions are equivalent:

1. $A$ is $\oplus C$-small,
2. A is C -small,
3. $A$ is $\operatorname{Add}(\oplus \mathcal{C})$-small.

## Products of self-small modules

## Proposition (Dvořák, 2015)

The following conditions are equivalent for a finite system of self-small modules ( $M_{i} \mid i \leq k$ ):

1. $\prod_{i \leq k} M_{i}$ is not self-small,
2. there exist $i, j \leq k$ and a chain $N_{1} \subseteq N_{2} \subseteq \ldots \subseteq N_{n} \subseteq \ldots$ of proper submodules of $M_{i}$ such that $\bigcup_{n=1}^{\infty} N_{n}=M_{i}$ and $\operatorname{Hom}_{R}\left(M_{i} / N_{n}, M_{j}\right) \neq 0$ for each $n \in \mathbb{N}$.

Lemma
Let $A$ be an abelian group and $\mathcal{C}$ be a set of abelian groups.
Then the following conditions are equivalent:

1. $A$ is $\oplus C$-small,
2. $A$ is $\mathcal{C}$-small,
3. $A$ is $\operatorname{Add}(\oplus \mathcal{C})$-small.

## Products of self-small modules

## Proposition (Dvořák, 2015)

The following conditions are equivalent for a finite system of self-small modules ( $M_{i} \mid i \leq k$ ):

1. $\prod_{i \leq k} M_{i}$ is not self-small,
2. there exist $i, j \leq k$ and a chain $N_{1} \subseteq N_{2} \subseteq \ldots \subseteq N_{n} \subseteq \ldots$ of proper submodules of $M_{i}$ such that $\bigcup_{n=1}^{\infty} N_{n}=M_{i}$ and $\operatorname{Hom}_{R}\left(M_{i} / N_{n}, M_{j}\right) \neq 0$ for each $n \in \mathbb{N}$.

Lemma
Let $A$ be an abelian group and $\mathcal{C}$ be a set of abelian groups.
Then the following conditions are equivalent:

1. $A$ is $\oplus \mathcal{C}$-small,
2. A is C -small,
3. $A$ is $\operatorname{Add}(\oplus \mathcal{C})$-small.

## Products of self-small modules

## Proposition (Dvořák, 2015)

The following conditions are equivalent for a finite system of self-small modules ( $M_{i} \mid i \leq k$ ):

1. $\prod_{i \leq k} M_{i}$ is not self-small,
2. there exist $i, j \leq k$ and a chain $N_{1} \subseteq N_{2} \subseteq \ldots \subseteq N_{n} \subseteq \ldots$ of proper submodules of $M_{i}$ such that $\bigcup_{n=1}^{\infty} N_{n}=M_{i}$ and $\operatorname{Hom}_{R}\left(M_{i} / N_{n}, M_{j}\right) \neq 0$ for each $n \in \mathbb{N}$.

Lemma
Let $A$ be an abelian group and $\mathcal{C}$ be a set of abelian groups.
Then the following conditions are equivalent:

1. $A$ is $\oplus \mathcal{C}$-small,
2. A is C -small,
3. $A$ is $\operatorname{Add}(\oplus C)$-small.

## Products of self-small modules

## Proposition (Dvořák, 2015)

The following conditions are equivalent for a finite system of self-small modules ( $M_{i} \mid i \leq k$ ):

1. $\prod_{i \leq k} M_{i}$ is not self-small,
2. there exist $i, j \leq k$ and a chain $N_{1} \subseteq N_{2} \subseteq \ldots \subseteq N_{n} \subseteq \ldots$ of proper submodules of $M_{i}$ such that $\bigcup_{n=1}^{\infty} N_{n}=M_{i}$ and $\operatorname{Hom}_{R}\left(M_{i} / N_{n}, M_{j}\right) \neq 0$ for each $n \in \mathbb{N}$.

Lemma
Let $A$ be an abelian group and $\mathcal{C}$ be a set of abelian groups.
Then the following conditions are equivalent:

1. $A$ is $\oplus \mathcal{C}$-small,
2. $A$ is $\mathcal{C}$-small,
3. $A$ is $\operatorname{Add}(\oplus \mathcal{C})$-small.

## Torsion-free ADS modules

Lemma
Let $M$ be a torsion-free module over a domain $R$. Then $M$ is ADS if and only if it is either indecomposable or injective.

Theorem
Let $R$ be a domain. The followings are equivalent for a non-zero torsion-free $R$-module $M$ and a torsion $R$-module $T$ :
(1) $M \oplus T$ is $A D S$;
(2) $T$ is injective and $M$ is either indecomposable or injective.

Example
An infinite cyclic group is the only example of a finitely generated infinite ADS abelian group.

## Torsion-free ADS modules

Lemma
Let $M$ be a torsion-free module over a domain $R$. Then $M$ is $A D S$ if and only if it is either indecomposable or injective.

Theorem
Let $R$ be a domain. The followings are equivalent for a non-zero torsion-free $R$-module $M$ and a torsion $R$-module $T$ :
(1) $M \oplus T$ is $A D S$;
(2) $T$ is injective and $M$ is either indecomposable or injective.

Example
An infinite cyclic group is the only example of a finitely
generated infinite ADS abelian group.

## Torsion-free ADS modules

Lemma
Let $M$ be a torsion-free module over a domain $R$. Then $M$ is $A D S$ if and only if it is either indecomposable or injective.

Theorem
Let $R$ be a domain. The followings are equivalent for a non-zero torsion-free $R$-module $M$ and a torsion $R$-module $T$ :
(1) $M \oplus T$ is $A D S$;
(2) $T$ is injective and $M$ is either indecomposable or injective.

Example
An infinite cyclic group is the only example of a finitely
generated infinite $A D S$ abelian group.

## Torsion-free ADS modules

Lemma
Let $M$ be a torsion-free module over a domain $R$. Then $M$ is ADS if and only if it is either indecomposable or injective.

Theorem
Let $R$ be a domain. The followings are equivalent for a non-zero torsion-free $R$-module $M$ and a torsion $R$-module $T$ :
(1) $M \oplus T$ is $A D S$;
(2) $T$ is injective and $M$ is either indecomposable or injective.

## Example

An infinite cyclic group is the only example of a finitely generated infinite $A D S$ abelian group.

## Mixed ADS groups

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:

```
Lemma
Let A be a non-divisible proper mixed abelian group. Then G is
ADS iff G\congA\oplusB for a non-divisible indecomposable
torsion-free and a divisible torsion group B.
Lemma
The following are equivalent for a torsion group G:
(1) G is ADS,
(2) }\forallp\in\mathbb{P}\existsn\in\mathbb{N}\cup{0,\infty}\mathrm{ and }\kappa\mathrm{ for which }\mp@subsup{M}{p}{}\cong\mp@subsup{\mathbb{Z}}{\mp@subsup{p}{}{n}}{(\kappa)}\mathrm{ .
```

Example
Let $F$ be a finite group and $n \mathbb{Z}=\operatorname{Ann}(F)$. Then $F$ is $A D S$ if and only if $F$ is a projective $\mathbb{Z} / n \mathbb{Z}$-module.

## Mixed ADS groups

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:
Lemma
Let $A$ be a non-divisible proper mixed abelian group. Then $G$ is ADS iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group B.

Lemma
The following are equivalent for a torsion group $G$ :
(1) G is ADS,
(2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup\{0, \infty\}$ and $\kappa$ for which $M_{p} \cong \mathbb{Z}_{p^{n}}^{(\kappa)}$.

Example
Let $F$ be a finite group and $n \mathbb{Z}=\operatorname{Ann}(F)$. Then $F$ is $A D S$ if and only if $F$ is a projective $\mathbb{Z} / n \mathbb{Z}$-module.

## Mixed ADS groups

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:
Lemma
Let $A$ be a non-divisible proper mixed abelian group. Then $G$ is $A D S$ iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group $B$.

Lemma
The following are equivalent for a torsion group $G$ :
(1) G is ADS,
(2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup\{0, \infty\}$ and $\kappa$ for which $M_{p} \cong \mathbb{Z}_{p^{n}}^{(\kappa)}$.

Example
Let $F$ be a finite group and $n \mathbb{Z}=\operatorname{Ann}(F)$. Then $F$ is $A D S$ if and only if $F$ is a projective $\mathbb{Z} / n \mathbb{Z}$-module.

## Mixed ADS groups

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:
Lemma
Let $A$ be a non-divisible proper mixed abelian group. Then $G$ is $A D S$ iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group $B$.

Lemma
The following are equivalent for a torsion group $G$ :
(1) $G$ is $A D S$,
(2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup\{0, \infty\}$ and $\kappa$ for which $M_{p} \cong \mathbb{Z}_{p^{n}}^{(\kappa)}$.

Example
Let $F$ be a finite group and $n \mathbb{Z}=\operatorname{Ann}(F)$. Then $F$ is $A D S$ if and only if $F$ is a projective $\mathbb{Z} / n \mathbb{Z}$-module.

## Mixed ADS groups

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:
Lemma
Let $A$ be a non-divisible proper mixed abelian group. Then $G$ is $A D S$ iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group $B$.

Lemma
The following are equivalent for a torsion group $G$ :
(1) $G$ is $A D S$,
(2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup\{0, \infty\}$ and $\kappa$ for which $M_{p} \cong \mathbb{Z}_{p^{n}}^{(\kappa)}$.

Example
Let $F$ be a finite group and $n \mathbb{Z}=\operatorname{Ann}(F)$. Then $F$ is $A D S$ if and only if $F$ is a projective $\mathbb{Z} / n \mathbb{Z}$-module.

## Mixed ADS groups

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:
Lemma
Let $A$ be a non-divisible proper mixed abelian group. Then $G$ is $A D S$ iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group $B$.

## Lemma

The following are equivalent for a torsion group $G$ :
(1) $G$ is $A D S$,
(2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup\{0, \infty\}$ and $\kappa$ for which $M_{p} \cong \mathbb{Z}_{p^{n}}^{(\kappa)}$.

## Example

Let $F$ be a finite group and $n \mathbb{Z}=\operatorname{Ann}(F)$. Then $F$ is $A D S$ if and only if $F$ is a projective $\mathbb{Z} / n \mathbb{Z}$-module.

## Classification of ADS groups

Theorem
An abelian group is ADS if and only if
(1) either it is divisible,
(2) or it is a direct sum of an indecomposable torsion-free group and a divisible torsion group,
(3) or it is a torsion group such that each p-component is a direct sum of cyclic $p$-groups of the same length or of $\mathbb{Z}_{p \infty}$.

Example
For an arbitrary cardinal $\kappa$ there exists $2^{k}$ indecomposable
torsion-free abelian groups of cardinality $\kappa$, all of which are reduced
ADS groups.

## Classification of ADS groups

Theorem
An abelian group is ADS if and only if
(1) either it is divisible,
(2) or it is a direct sum of an indecomposable torsion-free group and a divisible torsion group,
(3) or it is a torsion group such that each p-component is a direct sum of cyclic $p$-groups of the same length or of $\mathbb{Z}_{p \infty}$.

Example
For an arbitrary cardinal $\kappa$ there exists $2^{\kappa}$ indecomposable
torsion-free abelian groups of cardinality $\kappa$, all of which are reduced
ADS groups.

## Classification of ADS groups

Theorem
An abelian group is ADS if and only if
(1) either it is divisible,
(2) or it is a direct sum of an indecomposable torsion-free group and a divisible torsion group,
(3) or it is a torsion group such that each p-component is a direct sum of cyclic $p$-groups of the same length or of $\mathbb{Z}_{p^{\infty}}$.

Example
For an arbitrary cardinal $\kappa$ there exists $2^{\kappa}$ indecomposable
torsion-free abelian groups of cardinality $\kappa$, all of which are reduced
ADS groups.

## Classification of ADS groups

Theorem
An abelian group is ADS if and only if
(1) either it is divisible,
(2) or it is a direct sum of an indecomposable torsion-free group and a divisible torsion group,
(3) or it is a torsion group such that each p-component is a direct sum of cyclic $p$-groups of the same length or of $\mathbb{Z}_{p^{\infty}}$.

Example
For an arbitrary cardinal $\kappa$ there exists $2^{\kappa}$ indecomposable torsion-free abelian groups of cardinality $\kappa$, all of which are reduced ADS groups.

## Sums vs. products

Lemma
Let $\mathcal{M}$ and $\mathcal{N}$ be finite families of groups. The following conditions are equivalent:

1. $\oplus \mathcal{M}$ is $\oplus \mathcal{N}$-small,
2. $M$ is $\oplus \mathcal{N}$-small for each $M \in \mathcal{M}$,
3. $\oplus \mathcal{M}$ is $N$-small for each $N \in \mathcal{N}$,
4. $M$ is $N$-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem
Let $\mathcal{M}$ be a family of groups and put $M=\Pi \mathcal{M}$ and $S=\oplus \mathcal{M}$.
Then the following conditions are equivalent:

1. $M$ is self-small,
2. $M$ is $S$-small,
3. $M$ is $\oplus \mathcal{C}$-small for each countable family $\mathcal{C} \subseteq \mathcal{M}$.

## Sums vs. products

Lemma
Let $\mathcal{M}$ and $\mathcal{N}$ be finite families of groups. The following conditions are equivalent:

1. $\bigoplus \mathcal{M}$ is $\bigoplus \mathcal{N}$-small,
2. $M$ is $\bigoplus \mathcal{N}$-small for each $M \in \mathcal{M}$,
3. $\oplus \mathcal{M}$ is $N$-small for each $N \in \mathcal{N}$,
4. $M$ is $N$-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem
Let $\mathcal{M}$ be a family of groups and put $M=\prod \mathcal{M}$ and $S=\oplus \mathcal{M}$.
Then the following conditions are equivalent:

1. $M$ is self-small,
2. $M$ is $S$-small,
3. $M$ is $\bigoplus \mathcal{C}$-small for each countable family $\mathcal{C} \subseteq \mathcal{M}$.

## Sums vs. products

Lemma
Let $\mathcal{M}$ and $\mathcal{N}$ be finite families of groups. The following conditions are equivalent:

1. $\oplus \mathcal{M}$ is $\oplus \mathcal{N}$-small,
2. $M$ is $\oplus \mathcal{N}$-small for each $M \in \mathcal{M}$,
3. $\oplus \mathcal{M}$ is $N$-small for each $N \in \mathcal{N}$,
4. $M$ is $N$-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem
Let $\mathcal{M}$ be a family of groups and put $M=\prod \mathcal{M}$ and $S=\oplus \mathcal{M}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. $M$ is $S$-small,
3. $M$ is $\oplus \mathcal{C}$-small for each countable family $\mathcal{C} \subseteq \mathcal{M}$.

## Sums vs. products

Lemma
Let $\mathcal{M}$ and $\mathcal{N}$ be finite families of groups. The following conditions are equivalent:

1. $\oplus \mathcal{M}$ is $\oplus \mathcal{N}$-small,
2. $M$ is $\oplus \mathcal{N}$-small for each $M \in \mathcal{M}$,
3. $\oplus \mathcal{M}$ is $N$-small for each $N \in \mathcal{N}$,
4. $M$ is $N$-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem
Let $\mathcal{M}$ be a family of groups and put $M=\Pi \mathcal{M}$ and $S=\oplus \mathcal{M}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. $M$ is $S$-small,
3. $M$ is $\oplus \mathcal{C}$-small for each countable family $\mathcal{C} \subseteq \mathcal{M}$.

## Sums vs. products

Lemma
Let $\mathcal{M}$ and $\mathcal{N}$ be finite families of groups. The following conditions are equivalent:

1. $\oplus \mathcal{M}$ is $\oplus \mathcal{N}$-small,
2. $M$ is $\oplus \mathcal{N}$-small for each $M \in \mathcal{M}$,
3. $\oplus \mathcal{M}$ is $N$-small for each $N \in \mathcal{N}$,
4. $M$ is $N$-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

## Theorem

Let $\mathcal{M}$ be a family of groups and put $M=\prod \mathcal{M}$ and $S=\oplus \mathcal{M}$.
Then the following conditions are equivalent:

1. $M$ is self-small,
2. $M$ is $S$-small,
3. $M$ is $\oplus \mathcal{C}$-small for each countable family $\mathcal{C} \subseteq \mathcal{M}$.

## Sums vs. products

Lemma
Let $\mathcal{M}$ and $\mathcal{N}$ be finite families of groups. The following conditions are equivalent:

1. $\oplus \mathcal{M}$ is $\oplus \mathcal{N}$-small,
2. $M$ is $\oplus \mathcal{N}$-small for each $M \in \mathcal{M}$,
3. $\oplus \mathcal{M}$ is $N$-small for each $N \in \mathcal{N}$,
4. $M$ is $N$-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

## Theorem

Let $\mathcal{M}$ be a family of groups and put $M=\prod \mathcal{M}$ and $S=\oplus \mathcal{M}$.
Then the following conditions are equivalent:

1. $M$ is self-small,
2. $M$ is $S$-small,
3. $M$ is $\oplus \mathcal{C}$-small for each countable family $\mathcal{C} \subseteq \mathcal{M}$.

## Sums vs. products

## Lemma

Let $\mathcal{M}$ and $\mathcal{N}$ be finite families of groups. The following conditions are equivalent:

1. $\oplus \mathcal{M}$ is $\oplus \mathcal{N}$-small,
2. $M$ is $\oplus \mathcal{N}$-small for each $M \in \mathcal{M}$,
3. $\oplus \mathcal{M}$ is $N$-small for each $N \in \mathcal{N}$,
4. $M$ is $N$-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

## Theorem

Let $\mathcal{M}$ be a family of groups and put $M=\prod \mathcal{M}$ and $S=\oplus \mathcal{M}$.
Then the following conditions are equivalent:

1. $M$ is self-small,
2. $M$ is $S$-small,
3. $M$ is $\oplus \mathcal{C}$-small for each countable family $\mathcal{C} \subseteq \mathcal{M}$.

## Criterion for mixed groups

Theorem
Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups such that at least one $N \in \mathcal{M}$ has nonzero torsion part and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$.
conditions are equivalent:

1. $M$ is self-small,
2. $S$ is $\mathbb{Z}$-small and $S_{(p)}$-small for all $p \in \mathbb{P}$,
3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
4. there are only finitely many $A \in \mathcal{M}$ which are infinite and
for each $p \in \mathbb{P}$ there are only finitely many $A \in \mathcal{M}$ with
$A_{(p)} \neq 0$,
5. the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each
$A \in \mathcal{M}$,
6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_{p}$ for a finitely generated free group $F$ and finite abelian $p$-groups $M_{p}$ for each $p \in \mathbb{P}$.

## Criterion for mixed groups

Theorem
Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups such that at least one $N \in \mathcal{M}$ has nonzero torsion part and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,


## Criterion for mixed groups

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups such that at least one $N \in \mathcal{M}$ has nonzero torsion part and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. $S$ is $\mathbb{Z}$-small and $S_{(p)}$-small for all $p \in \mathbb{P}$,
3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
4. there are only finitely many $A \in \mathcal{M}$ which are infinite and for each $p \in \mathbb{P}$ there are only finitely many $A \in \mathcal{M}$ with $A_{(p)} \neq 0$,
5. the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each 6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_{p}$ for a finitely generated free group $F$ and finite abelian $p$-groups $M_{p}$ for each $p \in \mathbb{P}$.

## Criterion for mixed groups

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups such that at least one $N \in \mathcal{M}$ has nonzero torsion part and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. $S$ is $\mathbb{Z}$-small and $S_{(p)}$-small for all $p \in \mathbb{P}$,
3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
4. the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each
5. $M \cong F \oplus \Pi_{p}$

## Criterion for mixed groups

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups such that at least one $N \in \mathcal{M}$ has nonzero torsion part and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. $S$ is $\mathbb{Z}$-small and $S_{(p)}$-small for all $p \in \mathbb{P}$,
3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
4. there are only finitely many $A \in \mathcal{M}$ which are infinite and for each $p \in \mathbb{P}$ there are only finitely many $A \in \mathcal{M}$ with $A_{(p)} \neq 0$,

finite abelian $p$-groups $M_{p}$ for each $p \in \mathbb{P}$.

## Criterion for mixed groups

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups such that at least one $N \in \mathcal{M}$ has nonzero torsion part and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. $S$ is $\mathbb{Z}$-small and $S_{(p)}$-small for all $p \in \mathbb{P}$,
3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
4. there are only finitely many $A \in \mathcal{M}$ which are infinite and for each $p \in \mathbb{P}$ there are only finitely many $A \in \mathcal{M}$ with $A_{(p)} \neq 0$,
5. the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,

## Criterion for mixed groups

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups such that at least one $N \in \mathcal{M}$ has nonzero torsion part and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. $S$ is $\mathbb{Z}$-small and $S_{(p)}$-small for all $p \in \mathbb{P}$,
3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
4. there are only finitely many $A \in \mathcal{M}$ which are infinite and for each $p \in \mathbb{P}$ there are only finitely many $A \in \mathcal{M}$ with $A_{(p)} \neq 0$,
5. the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_{p}$ for a finitely generated free group $F$ and finite abelian $p$-groups $M_{p}$ for each $p \in \mathbb{P}$.

## Structure of products of finitely generated groups

 By [Fuchs 1973, Thm 94.2], $\mathbb{Z}$ is slender, hence
## Lemma

$\mathbb{T}^{\kappa}$ is $\mathbb{Z}$-small, and so self-small for each cardinal $k$.
Theorem
Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. either $T_{S}=0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
3. either all $A \in \mathcal{M}$ are free, or the family
$\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
4. either $M \cong \mathbb{Z}^{\kappa}$ for some cardinal $\kappa$, or $M \cong F \oplus \prod_{p \in \mathbb{P}} M_{p}$ for
a finitely generated free group $F$ and finite abelian
$p$-groups $M_{p}$ for each $p \in \mathbb{P}$.

## Structure of products of finitely generated groups

 By [Fuchs 1973, Thm 94.2], $\mathbb{Z}$ is slender,hence $\operatorname{Hom}\left(\mathbb{Z}^{\omega}, \mathbb{Z}\right) \cong \mathbb{Z}^{(\omega)}$,from which follows:Lemma
$\mathbb{Z}^{\kappa}$ is $\mathbb{Z}$-small, and so self-small for each cardinal $\kappa$.
Theorem
Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. either $T_{S}=0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
3. either all $A \in \mathcal{M}$ are free, or the family
$\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
4. either $M \cong \mathbb{Z}^{\kappa}$ for some cardinal $\kappa$, or $M \cong F \oplus \prod_{p-\mathbb{T}} M_{p}$ for
a finitely generated free group $F$ and finite abelian
$p$-groups $M_{p}$ for each $p \in \mathbb{P}$.

## Structure of products of finitely generated groups

By [Fuchs 1973, Thm 94.2], $\mathbb{Z}$ is slender,hence $\operatorname{Hom}\left(\mathbb{Z}^{\omega}, \mathbb{Z}\right) \cong \mathbb{Z}^{(\omega)}$,from which follows:
Lemma $\mathbb{Z}^{\kappa}$ is $\mathbb{Z}$-small, and so self-small for each cardinal $\kappa$.
Theorem
Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups
and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the
following conditions are equivalent:
$M$ is self-small,
2. either $T_{S}=0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$, 4. either $M \cong \mathbb{Z}^{\kappa}$ for some cardinal $\kappa$, or $M \cong F \oplus \prod_{p \in \mathbb{P}} M_{p}$ for a finitely generated free group $F$ and finite abelian $p$-groups $M_{p}$ for each $p \in \mathbb{P}$.

## Structure of products of finitely generated groups

By [Fuchs 1973, Thm 94.2], $\mathbb{Z}$ is slender,hence $\operatorname{Hom}\left(\mathbb{Z}^{\omega}, \mathbb{Z}\right) \cong \mathbb{Z}^{(\omega)}$,from which follows:
Lemma
$\mathbb{Z}^{\kappa}$ is $\mathbb{Z}$-small, and so self-small for each cardinal $\kappa$.

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$.


## Structure of products of finitely generated groups

By [Fuchs 1973, Thm 94.2], $\mathbb{Z}$ is slender,hence $\operatorname{Hom}\left(\mathbb{Z}^{\omega}, \mathbb{Z}\right) \cong \mathbb{Z}^{(\omega)}$,from which follows:

## Lemma

$\mathbb{Z}^{\kappa}$ is $\mathbb{Z}$-small, and so self-small for each cardinal $\kappa$.

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups and put $M=\prod \mathcal{M}, S=\bigoplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,
either $T_{S}=0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
2. 

either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
4. either $M \cong \mathbb{Z}^{\kappa}$ for some cardinal $\kappa$, or $M \cong F \oplus \prod_{p \in \mathbb{P}} M_{p}$ for
a finitely generated free group $F$ and finite abelian
$p$-groups $M_{p}$ for each $p \in \mathbb{P}$.

## Structure of products of finitely generated groups

By [Fuchs 1973, Thm 94.2], $\mathbb{Z}$ is slender,hence $\operatorname{Hom}\left(\mathbb{Z}^{\omega}, \mathbb{Z}\right) \cong \mathbb{Z}^{(\omega)}$,from which follows:
Lemma
$\mathbb{Z}^{\kappa}$ is $\mathbb{Z}$-small, and so self-small for each cardinal $\kappa$.

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups and put $M=\Pi \mathcal{M}, S=\oplus \mathcal{M}$ and $Q=S / T_{s}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. either $T_{s}=0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
3. either all $A \in \mathcal{M}$ are free, or the family
$\square$

## Structure of products of finitely generated groups

By [Fuchs 1973, Thm 94.2], $\mathbb{Z}$ is slender,hence
$\operatorname{Hom}\left(\mathbb{Z}^{\omega}, \mathbb{Z}\right) \cong \mathbb{Z}^{(\omega)}$,from which follows:

## Lemma

$\mathbb{Z}^{\kappa}$ is $\mathbb{Z}$-small, and so self-small for each cardinal $\kappa$.

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups and put $M=\Pi \mathcal{M}, S=\oplus \mathcal{M}$ and $Q=S / T_{s}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. either $T_{S}=0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,

## Structure of products of finitely generated groups

By [Fuchs 1973, Thm 94.2], $\mathbb{Z}$ is slender,hence
$\operatorname{Hom}\left(\mathbb{Z}^{\omega}, \mathbb{Z}\right) \cong \mathbb{Z}^{(\omega)}$,from which follows:

## Lemma

$\mathbb{Z}^{\kappa}$ is $\mathbb{Z}$-small, and so self-small for each cardinal $\kappa$.

## Theorem

Let $\mathcal{M}$ be a family of nonzero finitely generated abelian groups and put $M=\Pi \mathcal{M}, S=\oplus \mathcal{M}$ and $Q=S / T_{S}$. Then the following conditions are equivalent:

1. $M$ is self-small,
2. either $T_{S}=0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and $Q$ is finitely generated,
3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
4. either $M \cong \mathbb{Z}^{\kappa}$ for some cardinal $\kappa$, or $M \cong F \oplus \prod_{p \in \mathbb{P}} M_{p}$ for a finitely generated free group $F$ and finite abelian $p$-groups $M_{p}$ for each $p \in \mathbb{P}$.

## References

圕 Albrecht，U．，Breaz，S．，Wickless，W．，Self－small Abelian groups． Bull．Aust．Math．Soc． 80 （2009），No．2，205－216．
Arnold，D．M．，Murley，C．E．，Abelian groups，$A$ ，such that Hom $(A,-)$ preserves direct sums of copies of $A$ ．Pacific Journal of Mathematics，Vol． 56 （1975），No．1，7－20．
Roino Dvoŕk，J．：On products of self－small abelian groups，Stud．Univ． Babeş－Bolyai Math． 60 （2015），no．1，13－17．
（Ryořák，J．，Žemlička，J．：Autocompact objects of Ab5 categories， Theory and Applications of Categories，Vol． 37 （2021），979－995．
围 Dvořák，J．，Žemlička，J．：Self－small products of abelian groups， Commentat．Math．Univ．Carol．，63，2（2022）145－157．
（ Fuchs，L．：Infinite Abelian groups．Vol．II．Ac．Press， 1973.
围 Koşan，M．T．，Žemlička，J．：ADS Abelian groups，to appear in J． Algebra and App．
嗇 Kulikov，L．：On the theory of abelian groups of arbitrary power， Mat．Sbornik 9（1941），165－182．

