On the structure of ADS and self-small abelian groups

Jan Žemlička

TRTRT 2023, September 16, Cluj-Napoca

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

ADS modules

Self-small groups and modules

The structure of ADS groups

Self-small products of finitely generated groups

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In the sequel

- R denotes an associative ring with unit,
- *M* a right *R*-module,
- a group means an abelain group (i.e. \mathbb{Z} -module)

A right module *M* over *R* is called *absolute direct summand* (ADS) if $M = S \oplus T'$ for every submodules S, T, T' such that $M = S \oplus T$ and T' is a complement of *S*.

(ロ) (同) (三) (三) (三) (○) (○)

Example

(1) If every idempotent of *R* is central (in particular if *R* is commutative or reduced), then *R_R* is ADS.
(2) Every cyclic module over commutative ring is ADS.

In the sequel

- R denotes an associative ring with unit,
- *M* a right *R*-module,
- a group means an abelain group (i.e. \mathbb{Z} -module)

A right module *M* over *R* is called *absolute direct summand* (ADS) if $M = S \oplus T'$ for every submodules *S*, *T*, *T'* such that $M = S \oplus T$ and *T'* is a complement of *S*.

(ロ) (同) (三) (三) (三) (○) (○)

Example

(1) If every idempotent of *R* is central (in particular if *R* is commutative or reduced), then *R_R* is ADS.
(2) Every cyclic module over commutative ring is ADS.

In the sequel

- R denotes an associative ring with unit,
- *M* a right *R*-module,
- a group means an abelain group (i.e. \mathbb{Z} -module)

A right module *M* over *R* is called *absolute direct summand* (ADS) if $M = S \oplus T'$ for every submodules *S*, *T*, *T'* such that $M = S \oplus T$ and *T'* is a complement of *S*.

(ロ) (同) (三) (三) (三) (○) (○)

Example

(1) If every idempotent of R is central (in particular if R is commutative or reduced), then R_R is ADS.

(2) Every cyclic module over commutative ring is ADS.

In the sequel

- R denotes an associative ring with unit,
- *M* a right *R*-module,
- a group means an abelain group (i.e. \mathbb{Z} -module)

A right module *M* over *R* is called *absolute direct summand* (ADS) if $M = S \oplus T'$ for every submodules *S*, *T*, *T'* such that $M = S \oplus T$ and *T'* is a complement of *S*.

Example

(1) If every idempotent of *R* is central (in particular if *R* is commutative or reduced), then *R_R* is ADS.
(2) Every cyclic module over commutative ring is ADS.

A module *A* is *B*-*injective* if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extended to a homomorphism $B \leq A$.

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

- 1. M is ADS,
- 2. A and B are mutually injective modules for every $M = A \oplus B$,
- 3. A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

Theorem (Alahmadi, Jain Leroy, 2012)

A module *A* is *B*-*injective* if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extended to a homomorphism $B \leq A$.

Theorem (Alahmadi, Jain Leroy, 2012) The following is equivalent:

- 1. M is ADS,
- 2. A and B are mutually injective modules for every $M = A \oplus B$,
- 3. A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

Theorem (Alahmadi, Jain Leroy, 2012)

A module *A* is *B*-*injective* if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extended to a homomorphism $B \leq A$.

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

- 1. M is ADS,
- 2. A and B are mutually injective modules for every $M = A \oplus B$,
- 3. A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

Theorem (Alahmadi, Jain Leroy, 2012)

A module *A* is *B*-*injective* if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extended to a homomorphism $B \leq A$.

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

- 1. M is ADS,
- 2. A and B are mutually injective modules for every $M = A \oplus B$,
- 3. A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

Theorem (Alahmadi, Jain Leroy, 2012)

A module *A* is *B*-*injective* if every homomorphism $C \rightarrow A$ for for every submodule $C \leq B$ can be extended to a homomorphism $B \leq A$.

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

- 1. M is ADS,
- 2. A and B are mutually injective modules for every $M = A \oplus B$,
- 3. A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

Theorem (Alahmadi, Jain Leroy, 2012)

Commuting with Hom(M, -)

Let *M* be a module and \mathcal{N} a family of abelian groups. Consider the mapping of abelian groups:

$$\Psi_{\mathcal{N}}: \bigoplus_{N\in\mathcal{N}} \operatorname{Hom}(A, N) \to \operatorname{Hom}(A, \bigoplus \mathcal{N})$$

given by the rule $\Psi_{\mathcal{N}}((f_N)_N) = \sum_N f_N$, where $\sum_N f_N \in \text{Hom}(A, \bigoplus \mathcal{N})$ is defined by $a \to \sum_N f_N(a)$ for f_N viewed as a homomorphism into $\bigoplus \mathcal{N}$.

Lemma

The mapping Ψ_N is an injective homomorphism of abelian groups for every family N.

Commuting with Hom(M, -)

Let *M* be a module and \mathcal{N} a family of abelian groups. Consider the mapping of abelian groups:

$$\Psi_{\mathcal{N}}: \bigoplus_{\boldsymbol{N}\in\mathcal{N}}\operatorname{Hom}(\boldsymbol{A},\boldsymbol{N})
ightarrow \operatorname{Hom}(\boldsymbol{A},\bigoplus\mathcal{N})$$

given by the rule $\Psi_{\mathcal{N}}((f_N)_N) = \sum_N f_N$, where $\sum_N f_N \in \operatorname{Hom}(A, \bigoplus \mathcal{N})$ is defined by $a \to \sum_N f_N(a)$ for f_N viewed as a homomorphism into $\bigoplus \mathcal{N}$.

Lemma

The mapping Ψ_N is an injective homomorphism of abelian groups for every family N.

(日) (日) (日) (日) (日) (日) (日)

Commuting with Hom(M, -)

Let *M* be a module and \mathcal{N} a family of abelian groups. Consider the mapping of abelian groups:

$$\Psi_{\mathcal{N}}: \bigoplus_{N\in\mathcal{N}}\operatorname{Hom}(A,N) \to \operatorname{Hom}(A,\bigoplus\mathcal{N})$$

given by the rule $\Psi_{\mathcal{N}}((f_N)_N) = \sum_N f_N$, where $\sum_N f_N \in \operatorname{Hom}(A, \bigoplus \mathcal{N})$ is defined by $a \to \sum_N f_N(a)$ for f_N viewed as a homomorphism into $\bigoplus \mathcal{N}$.

Lemma

The mapping $\Psi_{\mathcal{N}}$ is an injective homomorphism of abelian groups for every family \mathcal{N} .

Let C be a class of modules A and B module. We say that A is

- C-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq C$,
- *B-small* if it is a {*B*}-small module,
- *small* if it is \mathcal{N} -small \forall family \mathcal{N} of,
- *self-small* if it is A-small.

Example

(1) Every finitely generated module is small, so self-small.

(2) Let A and B be two modules such that Hom(A, B) = 0. Then A is B-small.

(日) (日) (日) (日) (日) (日) (日)

Let C be a class of modules A and B module. We say that A is

- C-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq C$,
- *B-small* if it is a {*B*}-small module,
- *small* if it is \mathcal{N} -small \forall family \mathcal{N} of,
- *self-small* if it is A-small.

Example

(1) Every finitely generated module is small, so self-small.

(2) Let A and B be two modules such that Hom(A, B) = 0. Then A is B-small.

(日) (日) (日) (日) (日) (日) (日)

Let C be a class of modules A and B module. We say that A is

- C-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq C$,
- *B-small* if it is a {*B*}-small module,
- *small* if it is \mathcal{N} -small \forall family \mathcal{N} of,
- self-small if it is A-small.

Example

(1) Every finitely generated module is small, so self-small.

(2) Let A and B be two modules such that Hom(A, B) = 0. Then A is B-small.

(日) (日) (日) (日) (日) (日) (日)

Let C be a class of modules A and B module. We say that A is

- C-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq C$,
- *B-small* if it is a {*B*}-small module,
- *small* if it is \mathcal{N} -small \forall family \mathcal{N} of,
- *self-small* if it is A-small.

Example

(1) Every finitely generated module is small, so self-small.

(2) Let A and B be two modules such that Hom(A, B) = 0. Then A is B-small.

(日) (日) (日) (日) (日) (日) (日)

Let C be a class of modules A and B module. We say that A is

- C-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq C$,
- *B-small* if it is a {*B*}-small module,
- *small* if it is \mathcal{N} -small \forall family \mathcal{N} of,
- *self-small* if it is A-small.

Example

(1) Every finitely generated module is small, so self-small.

(2) Let A and B be two modules such that Hom(A, B) = 0. Then A is B-small.

(日) (日) (日) (日) (日) (日) (日)

Let C be a class of modules A and B module. We say that A is

- C-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq C$,
- B-small if it is a {B}-small module,
- *small* if it is \mathcal{N} -small \forall family \mathcal{N} of,
- *self-small* if it is *A*-small.

Example

(1) Every finitely generated module is small, so self-small.

(2) Let A and B be two modules such that Hom(A, B) = 0. Then A is B-small.

(日) (日) (日) (日) (日) (日) (日)

Let C be a class of modules A and B module. We say that A is

- C-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq C$,
- B-small if it is a {B}-small module,
- *small* if it is \mathcal{N} -small \forall family \mathcal{N} of,
- *self-small* if it is *A*-small.

Example

(1) Every finitely generated module is small, so self-small.

(2) Let A and B be two modules such that Hom(A, B) = 0. Then A is B-small.

Let C be a class of modules A and B module. We say that A is

- C-small if $\Psi_{\mathcal{N}}$ is an isomorphism $\forall \mathcal{N} \subseteq C$,
- B-small if it is a {B}-small module,
- *small* if it is \mathcal{N} -small \forall family \mathcal{N} of,
- self-small if it is A-small.

Example

(1) Every finitely generated module is small, so self-small.

(2) Let A and B be two modules such that Hom(A, B) = 0. Then A is B-small.

Theorem (Arnold, Murley, 1975)

The following are equivalent for a module A:

- 1. A is not self-small,
- 2. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that Hom($A/A_n, A$) \neq 0 for each $n < \omega$,
- 3. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that for each $n < \omega \exists$ a nonzero $\varphi_n \in \text{End}(A)$ satisfying $\varphi_n(A_n) = 0$.

Theorem (Albrecht, Breaz, Wickless, 2009)

- 1. A is self-small,
- 2. $\forall A_p$ is finite and $(A/F)_p$ is divisible whenever $A_p \neq 0$,
- 3. each A_p is finite and Hom(A, t(A)) is torsion.

Theorem (Arnold, Murley, 1975)

The following are equivalent for a module A:

- 1. A is not self-small,
- 2. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that Hom($A/A_n, A$) $\neq 0$ for each $n < \omega$,
- 3. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that for each $n < \omega \exists$ a nonzero $\varphi_n \in \text{End}(A)$ satisfying $\varphi_n(A_n) = 0$.

Theorem (Albrecht, Breaz, Wickless, 2009)

- 1. A is self-small,
- 2. $\forall A_p$ is finite and $(A/F)_p$ is divisible whenever $A_p \neq 0$,
- 3. each A_p is finite and Hom(A, t(A)) is torsion.

Theorem (Arnold, Murley, 1975)

The following are equivalent for a module A:

- 1. A is not self-small,
- 2. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that $\operatorname{Hom}(A/A_n, A) \neq 0$ for each $n < \omega$,
- 3. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that for each $n < \omega \exists$ a nonzero $\varphi_n \in \text{End}(A)$ satisfying $\varphi_n(A_n) = 0$.

Theorem (Albrecht, Breaz, Wickless, 2009)

- 1. A is self-small,
- 2. $\forall A_p$ is finite and $(A/F)_p$ is divisible whenever $A_p \neq 0$,
- 3. each A_p is finite and Hom(A, t(A)) is torsion.

Theorem (Arnold, Murley, 1975)

The following are equivalent for a module A:

- 1. A is not self-small,
- 2. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that $\operatorname{Hom}(A/A_n, A) \neq 0$ for each $n < \omega$,
- 3. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that for each $n < \omega \exists$ a nonzero $\varphi_n \in \text{End}(A)$ satisfying $\varphi_n(A_n) = 0$.

Theorem (Albrecht, Breaz, Wickless, 2009)

- 1. A is self-small,
- 2. $\forall A_p$ is finite and $(A/F)_p$ is divisible whenever $A_p \neq 0$,
- 3. each A_p is finite and Hom(A, t(A)) is torsion.

Theorem (Arnold, Murley, 1975)

The following are equivalent for a module A:

- 1. A is not self-small,
- 2. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that Hom($A/A_n, A$) $\neq 0$ for each $n < \omega$,
- 3. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that for each $n < \omega \exists$ a nonzero $\varphi_n \in \text{End}(A)$ satisfying $\varphi_n(A_n) = 0$.

Theorem (Albrecht, Breaz, Wickless, 2009)

Let A be a reduced group of finite torsion free rank with a full free subgroup F. The following are equivalent:

- 1. A is self-small,
- 2. $\forall A_p$ is finite and $(A/F)_p$ is divisible whenever $A_p \neq 0$,

3. each A_p is finite and Hom(A, t(A)) is torsion.

Theorem (Arnold, Murley, 1975)

The following are equivalent for a module A:

- 1. A is not self-small,
- 2. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that $\operatorname{Hom}(A/A_n, A) \neq 0$ for each $n < \omega$,
- 3. \exists an ω -filtration ($A_i \mid i < \omega$) of A such that for each $n < \omega \exists$ a nonzero $\varphi_n \in \text{End}(A)$ satisfying $\varphi_n(A_n) = 0$.

Theorem (Albrecht, Breaz, Wickless, 2009)

- 1. A is self-small,
- 2. $\forall A_p$ is finite and $(A/F)_p$ is divisible whenever $A_p \neq 0$,
- 3. each A_p is finite and Hom(A, t(A)) is torsion.

Examples

Example

If \mathbb{P} denotes the set of all prime numbers, then $M = \prod_{p \in \mathbb{P}} \mathbb{Z}_p$ is a self-small abelian group and $N = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}_p$ is not self-small and $End_R(M) \cong End_R(N).$

Example

 $\begin{array}{l} \prod_{\rho\in\mathbb{P}}\mathbb{Z}_{\rho} \text{ and } \mathbb{Q} \text{ are self-small abelian groups. Moreover,} \\ \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\prod_{\rho\in\mathbb{P}}\mathbb{Z}_{\rho})=\prod_{\rho\in\mathbb{P}}\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}_{\rho})=0. \text{ Nevertheless, the} \\ \text{product } \mathbb{Q}\times\prod_{\rho\in\mathbb{P}}\mathbb{Z}_{\rho} \text{ is not self-small.} \end{array}$

(ロ) (同) (三) (三) (三) (○) (○)

Examples

Example

If \mathbb{P} denotes the set of all prime numbers, then $M = \prod_{p \in \mathbb{P}} \mathbb{Z}_p$ is a self-small abelian group and $N = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}_p$ is not self-small and $End_R(M) \cong End_R(N).$

Example

 $\begin{array}{l} \prod_{\rho\in\mathbb{P}}\mathbb{Z}_{\rho} \text{ and } \mathbb{Q} \text{ are self-small abelian groups. Moreover,} \\ \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\prod_{\rho\in\mathbb{P}}\mathbb{Z}_{\rho})=\prod_{\rho\in\mathbb{P}}\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}_{\rho})=0. \text{ Nevertheless, the} \\ \text{product } \mathbb{Q}\times\prod_{\rho\in\mathbb{P}}\mathbb{Z}_{\rho} \text{ is not self-small.} \end{array}$

(ロ) (同) (三) (三) (三) (○) (○)

Proposition (Dvořák, 2015)

The following conditions are equivalent for a finite system of self-small modules $(M_i | i \le k)$:

- 1. $\prod_{i \le k} M_i$ is not self-small,
- there exist i, j ≤ k and a chain N₁ ⊆ N₂ ⊆ ... ⊆ N_n ⊆ ... of proper submodules of M_i such that ⋃_{n=1}[∞] N_n = M_i and Hom_R(M_i/N_n, M_j) ≠ 0 for each n ∈ N.

Lemma

Let A be an abelian group and C be a set of abelian groups. Then the following conditions are equivalent:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. A is $\bigoplus C$ -small,
- **2.** *A* is *C*-small,
- 3. A is $Add(\bigoplus C)$ -small.

Proposition (Dvořák, 2015)

The following conditions are equivalent for a finite system of self-small modules $(M_i | i \le k)$:

- 1. $\prod_{i\leq k} M_i$ is not self-small,
- 2. there exist $i, j \leq k$ and a chain $N_1 \subseteq N_2 \subseteq ... \subseteq N_n \subseteq ...$ of proper submodules of M_i such that $\bigcup_{n=1}^{\infty} N_n = M_i$ and $\operatorname{Hom}_R(M_i/N_n, M_j) \neq 0$ for each $n \in \mathbb{N}$.

Lemma

Let A be an abelian group and C be a set of abelian groups. Then the following conditions are equivalent:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. A is $\bigoplus C$ -small,
- **2.** *A* is *C*-small,
- 3. A is $Add(\bigoplus C)$ -small.

Proposition (Dvořák, 2015)

The following conditions are equivalent for a finite system of self-small modules $(M_i | i \le k)$:

- 1. $\prod_{i \leq k} M_i$ is not self-small,
- 2. there exist $i, j \leq k$ and a chain $N_1 \subseteq N_2 \subseteq ... \subseteq N_n \subseteq ...$ of proper submodules of M_i such that $\bigcup_{n=1}^{\infty} N_n = M_i$ and $\operatorname{Hom}_R(M_i/N_n, M_j) \neq 0$ for each $n \in \mathbb{N}$.

Lemma

Let A be an abelian group and C be a set of abelian groups. Then the following conditions are equivalent:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. A is $\bigoplus C$ -small,
- 2. A is C-small,
- 3. A is $Add(\bigoplus C)$ -small.

Proposition (Dvořák, 2015)

The following conditions are equivalent for a finite system of self-small modules $(M_i | i \le k)$:

- 1. $\prod_{i \leq k} M_i$ is not self-small,
- 2. there exist $i, j \leq k$ and a chain $N_1 \subseteq N_2 \subseteq ... \subseteq N_n \subseteq ...$ of proper submodules of M_i such that $\bigcup_{n=1}^{\infty} N_n = M_i$ and $\operatorname{Hom}_R(M_i/N_n, M_j) \neq 0$ for each $n \in \mathbb{N}$.

Lemma

Let A be an abelian group and C be a set of abelian groups. Then the following conditions are equivalent:

(ロ) (同) (三) (三) (三) (○) (○)

- 1. A is $\bigoplus C$ -small,
- 2. A is C-small,
- 3. A is $Add(\bigoplus C)$ -small.

Proposition (Dvořák, 2015)

The following conditions are equivalent for a finite system of self-small modules $(M_i | i \le k)$:

- 1. $\prod_{i \leq k} M_i$ is not self-small,
- 2. there exist $i, j \leq k$ and a chain $N_1 \subseteq N_2 \subseteq ... \subseteq N_n \subseteq ...$ of proper submodules of M_i such that $\bigcup_{n=1}^{\infty} N_n = M_i$ and $\operatorname{Hom}_R(M_i/N_n, M_j) \neq 0$ for each $n \in \mathbb{N}$.

Lemma

Let A be an abelian group and C be a set of abelian groups. Then the following conditions are equivalent:

(日) (日) (日) (日) (日) (日) (日)

- 1. A is $\bigoplus C$ -small,
- 2. A is C-small,
- 3. A is $Add(\bigoplus C)$ -small.

Torsion-free ADS modules

Lemma

Let M be a torsion-free module over a domain R. Then M is ADS if and only if it is either indecomposable or injective.

Theorem

Let R be a domain. The followings are equivalent for a non-zero torsion-free R-module M and a torsion R-module T: (1) $M \oplus T$ is ADS;

(2) T is injective and M is either indecomposable or injective.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example

An infinite cyclic group is the only example of a finitely generated infinite ADS abelian group.

Torsion-free ADS modules

Lemma

Let M be a torsion-free module over a domain R. Then M is ADS if and only if it is either indecomposable or injective.

Theorem

Let R be a domain. The followings are equivalent for a non-zero torsion-free R-module M and a torsion R-module T:

(1) $M \oplus T$ is ADS;

(2) T is injective and M is either indecomposable or injective.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example

An infinite cyclic group is the only example of a finitely generated infinite ADS abelian group.

Torsion-free ADS modules

Lemma

Let M be a torsion-free module over a domain R. Then M is ADS if and only if it is either indecomposable or injective.

Theorem

Let R be a domain. The followings are equivalent for a non-zero torsion-free R-module M and a torsion R-module T:

- (1) $M \oplus T$ is ADS;
- (2) T is injective and M is either indecomposable or injective.

(ロ) (同) (三) (三) (三) (○) (○)

Example

An infinite cyclic group is the only example of a finitely generated infinite ADS abelian group.

Torsion-free ADS modules

Lemma

Let M be a torsion-free module over a domain R. Then M is ADS if and only if it is either indecomposable or injective.

Theorem

Let R be a domain. The followings are equivalent for a non-zero torsion-free R-module M and a torsion R-module T:

- (1) $M \oplus T$ is ADS;
- (2) T is injective and M is either indecomposable or injective.

Example

An infinite cyclic group is the only example of a finitely generated infinite ADS abelian group.

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:

Lemma

Let A be a non-divisible proper mixed abelian group. Then G is ADS iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group B.

Lemma

The following are equivalent for a torsion group G:

- (1) G is ADS,
- (2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup \{0, \infty\}$ and κ for which $M_p \cong \mathbb{Z}_{p^n}^{(\kappa)}$.

Example

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:

Lemma

Let A be a non-divisible proper mixed abelian group. Then G is ADS iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group B.

Lemma

The following are equivalent for a torsion group G:

- (1) G is ADS,
- (2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup \{0, \infty\}$ and κ for which $M_p \cong \mathbb{Z}_{p^n}^{(\kappa)}$.

Example

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:

Lemma

Let A be a non-divisible proper mixed abelian group. Then G is ADS iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group B.

Lemma

The following are equivalent for a torsion group G:

(1) G is ADS,

(2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup \{0, \infty\}$ and κ for which $M_p \cong \mathbb{Z}_{p^n}^{(\kappa)}$.

Example

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:

Lemma

Let A be a non-divisible proper mixed abelian group. Then G is ADS iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group B.

Lemma

The following are equivalent for a torsion group G:

(1) G is ADS,

(2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup \{0, \infty\}$ and κ for which $M_p \cong \mathbb{Z}_{p^n}^{(\kappa)}$.

Example

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:

Lemma

Let A be a non-divisible proper mixed abelian group. Then G is ADS iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group B.

Lemma

The following are equivalent for a torsion group G:

- (1) G is ADS,
- (2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup \{0, \infty\}$ and κ for which $M_p \cong \mathbb{Z}_{p^n}^{(\kappa)}$.

Example

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we get:

Lemma

Let A be a non-divisible proper mixed abelian group. Then G is ADS iff $G \cong A \oplus B$ for a non-divisible indecomposable torsion-free and a divisible torsion group B.

Lemma

The following are equivalent for a torsion group G:

- (1) G is ADS,
- (2) $\forall p \in \mathbb{P} \exists n \in \mathbb{N} \cup \{0, \infty\}$ and κ for which $M_p \cong \mathbb{Z}_{p^n}^{(\kappa)}$.

Example

Theorem An abelian group is ADS if and only if

- (1) either it is divisible,
- (2) or it is a direct sum of an indecomposable torsion-free group and a divisible torsion group,
- (3) or it is a torsion group such that each p-component is a direct sum of cyclic p-groups of the same length or of Z_{p∞}.

Example

For an arbitrary cardinal κ there exists 2^{κ} indecomposable torsion-free abelian groups of cardinality κ , all of which are reduced ADS groups.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

An abelian group is ADS if and only if

- (1) either it is divisible,
- (2) or it is a direct sum of an indecomposable torsion-free group and a divisible torsion group,
- (3) or it is a torsion group such that each p-component is a direct sum of cyclic p-groups of the same length or of Z_p∞.

Example

For an arbitrary cardinal κ there exists 2^{κ} indecomposable torsion-free abelian groups of cardinality κ , all of which are reduced ADS groups.

(日) (日) (日) (日) (日) (日) (日)

Theorem

An abelian group is ADS if and only if

- (1) either it is divisible,
- (2) or it is a direct sum of an indecomposable torsion-free group and a divisible torsion group,
- (3) or it is a torsion group such that each p-component is a direct sum of cyclic p-groups of the same length or of Z_p∞.

Example

For an arbitrary cardinal κ there exists 2^{κ} indecomposable torsion-free abelian groups of cardinality κ , all of which are reduced ADS groups.

(日) (日) (日) (日) (日) (日) (日)

Theorem

An abelian group is ADS if and only if

- (1) either it is divisible,
- (2) or it is a direct sum of an indecomposable torsion-free group and a divisible torsion group,
- (3) or it is a torsion group such that each p-component is a direct sum of cyclic p-groups of the same length or of Z_{p∞}.

Example

For an arbitrary cardinal κ there exists 2^{κ} indecomposable torsion-free abelian groups of cardinality κ , all of which are reduced ADS groups.

Lemma

Let \mathcal{M} and \mathcal{N} be finite families of groups. The following conditions are equivalent:

- 1. $\bigoplus \mathcal{M} \text{ is } \bigoplus \mathcal{N} \text{-small}$,
- 2. *M* is $\bigoplus \mathcal{N}$ -small for each $M \in \mathcal{M}$,
- 3. $\bigoplus M$ is N-small for each $N \in N$,
- 4. *M* is *N*-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem

Let \mathcal{M} be a family of groups and put $M = \prod \mathcal{M}$ and $S = \bigoplus \mathcal{M}$. Then the following conditions are equivalent:

- 1. M is self-small,
- 2. M is S-small,

Lemma

Let \mathcal{M} and \mathcal{N} be finite families of groups. The following conditions are equivalent:

- 1. $\bigoplus M$ is $\bigoplus N$ -small,
- 2. *M* is $\bigoplus N$ -small for each $M \in M$,
- 3. $\bigoplus \mathcal{M}$ is N-small for each N $\in \mathcal{N}$,
- 4. *M* is *N*-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem

Let \mathcal{M} be a family of groups and put $M = \prod \mathcal{M}$ and $S = \bigoplus \mathcal{M}$. Then the following conditions are equivalent:

- 1. M is self-small,
- 2. M is S-small,

Lemma

Let \mathcal{M} and \mathcal{N} be finite families of groups. The following conditions are equivalent:

- 1. $\bigoplus M$ is $\bigoplus N$ -small,
- 2. *M* is $\bigoplus N$ -small for each $M \in M$,
- 3. $\bigoplus M$ is N-small for each $N \in N$,
- 4. *M* is *N*-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem

Let \mathcal{M} be a family of groups and put $M = \prod \mathcal{M}$ and $S = \bigoplus \mathcal{M}$. Then the following conditions are equivalent:

- 1. M is self-small,
- 2. M is S-small,

Lemma

Let \mathcal{M} and \mathcal{N} be finite families of groups. The following conditions are equivalent:

- 1. $\bigoplus M$ is $\bigoplus N$ -small,
- 2. *M* is $\bigoplus N$ -small for each $M \in M$,
- 3. $\bigoplus M$ is N-small for each $N \in N$,
- 4. *M* is *N*-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem

Let \mathcal{M} be a family of groups and put $M = \prod \mathcal{M}$ and $S = \bigoplus \mathcal{M}$. Then the following conditions are equivalent:

- 1. M is self-small,
- 2. M is S-small,

Lemma

Let \mathcal{M} and \mathcal{N} be finite families of groups. The following conditions are equivalent:

- 1. $\bigoplus M$ is $\bigoplus N$ -small,
- 2. *M* is $\bigoplus N$ -small for each $M \in M$,
- 3. $\bigoplus M$ is N-small for each $N \in N$,
- 4. *M* is *N*-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem

Let M be a family of groups and put $M = \prod M$ and $S = \bigoplus M$. Then the following conditions are equivalent:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. M is self-small,
- 2. M is S-small,

Lemma

Let \mathcal{M} and \mathcal{N} be finite families of groups. The following conditions are equivalent:

- 1. $\bigoplus M$ is $\bigoplus N$ -small,
- 2. *M* is $\bigoplus N$ -small for each $M \in M$,
- 3. $\bigoplus M$ is N-small for each $N \in N$,
- 4. *M* is *N*-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem

Let M be a family of groups and put $M = \prod M$ and $S = \bigoplus M$. Then the following conditions are equivalent:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. M is self-small,
- 2. M is S-small,

Lemma

Let \mathcal{M} and \mathcal{N} be finite families of groups. The following conditions are equivalent:

- 1. $\bigoplus M$ is $\bigoplus N$ -small,
- 2. *M* is $\bigoplus N$ -small for each $M \in M$,
- 3. $\bigoplus M$ is N-small for each $N \in N$,
- 4. *M* is *N*-small for each $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Theorem

Let M be a family of groups and put $M = \prod M$ and $S = \bigoplus M$. Then the following conditions are equivalent:

- 1. M is self-small,
- 2. M is S-small,
- 3. *M* is $\bigoplus C$ -small for each countable family $C \subseteq M$.

Theorem

- 1. M is self-small,
- 2. S is \mathbb{Z} -small and $S_{(p)}$ -small for all $p \in \mathbb{P}$,
- 3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- there are only finitely many A ∈ M which are infinite and for each p ∈ P there are only finitely many A ∈ M with A_(p) ≠ 0,
- 5. the family $\{B \in \mathcal{M} \mid \text{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- 6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_p$ for a finitely generated free group *F* and finite abelian *p*-groups M_p for each $p \in \mathbb{P}$.

Theorem

- 1. M is self-small,
- 2. S is \mathbb{Z} -small and $S_{(p)}$ -small for all $p \in \mathbb{P}$,
- 3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- there are only finitely many A ∈ M which are infinite and for each p ∈ P there are only finitely many A ∈ M with A_(p) ≠ 0,
- 5. the family $\{B \in \mathcal{M} \mid \text{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- 6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_p$ for a finitely generated free group *F* and finite abelian *p*-groups M_p for each $p \in \mathbb{P}$.

Theorem

- 1. M is self-small,
- 2. S is \mathbb{Z} -small and $S_{(p)}$ -small for all $p \in \mathbb{P}$,
- 3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- there are only finitely many A ∈ M which are infinite and for each p ∈ P there are only finitely many A ∈ M with A_(p) ≠ 0,
- 5. the family $\{B \in \mathcal{M} \mid \text{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- 6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_p$ for a finitely generated free group *F* and finite abelian *p*-groups M_p for each $p \in \mathbb{P}$.

Theorem

- 1. M is self-small,
- 2. S is \mathbb{Z} -small and $S_{(p)}$ -small for all $p \in \mathbb{P}$,
- 3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- there are only finitely many A ∈ M which are infinite and for each p ∈ P there are only finitely many A ∈ M with A_(p) ≠ 0,
- 5. the family $\{B \in \mathcal{M} \mid \text{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- 6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_p$ for a finitely generated free group *F* and finite abelian *p*-groups M_p for each $p \in \mathbb{P}$.

Theorem

- 1. M is self-small,
- 2. S is \mathbb{Z} -small and $S_{(p)}$ -small for all $p \in \mathbb{P}$,
- 3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- there are only finitely many A ∈ M which are infinite and for each p ∈ P there are only finitely many A ∈ M with A_(p) ≠ 0,
- 5. the family $\{B \in \mathcal{M} \mid \text{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- 6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_p$ for a finitely generated free group *F* and finite abelian *p*-groups M_p for each $p \in \mathbb{P}$.

Theorem

- 1. M is self-small,
- 2. S is \mathbb{Z} -small and $S_{(p)}$ -small for all $p \in \mathbb{P}$,
- 3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- there are only finitely many A ∈ M which are infinite and for each p ∈ P there are only finitely many A ∈ M with A_(p) ≠ 0,
- 5. the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- 6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_p$ for a finitely generated free group *F* and finite abelian *p*-groups M_p for each $p \in \mathbb{P}$.

Theorem

- 1. M is self-small,
- 2. S is \mathbb{Z} -small and $S_{(p)}$ -small for all $p \in \mathbb{P}$,
- 3. $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- there are only finitely many A ∈ M which are infinite and for each p ∈ P there are only finitely many A ∈ M with A_(p) ≠ 0,
- 5. the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- 6. $M \cong F \oplus \prod_{p \in \mathbb{P}} M_p$ for a finitely generated free group F and finite abelian p-groups M_p for each $p \in \mathbb{P}$.

Structure of products of finitely generated groups By [Fuchs 1973, Thm 94.2], Z is slender, hence

Hom $(\mathbb{Z}^{\omega}, \mathbb{Z}) \cong \mathbb{Z}^{(\omega)}$ from which follows:

Lemma

 \mathbb{Z}^{κ} is \mathbb{Z} -small, and so self-small for each cardinal κ .

Theorem

- 1. *M* is self-small,
- 2. either $T_S = 0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- 3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- either M ≅ Z^κ for some cardinal κ, or M ≅ F ⊕ ∏_{p∈P} M_p for a finitely generated free group F and finite abelian p-groups M_p for each p ∈ P.

Structure of products of finitely generated groups By [Fuchs 1973, Thm 94.2], \mathbb{Z} is slender,hence $\operatorname{Hom}(\mathbb{Z}^{\omega},\mathbb{Z}) \cong \mathbb{Z}^{(\omega)}$,from which follows:

Lemma

 \mathbb{Z}^{κ} is \mathbb{Z} -small, and so self-small for each cardinal κ .

Theorem

- 1. M is self-small,
- 2. either $T_S = 0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- 3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- either M ≅ Z^κ for some cardinal κ, or M ≅ F ⊕ ∏_{p∈P} M_p for a finitely generated free group F and finite abelian p-groups M_p for each p ∈ P.

By [Fuchs 1973, Thm 94.2], \mathbb{Z} is slender,hence Hom $(\mathbb{Z}^{\omega}, \mathbb{Z}) \cong \mathbb{Z}^{(\omega)}$,from which follows:

Lemma

 \mathbb{Z}^{κ} is \mathbb{Z} -small, and so self-small for each cardinal κ .

Theorem

- 1. *M* is self-small,
- 2. either $T_S = 0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- 3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- either M ≅ Z^κ for some cardinal κ, or M ≅ F ⊕ ∏_{p∈P} M_p for a finitely generated free group F and finite abelian p-groups M_p for each p ∈ P.

By [Fuchs 1973, Thm 94.2], \mathbb{Z} is slender,hence Hom($\mathbb{Z}^{\omega}, \mathbb{Z}$) $\cong \mathbb{Z}^{(\omega)}$,from which follows:

Lemma

 \mathbb{Z}^{κ} is \mathbb{Z} -small, and so self-small for each cardinal κ .

Theorem

Let \mathcal{M} be a family of nonzero finitely generated abelian groups and put $M = \prod \mathcal{M}, S = \bigoplus \mathcal{M}$ and $Q = S/T_S$. Then the

following conditions are equivalent:

- 1. *M* is self-small,
- 2. either $T_S = 0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- 3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- either M ≅ Z^κ for some cardinal κ, or M ≅ F ⊕ ∏_{p∈P} M_p for a finitely generated free group F and finite abelian p-groups M_p for each p ∈ P.

By [Fuchs 1973, Thm 94.2], \mathbb{Z} is slender,hence $\operatorname{Hom}(\mathbb{Z}^{\omega},\mathbb{Z})\cong\mathbb{Z}^{(\omega)}$,from which follows:

Lemma

 \mathbb{Z}^{κ} is \mathbb{Z} -small, and so self-small for each cardinal κ .

Theorem

- 1. M is self-small,
- 2. either $T_S = 0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- 3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- either M ≅ Z^κ for some cardinal κ, or M ≅ F ⊕ ∏_{p∈P} M_p for a finitely generated free group F and finite abelian p-groups M_p for each p ∈ P.

By [Fuchs 1973, Thm 94.2], \mathbb{Z} is slender,hence $\operatorname{Hom}(\mathbb{Z}^{\omega},\mathbb{Z})\cong\mathbb{Z}^{(\omega)}$,from which follows:

Lemma

 \mathbb{Z}^{κ} is \mathbb{Z} -small, and so self-small for each cardinal κ .

Theorem

- 1. M is self-small,
- 2. either $T_S = 0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- 3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- either M ≅ Z^κ for some cardinal κ, or M ≅ F ⊕ ∏_{p∈P} M_p for a finitely generated free group F and finite abelian p-groups M_p for each p ∈ P.

By [Fuchs 1973, Thm 94.2], \mathbb{Z} is slender,hence $\operatorname{Hom}(\mathbb{Z}^{\omega},\mathbb{Z})\cong\mathbb{Z}^{(\omega)}$,from which follows:

Lemma

 \mathbb{Z}^{κ} is \mathbb{Z} -small, and so self-small for each cardinal κ .

Theorem

Let \mathcal{M} be a family of nonzero finitely generated abelian groups and put $M = \prod \mathcal{M}$, $S = \bigoplus \mathcal{M}$ and $Q = S/T_S$. Then the following conditions are equivalent:

- 1. M is self-small,
- 2. either $T_S = 0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- 3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,

 either M ≅ Z^κ for some cardinal κ, or M ≅ F ⊕ ∏_{p∈P} M_p for a finitely generated free group F and finite abelian p-groups M_p for each p ∈ P.

By [Fuchs 1973, Thm 94.2], \mathbb{Z} is slender,hence $\operatorname{Hom}(\mathbb{Z}^{\omega},\mathbb{Z})\cong\mathbb{Z}^{(\omega)}$,from which follows:

Lemma

 \mathbb{Z}^{κ} is \mathbb{Z} -small, and so self-small for each cardinal κ .

Theorem

- 1. M is self-small,
- 2. either $T_S = 0$, or $S_{(p)}$ is finite for each $p \in \mathbb{P}$ and Q is finitely generated,
- 3. either all $A \in \mathcal{M}$ are free, or the family $\{B \in \mathcal{M} \mid \operatorname{Hom}(B, A) \neq 0\}$ is finite for each $A \in \mathcal{M}$,
- either M ≅ Z^κ for some cardinal κ, or M ≅ F ⊕ ∏_{p∈P} M_p for a finitely generated free group F and finite abelian p-groups M_p for each p ∈ P.

References

- Albrecht, U., Breaz, S., Wickless, W., Self-small Abelian groups. *Bull. Aust. Math. Soc.* **80** (2009), No. 2, 205–216.
- Arnold, D.M., Murley, C.E., Abelian groups, A, such that Hom (A, –) preserves direct sums of copies of A. Pacific Journal of Mathematics, Vol. 56 (1975), No.1, 7–20.
- Dvořák, J.: On products of self-small abelian groups, Stud. Univ. Babeş-Bolyai Math. 60 (2015), no. 1, 13–17.
- Dvořák, J., Žemlička, J.: Autocompact objects of Ab5 categories, Theory and Applications of Categories, Vol. 37 (2021), 979-995.
- Dvořák, J., Žemlička, J.: Self-small products of abelian groups, Commentat. Math. Univ. Carol., 63,2 (2022) 145—157.
- Fuchs, L.: Infinite Abelian groups. Vol. II. Ac. Press, 1973.
- Koşan, M. T., Žemlička, J.: ADS Abelian groups, to appear in J. Algebra and App.
- Kulikov, L.: On the theory of abelian groups of arbitrary power, Mat. Sbornik 9(1941), 165-182.