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ADS modules

In the sequel
• R denotes an associative ring with unit,
• M a right R-module,
• a group means an abelain group (i.e. Z-module)

A right module M over R is called absolute direct summand
(ADS) if M = S ⊕ T ′ for every submodules S,T ,T ′ such that
M = S ⊕ T and T ′ is a complement of S.

Example
(1) If every idempotent of R is central (in particular if R is
commutative or reduced), then RR is ADS.
(2) Every cyclic module over commutative ring is ADS.
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ADS condition via injectivity

A module A is B-injective if every homomorphism C → A for for
every submodule C ≤ B can be extendede to a homomorphism
B ≤ A.

Theorem (Alahmadi,Jain Leroy, 2012)
The following is equivalent:

1. M is ADS,
2. A and B are mutually injective modules for every

M = A⊕ B,
3. A is a bR-injective module for every M = A⊕ B and b ∈ B.

Theorem (Alahmadi,Jain Leroy, 2012)
Let R be an simple ring. If RR is ADS, then either RR is
indecomposable or R is a right self-injective regular ring.
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Commuting with Hom(M,−)

Let M be a module and N a family of abelian groups.
Consider the mapping of abelian groups:

ΨN :
⊕
N∈N

Hom(A,N)→ Hom(A,
⊕
N )

given by the rule ΨN ((fN)N) =
∑

N fN , where∑
N fN ∈ Hom(A,

⊕
N ) is defined by a→

∑
N fN(a) for fN

viewed as a homomorphism into
⊕
N .

Lemma
The mapping ΨN is an injective homomorphism of abelian
groups for every family N .
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General relative smallness

Let C be a class of modules A and B module. We say that A is
- C-small if ΨN is an isomorphism ∀ N ⊆ C,
- B-small if it is a {B}-small module,
- small if it is N -small ∀ family N of,
- self-small if it is A-small.

Example
(1) Every finitely generated module is small, so self-small.
(2) Let A and B be two modules such that Hom(A,B) = 0. Then A is
B-small.
(3) In particular, if p,q ∈ P are different primes, Ap is an abelian
p-group and Aq is an abelian q-group, then Ap is Aq-small and
Z-small.
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Criteria of self-smallness

Theorem (Arnold, Murley, 1975)
The following are equivalent for a module A:

1. A is not self-small,
2. ∃ an ω-filtration (Ai | i < ω) of A such that

Hom(A/An,A) 6= 0 for each n < ω,
3. ∃ an ω-filtration (Ai | i < ω) of A such that for each n < ω ∃

a nonzero ϕn ∈ End(A) satisfying ϕn(An) = 0.

Theorem (Albrecht, Breaz, Wickless, 2009)
Let A be a reduced group of finite torsion free rank with a full
free subgroup F. The following are equivalent:

1. A is self-small,
2. ∀ Ap is finite and (A/F )p is divisible whenever Ap 6= 0,
3. each Ap is finite and Hom(A, t(A)) is torsion.
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Examples

Example
If P denotes the set of all prime numbers, then
M =

∏
p∈P Zp is a self-small abelian group and

N =
⊕

p∈P Zp is not self-small and
EndR(M) ∼= EndR(N).

Example∏
p∈P Zp and Q are self-small abelian groups. Moreover,

HomZ(Q,
∏

p∈P Zp) =
∏

p∈P HomZ(Q,Zp) = 0. Nevertheless, the
product Q×

∏
p∈P Zp is not self-small.
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Products of self-small modules

Proposition (Dvořák, 2015)
The following conditions are equivalent for a finite system of
self-small modules (Mi | i ≤ k):

1.
∏

i≤k Mi is not self-small,
2. there exist i , j ≤ k and a chain N1 ⊆ N2 ⊆ ... ⊆ Nn ⊆ ... of

proper submodules of Mi such that
⋃∞

n=1 Nn = Mi and
HomR(Mi/Nn,Mj) 6= 0 for each n ∈ N.

Lemma
Let A be an abelian group and C be a set of abelian groups.
Then the following conditions are equivalent:

1. A is
⊕
C-small,

2. A is C-small,
3. A is Add(

⊕
C)-small.
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The following conditions are equivalent for a finite system of
self-small modules (Mi | i ≤ k):

1.
∏

i≤k Mi is not self-small,
2. there exist i , j ≤ k and a chain N1 ⊆ N2 ⊆ ... ⊆ Nn ⊆ ... of

proper submodules of Mi such that
⋃∞

n=1 Nn = Mi and
HomR(Mi/Nn,Mj) 6= 0 for each n ∈ N.

Lemma
Let A be an abelian group and C be a set of abelian groups.
Then the following conditions are equivalent:

1. A is
⊕
C-small,

2. A is C-small,
3. A is Add(

⊕
C)-small.



Products of self-small modules

Proposition (Dvořák, 2015)
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Torsion-free ADS modules

Lemma
Let M be a torsion-free module over a domain R. Then M is
ADS if and only if it is either indecomposable or injective.

Theorem
Let R be a domain. The followings are equivalent for a
non-zero torsion-free R-module M and a torsion R-module T :
(1) M ⊕ T is ADS;
(2) T is injective and M is either indecomposable or injective.

Example
An infinite cyclic group is the only example of a finitely
generated infinite ADS abelian group.
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Mixed ADS groups

Using decomposibility of mixed groups [Kulikov 1941, Th 7] we
get:

Lemma
Let A be a non-divisible proper mixed abelian group. Then G is
ADS iff G ∼= A⊕ B for a non-divisible indecomposable
torsion-free and a divisible torsion group B.

Lemma
The following are equivalent for a torsion group G:
(1) G is ADS,

(2) ∀ p ∈ P ∃ n ∈ N ∪ {0,∞} and κ for which Mp ∼= Z(κ)
pn .

Example
Let F be a finite group and nZ = Ann(F ). Then F is ADS if and
only if F is a projective Z/nZ-module.
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Classification of ADS groups

Theorem
An abelian group is ADS if and only if
(1) either it is divisible,
(2) or it is a direct sum of an indecomposable torsion-free

group and a divisible torsion group,
(3) or it is a torsion group such that each p-component is a

direct sum of cyclic p-groups of the same length or of Zp∞ .

Example
For an arbitrary cardinal κ there exists 2κ indecomposable
torsion-free abelian groups of cardinality κ, all of which are reduced
ADS groups.
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Sums vs. products

Lemma
LetM and N be finite families of groups. The following
conditions are equivalent:

1.
⊕
M is

⊕
N -small,

2. M is
⊕
N -small for each M ∈M,

3.
⊕
M is N-small for each N ∈ N ,

4. M is N-small for each M ∈M and N ∈ N .

Theorem
LetM be a family of groups and put M =

∏
M and S =

⊕
M.

Then the following conditions are equivalent:
1. M is self-small,
2. M is S-small,
3. M is

⊕
C-small for each countable family C ⊆ M.
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Criterion for mixed groups

Theorem
LetM be a family of nonzero finitely generated abelian groups
such that at least one N ∈M has nonzero torsion part and put
M =

∏
M, S =

⊕
M and Q = S/TS. Then the following

conditions are equivalent:
1. M is self-small,
2. S is Z-small and S(p)-small for all p ∈ P,
3. S(p) is finite for each p ∈ P and Q is finitely generated,
4. there are only finitely many A ∈M which are infinite and

for each p ∈ P there are only finitely many A ∈M with
A(p) 6= 0,

5. the family {B ∈M | Hom(B,A) 6= 0} is finite for each
A ∈M,

6. M ∼= F ⊕
∏

p∈P Mp for a finitely generated free group F and
finite abelian p-groups Mp for each p ∈ P.
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Structure of products of finitely generated groups
By [Fuchs 1973, Thm 94.2], Z is slender,hence
Hom(Zω,Z) ∼= Z(ω),from which follows:

Lemma
Zκ is Z-small, and so self-small for each cardinal κ.

Theorem
LetM be a family of nonzero finitely generated abelian groups
and put M =

∏
M, S =

⊕
M and Q = S/TS. Then the

following conditions are equivalent:
1. M is self-small,
2. either TS = 0, or S(p) is finite for each p ∈ P and Q is

finitely generated,
3. either all A ∈M are free, or the family
{B ∈M | Hom(B,A) 6= 0} is finite for each A ∈M,

4. either M ∼= Zκ for some cardinal κ, or M ∼= F ⊕
∏

p∈P Mp for
a finitely generated free group F and finite abelian
p-groups Mp for each p ∈ P.
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Koşan, M. T., Žemlička, J.: ADS Abelian groups, to appear in J.
Algebra and App.

Kulikov, L.: On the theory of abelian groups of arbitrary power,
Mat. Sbornik 9(1941), 165-182.


	ADS modules
	Self-small groups and modules
	The structure of ADS groups
	Self-small products of finitely generated groups
	References

