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» Denote by

MG ={> mgg|mgeM,geG}
geG

the set of all formal sums ¥ ,.c mgg with a finite support.

» Define for all ¥ ,cc mgg, Ygeg Ngg € MG and ¥, rgg € RG
operations on MG:

2. Mg+ Y, ngg = ), (Mg +ng)g,

geG geG geG
(Y. mgg)- (Y, reg) = > (Y. mprw)g.
geG geG geG hh'=g

» MG has structure of a module over RG and R.
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» MG is an injective RG-module iff M is a injective and G is
finite
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Lemma
The functor - ®ry RG : RH - Mod - RG — Mod is exact, preserves
direct limits, and A®ry RG = 0 for each nonzero RH-module A.

» Theorem
MG is a flat RG-module iff M is a flat R-module.
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Theorem
If MGgg is semiartinian then Mg is semiartinian.

Theorem
Let G be a finite group with order invertible in Endg(M). Then
MGgrgis semiartinian iff Mg is semiartinian.
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Lemma
Let M 0. If either

1. G is an infinite cyclic group, or
2. G contains an infinite strictly increasing chain of finite
subgroups,

then MGgc is not artinian.

Example
Let M be a nonzero artinian module.
» If G =Zp is a Priifer p-group for a prime p, then G is a
periodic artinian group and MGgg is non-artinian.

» If G is an infinite locally finite group, then MGgc is
non-artinian.

» If G contains an infinite cyclic subgroup, then MGgg is
non-artinian.
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We say that a group G is noetherian if it satisfies ACC on
subgroups.

Theorem (Connell, 1963)

» RG is artinian iff R is artinian and G is finite.

» If RG is noetherian, then R and G are noetherian

Lemma

1. If M is artinian (noetherian) and G is finite, then MGgg is
artinian (noetherian).
2. If MGgg is artinian then Mg is artinian and G is periodic.
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Lemma
Let S be a simple R-module, G be a group and T = End(SR).
Then T is a skew-field and

1. if SG is an artinian RG-module, then TG is a right artinian
ring,

2. if SG is a noetherian RG-module, then TG is a right
noetherian ring.

Theorem
Let M #0. Then MGgrg is artinian iff Mg is artinian and G is finite.

Theorem
Let M 0. If MG¢gr is noetherian, then both Mg and G are
noetherian.
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