On structure of group modules

M. T. Koşan and J. Žemlička

NonCommutative rings and their Applications, VI 25 June 2019, Lens

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The notion

Homological structure

Chain conditions

◆□ > < 個 > < E > < E > E の < @</p>

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Denote by

$$MG = \left\{ \sum_{g \in G} m_g g \mid m_g \in M, g \in G \right\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

the set of all formal sums $\sum_{g \in G} m_g g$ with a finite support.

Denote by

$$MG = \{\sum_{g \in G} m_g g \mid m_g \in M, g \in G\}$$

the set of all formal sums $\sum_{g \in G} m_g g$ with a finite support.

▶ Define for all $\sum_{g \in G} m_g g$, $\sum_{g \in G} n_g g \in MG$ and $\sum_{g \in G} r_g g \in RG$ operations on MG:

$$\sum_{g \in G} m_g g + \sum_{g \in G} n_g g = \sum_{g \in G} (m_g + n_g)g,$$
$$(\sum_{g \in G} m_g g) \cdot (\sum_{g \in G} r_g g) = \sum_{g \in G} (\sum_{hh'=g} m_h r_{h'})g.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Denote by

$$MG = \{\sum_{g \in G} m_g g \mid m_g \in M, g \in G\}$$

the set of all formal sums $\sum_{g \in G} m_g g$ with a finite support.

▶ Define for all $\sum_{g \in G} m_g g$, $\sum_{g \in G} n_g g \in MG$ and $\sum_{g \in G} r_g g \in RG$ operations on MG:

$$\sum_{g \in G} m_g g + \sum_{g \in G} n_g g = \sum_{g \in G} (m_g + n_g)g,$$
$$(\sum_{g \in G} m_g g) \cdot (\sum_{g \in G} r_g g) = \sum_{g \in G} (\sum_{hh'=g} m_h r_{h'})g$$

ション ふゆ く 山 マ チャット しょうくしゃ

• *MG* has structure of a module over *RG* and *R*.

• MG is a semisimple RG-module iff M is a semisimple and G is finite with the order invertible in $End(M_R)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- MG is a semisimple RG-module iff M is a semisimple and G is finite with the order invertible in $End(M_R)$.
- MG is a regular RG-module iff M is regular and G is locally finite with the order of each finite subgroup of G invertible in $End(M_R)$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- MG is a semisimple RG-module iff M is a semisimple and G is finite with the order invertible in $End(M_R)$.
- MG is a regular RG-module iff M is regular and G is locally finite with the order of each finite subgroup of G invertible in $End(M_R)$.

(*M* is called *regular* if for each $m \in M$ there is $f \in Hom(M, R)$ such that m = mf(m).)

- MG is a semisimple RG-module iff M is a semisimple and G is finite with the order invertible in $End(M_R)$.
- MG is a regular RG-module iff M is regular and G is locally finite with the order of each finite subgroup of G invertible in $End(M_R)$.

(*M* is called *regular* if for each $m \in M$ there is $f \in Hom(M, R)$ such that m = mf(m).)

• *MG* is an injective *RG*-module iff *M* is a injective and *G* is finite

Lemma $MG \cong_{RG} M \otimes_R RG.$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Lemma $MG \cong_{RG} M \otimes_R RG.$

Lemma

The functor $- \otimes_{RH} RG : RH - Mod \rightarrow RG - Mod$ is exact, preserves direct limits, and $A \otimes_{RH} RG \neq 0$ for each nonzero RH-module A.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Lemma $MG \cong_{RG} M \otimes_R RG.$

Lemma

The functor $- \otimes_{RH} RG : RH - Mod \rightarrow RG - Mod$ is exact, preserves direct limits, and $A \otimes_{RH} RG \neq 0$ for each nonzero RH-module A.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Theorem

MG is a flat RG-module iff M is a flat R-module.

Lemma If $Soc(MG_{RG}) \neq 0$, then $Soc(M_R) \neq 0$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Lemma If $Soc(MG_{RG}) \neq 0$, then $Soc(M_R) \neq 0$.

Theorem If MG_{RG} is semiartinian then M_R is semiartinian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma If $Soc(MG_{RG}) \neq 0$, then $Soc(M_R) \neq 0$.

Theorem

If MG_{RG} is semiartinian then M_R is semiartinian.

Theorem

Let G be a finite group with order invertible in $End_R(M)$. Then MG_{RG} is semiartinian iff M_R is semiartinian.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Let $M \neq 0$. If either

- 1. G is an infinite cyclic group, or
- 2. G contains an infinite strictly increasing chain of finite subgroups,

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

then MG_{RG} is not artinian.

Let $M \neq 0$. If either

- 1. G is an infinite cyclic group, or
- 2. G contains an infinite strictly increasing chain of finite subgroups,

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

then MG_{RG} is not artinian.

Example

Let M be a nonzero artinian module.

Let $M \neq 0$. If either

- 1. G is an infinite cyclic group, or
- 2. G contains an infinite strictly increasing chain of finite subgroups,

then MG_{RG} is not artinian.

Example

Let M be a nonzero artinian module.

• If $G = \mathbb{Z}_{p^{\infty}}$ is a Prüfer *p*-group for a prime *p*, then *G* is a periodic artinian group and MG_{RG} is non-artinian.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Let $M \neq 0$. If either

- 1. G is an infinite cyclic group, or
- 2. G contains an infinite strictly increasing chain of finite subgroups,

then MG_{RG} is not artinian.

Example

Let M be a nonzero artinian module.

• If $G = \mathbb{Z}_{p^{\infty}}$ is a Prüfer *p*-group for a prime *p*, then *G* is a periodic artinian group and MG_{RG} is non-artinian.

ション ふゆ く 山 マ チャット しょうくしゃ

▶ If *G* is an infinite locally finite group, then *MG_{RG}* is non-artinian.

Let $M \neq 0$. If either

- 1. G is an infinite cyclic group, or
- 2. G contains an infinite strictly increasing chain of finite subgroups,

then MG_{RG} is not artinian.

Example

Let M be a nonzero artinian module.

- If $G = \mathbb{Z}_{p^{\infty}}$ is a Prüfer *p*-group for a prime *p*, then *G* is a periodic artinian group and MG_{RG} is non-artinian.
- ▶ If *G* is an infinite locally finite group, then *MG_{RG}* is non-artinian.
- ▶ If *G* contains an infinite cyclic subgroup, then *MG_{RG}* is non-artinian.

Theorem (Connell, 1963)

(ロ)、

Theorem (Connell, 1963)

• RG is artinian iff R is artinian and G is finite.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (Connell, 1963)

- RG is artinian iff R is artinian and G is finite.
- If RG is noetherian, then R and G are noetherian

Theorem (Connell, 1963)

- RG is artinian iff R is artinian and G is finite.
- If RG is noetherian, then R and G are noetherian

Lemma

- 1. If *M* is artinian (noetherian) and *G* is finite, then *MG*_{RG} is artinian (noetherian).
- 2. If MG_{RG} is artinian then M_R is artinian and G is periodic.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Let S be a simple R-module, G be a group and $T = End(S_R)$. Then T is a skew-field and

1. if SG is an artinian RG-module, then TG is a right artinian ring,

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

2. if SG is a noetherian RG-module, then TG is a right noetherian ring.

Let S be a simple R-module, G be a group and $T = End(S_R)$. Then T is a skew-field and

- 1. if SG is an artinian RG-module, then TG is a right artinian ring,
- 2. if SG is a noetherian RG-module, then TG is a right noetherian ring.

Theorem

Let $M \neq 0$. Then MG_{GR} is artinian iff M_R is artinian and G is finite.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Let S be a simple R-module, G be a group and $T = End(S_R)$. Then T is a skew-field and

- 1. if SG is an artinian RG-module, then TG is a right artinian ring,
- 2. if SG is a noetherian RG-module, then TG is a right noetherian ring.

Theorem

Let $M \neq 0$. Then MG_{GR} is artinian iff M_R is artinian and G is finite.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Theorem

Let $M \neq 0$. If MG_{GR} is noetherian, then both M_R and G are noetherian.