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ADS-modules

Type-ADS modules

Essentially ADS modules

Rings



▸ In the sequel R denotes an associative ring with unit and M a
right R-module.

▸ A right module M over R is called ADS (absolute direct
summand) if M = S ⊕T ′ for every submodules S ,T ,T ′ such
that M = S ⊕T and T ′ is a complement of S .

Example
(1) If every idempotent of R is central (in particular if R is
commutative or reduced), then RR is ADS.
(2) Every cyclic module over commutative ring is ADS.
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A module A is B-injective if every homomorphism C → A for
for every submodule C ≤ B can be extendede to a
homomorphism B → A.

Theorem (Alahmadi,Jain Leroy, 2012)
The following is equivalent:

(1) M is ADS

(2) A and B are mutually injective modules for every M = A⊕B ,
(3) A is a bR-injective module for every M = A⊕B and b ∈ B .

Theorem (Alahmadi,Jain Leroy, 2012)
Let R be an simple ring. If RR is ADS, then either RR is
indecomposable or R is a right self-injective regular ring.
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Let A and B be submodules of M.

▸ A ⊥ B if there are no nonzero submodules C ≤ A and D ≤ B
such that C ≅ D.

▸ A is called a type submodule, if A is a complement submodule
in M and there exists a submodule

Lemma
Let M = A⊕B . Then the following conditions are equivalent:

1. A is a type submodule of M.
2. B is a type submodule of M.
3. A ⊥ B.

▸ M = A⊕B is a type decomposition, if A and B are type
submodules of M.

▸ An R-module M is type-ADS if for every type decomposition
M = A⊕B and every arbitrary type complement C of A, we
have M = A⊕ C .
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Example
(1) Every ADS module is type-ADS.

(2) Let R = ( F F
0 F

), where F is a field. Then RR is type-ADS,

however it is not ADS.

Theorem (Abdioğlu, Ž. 2018)
The following is equivalent:
(1) M is type-ADS ,
(2) A and B are mutually injective modules for every type

decomposition M = A⊕B ,
(3) A is a bR-injective module for every type decomposition

M = A⊕B and b ∈ B .

Corollary
A type direct summand of a type-ADS module is type-ADS .
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The following is equivalent:
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(1 − α)(E(M)) ∩M is a type direct summand of M.

(3) For every decomposition E(M) = E1 ⊕ E2 where E1 ∩M is a
type direct summand of M, M = (E1 ∩M) ⊕ (E2 ∩M).
A submodule X of M is called fully invariant if for every
f ∈ End(M), f (X ) ≤ X .

Lemma
Let M = ⊕i≤nMi . If each Mi is type-ADS fully invariant submodule
of M and Mi is ⊕j≠iMj -injective for all i , then M is type-ADS.

Example
Let M1 = Z and M2 = Z2 be Z-modules. Then M1 and M2 are
indecomposable, hence type-ADS, but M =M1 ⊕M2 is not
type-ADS.
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M is called an essentially ADS-module if M = S ⊕T ′ for each
decomposition M = S ⊕T and each complement T ′ of S with
T ′ ∩T = 0 and S ∩ (T ′ ⊕T ) ≤e S

Theorem (Koşan, Quynh, Ž. 2019)
Let M be an R-module.

1. If E(A) /≅ E(B) for each decomposition M = A⊕B, then M is
e-ADS.

2. If M is an e-ADS module with a decomposition M = A⊕B
such that E(A) ≅ E(B), then A ≅ B and the modules A and B
are automorphism invariant.

Example
(1) Every ADS module is e-ADS.
(2) Let T be a non-divisible torsion abelian group and
M ∶= Z⊕T . Since E(A) /≅ E(B) for every M = A⊕B , M is an
e-ADS abelian group and it M is not ADS, since T is not
Z-injective.
(3) Let M ∶= Z⊕Zp ⊕Zp2 for some prime p. Then M is e-ADS
and Zp ⊕Zp2 is not e-ADS.
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Theorem (Koşan, Quynh, Ž. 2019)
The following is equivalent:

(1) M is e-ADS.
(2) For every decomposition M = S ⊕T , if T ′ is a complement of

S in M and T is a complement of T ′ in M, then M = S ⊕T ′.
(3) A and B are relatively automorphism invariant for each

decomposition M = A⊕B .

Lemma
Let M be an e-ADS module. If M has a decomposition M = A⊕B
such that E(A) ≅ E(B), then A is e-ADS.

A module M is trivial e-ADS if it has no a decomposition
M = A⊕B such that E(A) ≅ E(B).

Lemma
M is trivial e-ADS if and only if for every decomposition M = A⊕B
no complement of A is a complement of B .
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We say that a ring R is right type-ADS (e-ADS) if the module
RR is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)
Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)
Let R be a right non-singular ring and Q be its the maximal right
ring of quotients. Then the following is equivalent:
(1) R is right e-ADS,
(2) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or R ≅M2(S)

for a suitable right automorphism invariant ring S ,
(3) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or

R ≅ T ×M2(S) for a suitable self-injective ring T and a
normal right automorphism invariant ring S .



We say that a ring R is right type-ADS (e-ADS) if the module
RR is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)
Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)
Let R be a right non-singular ring and Q be its the maximal right
ring of quotients. Then the following is equivalent:
(1) R is right e-ADS,
(2) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or R ≅M2(S)

for a suitable right automorphism invariant ring S ,
(3) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or

R ≅ T ×M2(S) for a suitable self-injective ring T and a
normal right automorphism invariant ring S .



We say that a ring R is right type-ADS (e-ADS) if the module
RR is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)
Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)
Let R be a right non-singular ring and Q be its the maximal right
ring of quotients. Then the following is equivalent:

(1) R is right e-ADS,
(2) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or R ≅M2(S)

for a suitable right automorphism invariant ring S ,
(3) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or

R ≅ T ×M2(S) for a suitable self-injective ring T and a
normal right automorphism invariant ring S .



We say that a ring R is right type-ADS (e-ADS) if the module
RR is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)
Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)
Let R be a right non-singular ring and Q be its the maximal right
ring of quotients. Then the following is equivalent:
(1) R is right e-ADS,

(2) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or R ≅M2(S)
for a suitable right automorphism invariant ring S ,

(3) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or
R ≅ T ×M2(S) for a suitable self-injective ring T and a
normal right automorphism invariant ring S .



We say that a ring R is right type-ADS (e-ADS) if the module
RR is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)
Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)
Let R be a right non-singular ring and Q be its the maximal right
ring of quotients. Then the following is equivalent:
(1) R is right e-ADS,
(2) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or R ≅M2(S)

for a suitable right automorphism invariant ring S ,

(3) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or
R ≅ T ×M2(S) for a suitable self-injective ring T and a
normal right automorphism invariant ring S .



We say that a ring R is right type-ADS (e-ADS) if the module
RR is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)
Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)
Let R be a right non-singular ring and Q be its the maximal right
ring of quotients. Then the following is equivalent:
(1) R is right e-ADS,
(2) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or R ≅M2(S)

for a suitable right automorphism invariant ring S ,
(3) Either eQ /≅ (1 − e)Q for any idempotent e ∈ R or

R ≅ T ×M2(S) for a suitable self-injective ring T and a
normal right automorphism invariant ring S .


	ADS-modules
	Type-ADS modules
	Essentially ADS modules
	Rings

