Variants of absolute direct summand property

J. Žemlička

12th International Algebraic Conference in Ukraine, July 2–6, 2019, Vinnytsia

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\mathsf{ADS}\mathsf{-}\mathsf{modules}$

Type-ADS modules

Essentially ADS modules

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Rings

▶ In the sequel *R* denotes an associative ring with unit and *M* a right *R*-module.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- In the sequel R denotes an associative ring with unit and M a right R-module.
- A right module M over R is called ADS (*absolute direct summand*) if $M = S \oplus T'$ for every submodules S, T, T' such that $M = S \oplus T$ and T' is a complement of S.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ▶ In the sequel *R* denotes an associative ring with unit and *M* a right *R*-module.
- A right module M over R is called ADS (*absolute direct summand*) if $M = S \oplus T'$ for every submodules S, T, T' such that $M = S \oplus T$ and T' is a complement of S.

(1) If every idempotent of R is central (in particular if R is commutative or reduced), then R_R is ADS.

ション ふゆ アメリア メリア しょうくしゃ

(2) Every cyclic module over commutative ring is ADS.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Alahmadi, Jain Leroy, 2012) The following is equivalent:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Theorem (Alahmadi, Jain Leroy, 2012) The following is equivalent: (1) *M* is ADS

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

- (1) M is ADS
- (2) A and B are mutually injective modules for every $M = A \oplus B$,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

- (1) M is ADS
- (2) A and B are mutually injective modules for every $M = A \oplus B$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

(3) A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

- (1) M is ADS
- (2) A and B are mutually injective modules for every $M = A \oplus B$,
- (3) A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

Theorem (Alahmadi, Jain Leroy, 2012)

Let R be an simple ring. If R_R is ADS, then either R_R is indecomposable or R is a right self-injective regular ring.

◆□ > < 個 > < E > < E > E 9 < 0</p>

• $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.
- A is called a *type* submodule, if A is a complement submodule in M and there exists a submodule

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.
- A is called a *type* submodule, if A is a complement submodule in M and there exists a submodule

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Lemma

Let $M = A \oplus B$. Then the following conditions are equivalent:

- 1. A is a type submodule of M.
- 2. B is a type submodule of M.
- 3. $A \perp B$.

- $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.
- A is called a *type* submodule, if A is a complement submodule in M and there exists a submodule

Lemma

Let $M = A \oplus B$. Then the following conditions are equivalent:

- 1. A is a type submodule of M. 2. B is a type submodule of M.
- 2. B is a type submodule of M.
- 3. $A \perp B$.
- $M = A \oplus B$ is a *type decomposition*, if A and B are type submodules of M.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.
- A is called a *type* submodule, if A is a complement submodule in M and there exists a submodule

Lemma

Let $M = A \oplus B$. Then the following conditions are equivalent:

- 1. A is a type submodule of M.
- 2. B is a type submodule of M.
- 3. $A \perp B$.
- $M = A \oplus B$ is a *type decomposition*, if A and B are type submodules of M.
- An *R*-module *M* is *type-ADS* if for every type decomposition
 M = *A* ⊕ *B* and every arbitrary type complement *C* of *A*, we have *M* = *A* ⊕ *C*.

(1) Every ADS module is type-ADS. (2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

(1) Every ADS module is type-ADS. (2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem (Abdioğlu, Ž. 2018) *The following is equivalent:*

(1) Every ADS module is type-ADS. (2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (Abdioğlu, Ž. 2018) The following is equivalent: (1) *M* is type-ADS,

(1) Every ADS module is type-ADS. (2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

Theorem (Abdioğlu, Ž. 2018) The following is equivalent:

- (1) M is type-ADS,
- (2) A and B are mutually injective modules for every type decomposition $M = A \oplus B$,

ション ふゆ く 山 マ チャット しょうくしゃ

(1) Every ADS module is type-ADS. (2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

- (1) M is type-ADS,
- (2) A and B are mutually injective modules for every type decomposition $M = A \oplus B$,
- (3) A is a *bR*-injective module for every type decomposition $M = A \oplus B$ and $b \in B$.

ション ふゆ く 山 マ チャット しょうくしゃ

(1) Every ADS module is type-ADS. (2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

- (1) M is type-ADS,
- (2) A and B are mutually injective modules for every type decomposition $M = A \oplus B$,
- (3) A is a *bR*-injective module for every type decomposition $M = A \oplus B$ and $b \in B$.

Corollary

A type direct summand of a type-ADS module is type-ADS.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The following is equivalent:

Theorem (Abdioğlu, Ž. 2018)The following is equivalent:(1) *M* is type-ADS.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- The following is equivalent:
- (1) M is type-ADS.
- (2) $\alpha(M) \leq M$ for all idempotents $\alpha \in End(E(M))$ such that $(1-\alpha)(E(M)) \cap M$ is a type direct summand of M.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The following is equivalent:

- (1) M is type-ADS.
- (2) $\alpha(M) \leq M$ for all idempotents $\alpha \in End(E(M))$ such that $(1-\alpha)(E(M)) \cap M$ is a type direct summand of M.
- (3) For every decomposition $E(M) = E_1 \oplus E_2$ where $E_1 \cap M$ is a type direct summand of M, $M = (E_1 \cap M) \oplus (E_2 \cap M)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

The following is equivalent:

- (1) M is type-ADS.
- (2) $\alpha(M) \leq M$ for all idempotents $\alpha \in End(E(M))$ such that $(1-\alpha)(E(M)) \cap M$ is a type direct summand of M.
- (3) For every decomposition $E(M) = E_1 \oplus E_2$ where $E_1 \cap M$ is a type direct summand of M, $M = (E_1 \cap M) \oplus (E_2 \cap M)$.

A submodule X of M is called *fully invariant* if for every $f \in End(M)$, $f(X) \leq X$.

Lemma

Let $M = \bigoplus_{i \le n} M_i$. If each M_i is type-ADS fully invariant submodule of M and M_i is $\bigoplus_{j \ne i} M_j$ -injective for all i, then M is type-ADS.

The following is equivalent:

- (1) M is type-ADS.
- (2) $\alpha(M) \leq M$ for all idempotents $\alpha \in End(E(M))$ such that $(1-\alpha)(E(M)) \cap M$ is a type direct summand of M.
- (3) For every decomposition $E(M) = E_1 \oplus E_2$ where $E_1 \cap M$ is a type direct summand of M, $M = (E_1 \cap M) \oplus (E_2 \cap M)$.

A submodule X of M is called *fully invariant* if for every $f \in End(M)$, $f(X) \leq X$.

Lemma

Let $M = \bigoplus_{i \le n} M_i$. If each M_i is type-ADS fully invariant submodule of M and M_i is $\bigoplus_{j \ne i} M_j$ -injective for all i, then M is type-ADS.

Example

Let $M_1 = \mathbb{Z}$ and $M_2 = \mathbb{Z}_2$ be \mathbb{Z} -modules. Then M_1 and M_2 are indecomposable, hence type-ADS, but $M = M_1 \oplus M_2$ is not type-ADS.

M is called an essentially ADS-module if $M = S \oplus T'$ for each decomposition $M = S \oplus T$ and each complement T' of *S* with $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq^e S$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

M is called an essentially ADS-module if $M = S \oplus T'$ for each decomposition $M = S \oplus T$ and each complement T' of *S* with $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq^e S$

Theorem (Koşan, Quynh, Ž. 2019)

Let M be an R-module.

- 1. If $E(A) \notin E(B)$ for each decomposition $M = A \oplus B$, then M is e-ADS.
- 2. If M is an e-ADS module with a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then $A \cong B$ and the modules A and B are automorphism invariant.

ション ふゆ く 山 マ チャット しょうくしゃ

M is called an essentially ADS-module if $M = S \oplus T'$ for each decomposition $M = S \oplus T$ and each complement T' of *S* with $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq^e S$

Theorem (Koşan, Quynh, Ž. 2019)

Let M be an R-module.

- 1. If $E(A) \notin E(B)$ for each decomposition $M = A \oplus B$, then M is e-ADS.
- 2. If M is an e-ADS module with a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then $A \cong B$ and the modules A and B are automorphism invariant.

Example

(1) Every ADS module is e-ADS.

(2) Let T be a non-divisible torsion abelian group and

 $M := \mathbb{Z} \oplus T$. Since $E(A) \notin E(B)$ for every $M = A \oplus B$, M is an e-ADS abelian group and it M is not ADS, since T is not \mathbb{Z} -injective.

(3) Let $M := \mathbb{Z} \oplus \mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$ for some prime p. Then M is e-ADS and $Z_p \oplus \mathbb{Z}_{p^2}$ is not e-ADS.

Theorem (Koşan, Quynh, Ž. 2019) The following is equivalent:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Theorem (Koşan, Quynh, Ž. 2019)The following is equivalent:(1) M is e-ADS.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The following is equivalent:

- (1) M is e-ADS.
- (2) For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The following is equivalent:

- (1) M is e-ADS.
- (2) For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

(3) A and B are relatively automorphism invariant for each decomposition $M = A \oplus B$.

The following is equivalent:

(1) M is e-ADS.

- (2) For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.
- (3) A and B are relatively automorphism invariant for each decomposition $M = A \oplus B$.

Lemma

Let M be an e-ADS module. If M has a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then A is e-ADS.

A module *M* is *trivial e-ADS* if it has no a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$.

ション ふゆ く 山 マ チャット しょうくしゃ

The following is equivalent:

- (1) M is e-ADS.
- (2) For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.
- (3) A and B are relatively automorphism invariant for each decomposition $M = A \oplus B$.

Lemma

Let M be an e-ADS module. If M has a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then A is e-ADS.

A module *M* is *trivial e*-*ADS* if it has no a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$.

Lemma

M is trivial e-ADS if and only if for every decomposition $M = A \oplus B$ no complement of *A* is a complement of *B*.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (Abdioğlu, Ž. 2018)

Every right non-singular ring is right type-ADS.

Theorem (Abdioğlu, Ž. 2018)

Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)

Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem (Abdioğlu, Ž. 2018)

Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)

Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

(1) R is right e-ADS,

Theorem (Abdioğlu, Ž. 2018)

Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)

Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:

- (1) R is right e-ADS,
- (2) Either $eQ \notin (1-e)Q$ for any idempotent $e \in R$ or $R \cong M_2(S)$ for a suitable right automorphism invariant ring S,

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (Abdioğlu, Ž. 2018)

Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)

Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:

- (1) R is right e-ADS,
- (2) Either $eQ \notin (1-e)Q$ for any idempotent $e \in R$ or $R \cong M_2(S)$ for a suitable right automorphism invariant ring S,
- (3) Either $eQ \notin (1-e)Q$ for any idempotent $e \in R$ or $R \cong T \times M_2(S)$ for a suitable self-injective ring T and a normal right automorphism invariant ring S.