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CLASSES OF DUALLY SLENDER MODULES

JAN ŽEMLIČKA

The natural categorial notion of a compact object, for which the covariant
functor Hom commutes with direct sums, was first time studied in the context
of module theory in 60’s. Hyman Bass gave a non-categorial characterization
of the notion (see Lemma 1.1 of the present paper) in the book [3] and basic
properties of such a module were published by Rentschler in [10]. The notion
has been studied under various terms (module of type Σ, small, Σ-compact,
U-compact module), we use the term dually slender following the terminology
of [6]. The study of dually slender modules has been motivated by progress of
research in various branches of algebra. Probably the most frequent motivation
(and the closest to the author of the present paper) comes from the context of
representable equivalences of module categories ([4], [5], [13], [14] etc.). Dually
slender modules has appeared also in the structure theory of graded rings [9]
or almost free modules [12]. The structure theory of dually slender modules
was developed also in [6],[18], [15].

The present paper has an expository and survey character, however it con-
tains several new results (Lemma 2.1, Proposition 2.7, Proposition 3.5) which
generalize and simplify older concepts. The first section, which introduces the
central notions and their basic properties, is followed by an exposition of func-
torial properties of classes of dually slender modules and their consequences.
The last part is devoted to a description of the structure of classes of dually
slender modules over particular types of rings. The results cited in the paper
are mostly published in [18], [11], [15], [16] and [17].

Throughout the paper a ring R means an associative ring with unit, and
a module means a right R-module. We will use the letter R for a ring in all
claims. The minimal cardinality of a set of generators of an R-module M is
denoted by genR(M). A ring R is (von Neumann) regular provided that each
x ∈ R has a pseudo-inverse element, i.e. there is y ∈ R satisfying xyx = x. A
regular ring R is abelian regular if all idempotents of R are central. We refer
for non-explained terminology to [1].

1. Dually slender modules and rings conditions

A module M is said to be a dually slender module provided the natural
Z-monomorphism Ψ :

⊕
i HomR(M, Ai) ↪→ HomR(M,

⊕
i Ai) is surjective for

every system of modules {Ai}. As it is shown in [3] and in [10, Section 1],
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dually slender modules can be described in natural way by language of systems
of submodules:

Lemma 1.1. The following conditions are equivalent for an arbitrary module
M:

(1) M is dually slender,
(2) if M =

⋃
i<ω Mn for an increasing chain of submodules Mn ⊆ Mn+1 ⊆

M , then there exists n such that M = Mn,
(3) if M =

∑
i<ω Mn for a system of submodules Mn ⊆ M , n < ω, then

there exists n such that M =
∑

i<ω Mn.

Proof. (1)⇒(2) Let Mn ⊆ Mn+1 be an increasing chain of submodules such
that M =

⋃
i<ω Mn and M 6= Mn for each n. We define a homomorphism

ϕ : M → ⊕
n<ω M/Mn by the condition ϕ(m) = (πn(m)| n < ω) where πn

are the natural projections of M onto M/Mn. Since ϕ(M) *
⊕

n<j M/Mn

for every j < ω, ϕ cannot be expressed as a finite sum of homomor-
phisms from Hom(M, M/Mn), i.e. the natural monomorphism Ψ is not onto
Hom(M,

⊕
n<ω M/Mn) and so M is not dually slender.

(2)⇒(1) If M is not dually slender, there exists a homomorphism ϕ ∈
Hom(M,

⊕
α<κ Aα) such that παϕ 6= 0 for infinitely many α (where πα is the

natural projection
⊕

Aα → Aα), w.l.o.g. suppose κ = ω and παϕ 6= 0 for each
α. Put Mn = {m ∈ M | παϕ(m) = 0 ∀α ≥ n}. Then M =

⋃
i<ω Mn, M 6= Mn

and (Mn| n < ω) forms an increasing chain of submodules.
(2) ⇐⇒ (3) Obvious, when we put Nn =

∑
i<n Mi. ¤

The condition (2) shows immediately that every finitely generated module
is dually slender. Moreover, it is clear from (3) that there is no infinitely
countably generated dually slender module. An another easy consequence of
Lemma 1.1 is an observation that for every infinite cardinal κ of uncountable
cofinality a union of strictly increasing chain of the length κ consisting of
dually slender submodules produces a dually slender module as well. Such
an example of a dually slender module is every κ-generated uniserial module,
which is a union of κ-many cyclic submodules. This construction motivates
the following definition of particular classes of dually slender modules. For an
arbitrary cardinal number λ we say that a module M is λ-reducing if for every
submodule N ⊆ M such that gen(N) ≤ λ there exists a finitely generated
submodule F for which N ⊆ F ⊆ M .

For an arbitrary ring R we will denote by DS(R), Rκ(R), FG(R) and
FP(R) respectively the classes of all dually slender, κ-reducing, finitely gen-
erated and finitely presented right R-modules. Now, it is easy to see that the
following inclusions of classes holds true:

Lemma 1.2. Let λ < κ be infinite cardinal numbers. Then FP(R) ⊆
FG(R) ⊆ Rκ(R) ⊆ Rλ(R) ⊆ DS(R).

We have remarked that the inclusion FG(R) ⊆ Rκ(R) is strict over suitable
rings (for example in case of valuation domains with κ+-generated ideals).
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Moreover, it is proved in [14, Theorem 2.8] that a ring power Rω contains a
dually slender right ideal which is not ω-reducing.

Recall that classes Rκ(R) and DS(R) have similar class properties as the
class FG(R):

Proposition 1.3. Let κ be an infinite cardinal. The classes Rκ(R) and
DS(R) are closed under taking homomorphic images, extensions and finite
sums.

Proof. We can see immediately from Lemma 1.1 (from the definition of κ-
reducing modules) that factors and finite direct sums of dually slender (κ-
reducing) modules are dually slender (κ-reducing) as well. Fix A ⊆ M .

Suppose A,M/A ∈ DS(R) and M =
⋃

i<ω Mn for an increasing chain of
submodules (Mn ⊆ | n < ω). Then there exists n0 such that Mn0 + A = M
and n1 such that A ⊆ Mn1 by Lemma 1.1 (2). Hence M = Mn + A = Mn for
n = max(n0, n1) which proves M is dually slender.

Suppose A,M/A ∈ Rκ(R) and take a set {mα| α < κ} ⊂ M . By the
definition, there exists a finitely generated submodule F ⊆ M such that {mα+
A| α < κ} ⊂ F + A. Since F + A ∈ Rκ(R), there exists a finitely generated
submodule G ⊆ F + A ⊆ M containing {mα| α < κ} which finishes the
proof. ¤

It is not hard to characterize rings over which dually slender modules are
precisely finitely presented ones.

Theorem 1.4. DS(R) = FP(R) iff R is right noetherian.

Proof. It is well known that FG(R) = FP(R) iff R is right noetherian and
it is proved in [10, 7o] or [4, Proposition 1.9] that DS(R) = FG(R) for every
right noetherian ring R. ¤

The ring-theoretical characterization of the class condition DS(R) = FG(R)
is still an open problem and it leads to the following definition. We say that
a ring R is right steady, provided DS(R) = FG(R) (left steadiness is defined
by the same condition for left modules). Beside noetherian rings large classes
of rings are known to be steady, for instance perfect rings [5, Corollary 1.6],
semiartinian rings with countable socle lengths [6, Theorem 2.2], countable
commutative rings [10, 110] or abelian regular rings with countably generated
ideals [18, Corollary 7]. A characterization of steadiness is available only for
a few particular interesting classes of rings, as we will show in the sequel.

Remind that a ring is called right semiartinian if every non-zero cyclic mod-
ule contains simple submodule (more about semiartinian rings see [8]). In [6]
they are shown large classes of examples both steady and non-steady abelian
regular semiartinian rings. The papers [11] and [17] are devoted to charac-
terize steadiness of abelian regular semiartinian rings [11, Theorem 3.4] and
regular semiartinian rings with primitive factors artinian [17, Theorem 3.5] as
follows:
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Theorem 1.5. Let R be a regular semiartinian ring with primitive factors
artinian. Then the following conditions are equivalent:

(1) R is right steady;
(2) R is left steady;
(3) There exists no infinitely generated dually slender right ideal of any

factor-ring of R.
(4) There exists no infinitely generated dually slender left ideal of any

factor-ring of R.

A criterion of steadiness of valuation rings is given in [18, Theorem 13] and
more general case of chain rings (i.e. rings with linearly ordered both lattices
of right and left ideals) is characterized in [16, Theorem 2.4]:

Theorem 1.6. For a chain ring R the following conditions are equivalent:
(1) R is right steady.
(2) There exists no ω1-generated uniserial right module.
(3) R/rad(R) contains no uncountable strictly decreasing chain of ideals,

R contains no uncountably generated right ideal and for every ideal
I and for every prime ideal P ⊆ I there exists an ideal K such that
P ⊂ K ⊂ I.

However countable valuation rings are steady, it is presented an example of
a countable chain ring which is not right steady in [16, Example 1.9].

2. Functorial properties

In this section we generalize several nice properties of the tensor functor
applied on the classes DS(R) and Rκ(R) which are introduced for particular
cases in [11, section 4] and [16, section 3].

Lemma 2.1. Let R and S be rings, κ be an infinite cardinal and let X be an
R-S-bimodule. Denote by TX the tensor functor −⊗R X : Mod-R → Mod-S.

(1) If XS ∈ DS(S), then TX(DS(R)) ⊆ DS(S),
(2) if XS ∈ Rκ(S), then TX(Rκ(R)) ⊆ Rκ(S),
(3) if there exists a pure embedding of RR into RX as left R-modules, then

TX(Mod-R \ FG(R)) ⊆ Mod-S \ FG(S).

Proof. Let A ⊆ M be R-modules with the inclusion monomorphism i.
Throughout the proof A⊗X will mean Im(i⊗R X) in M ⊗R X.

(1) Suppose M ∈ DS(R). Let M⊗RX =
⋃

n<ω Nn for an increasing chain of
S-submodules Ni, i < ω. Define R-submodules Pn = {m ∈ M | m⊗X ∈ Nn}
for each n < ω. Note that m⊗X is dually slender since it is a factor of dually
slender S-module X for every m ∈ M . Hence for each m ∈ M there exists
n such that m ⊗ X ⊆ Nn which proves that M =

⋃
n<ω Pn. Clearly, the

sequence (Pn| n < ω) forms an increasing chain of R-submodules of M and
Pn⊗X ⊆ Nn, for each n < ω. As M is a dually slender R-module, there exists
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n such that Pn = M , hence Pn ⊗X = Nn = M ⊗X. Thus M ⊗X is a dually
slender S-module.

(2) Suppose M ∈ Rκ(R) and take an arbitrary set {mα ⊗ xα| α < κ} ⊆
M ⊗ X (since κ is infinite we may w.l.o.g. consider the set of generators of
κ-generated module is formed by simple tensors). As M ∈ Rκ(R), there exists
n1, . . . , nk ∈ M such that mα =

∑k
i=1 nirαi for rαi ∈ R and α < κ. Moreover,

there exists a finitely generated S-submodule Y ⊆ XS such that {rαixα| i =
1, . . . , k, α < κ} ⊆ Y . Now, mα ⊗ xα =

∑k
i=1 ni ⊗ rαixα ∈ ∑k

i=1 ni ⊗ Y ,
for each α < κ, where

∑k
i=1 ni ⊗ Y is a finitely generated submodule of the

S-module M ⊗X.
(3) If M is infinitely generated, there exists an infinite cardinal λ and a

strictly increasing chain of submodules (Mα | α < λ) such that M =
⋃

α<λ Mα

and M/Mα 6= 0. Note that M ⊗ X = Mα ⊗ X iff M/Mα ⊗ X = 0. Since
there is a pure monomorphism RR ↪→R X we have M/Mα

∼= M/Mα ⊗ R ↪→
M/Mα ⊗ X. Hence M/Mα 6= 0 iff M/Mα ⊗ X 6= 0. Finally, observe that
M ⊗X =

⋃
α<λ Mα ⊗X where M ⊗X 6= Mα ⊗X, i.e. M ⊗X is infinitely

generated. ¤
Corollary 2.2. If S is a ring and R is a subring of S, then TS(DS(R)) ⊆
DS(S) for the functor TS = −⊗R S

Applying Lemma 2.1 we are ready to describe the correspondence between
classes of dually slender modules over a ring and over its pure extension [11,
Lemma 4.1]:

Corollary 2.3. Let S be a ring and let R be its subring such that R is a pure
left R-submodule of S. Assume that S is right steady. Then R is right steady.

Note that every extension of a regular ring is pure, therefore right steadiness
of an extension of a regular ring R implies R is right steady as well [11,
Corollary 4.2].

If a ring R contains an idempotent e, we can define the natural ring structure
on eRe. The following claim [16, Proposition 3.3] shows that an occurrence of
an idempotent e ∈ R allows to reduce the question about steadiness of R to
rings eRe and (1− e)R(1− e):

Proposition 2.4. Let e ∈ R be an idempotent. Then R is right steady if and
only if both the rings eRe and (1− e)R(1− e) are right steady.

Proof. Let M ∈ DS(eRe) \ FG(eRe). Remark that eR is eRe-R-bimodule
which is finitely generated as a right R-module. Moreover eR ∼= eRe⊕eR(1−e)
as left eRe-modules, hence eRe is a left pure submodule of eR. Applying
Lemma 2.1 (1) and (3) for X = eR we get that M ⊗ eR is an infinitely
generated dually slender R-module.

Let M ∈ DS(R)\FG(R). Then either M/MeR or M/M(1−e)R is infinitely
generated (otherwise M ∈ FG(R)). We may suppose w.l.o.g. that M =
M/M(1− e)R is infinitely generated, so MeR = M . Suppose Me =

⋃
i<ω Nie
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where (Nie| i < ω) is an increasing chain of eRe-submodules. Then M =
MeR =

⋃
i<ω NieR. Since M is dually slender, there exists i such that M =

NieR. Hence Me = NieRe = Nie, i.e. Me ∈ DS(eRe). Assume Me is
a finitely generated eRe-module. Then Me =

∑
i≤n mieRe. Since M =

MeR, we get M =
∑

i≤n mieReR =
∑

i≤n mieR, hence M would be a finitely
generated R-module. Thus Me is infinitely generated. ¤

An inductional extension of Proposition 2.4 yields:

Corollary 2.5. Let {ei| 1 ≤ i ≤ n} be an orthogonal set of idempotents
satisfying

∑
i≤n ei = 1. Then R is right steady if and only if eiRei is right

steady for every i ≤ n.

Recall that a ring R is serial, provided there exists a (complete) set of orthog-
onal idempotents {ei, i ≤ n} such that

∑
i≤n ei = 1 and eiR, Rei respectively

are right, left uniserial modules for all i ≤ n. Combining Theorem 1.6 and
Corollary 2.5 we can formulate the claim [16, Theorem 3.4]:

Theorem 2.6. The following conditions are equivalent for a serial ring R
with a complete set of orthogonal idempotents {ei, i ≤ n}:

(1) R is right steady,
(2) eiRei is right steady for every i ≤ n,
(3) there exists no ω1-generated uniserial R-module.

It is well known that for Morita equivalent rings R and S there exists κ-
generated dually slender R-module iff there exists κ-generated dually slender
S-module, hence R is right steady iff S is right steady. The following ob-
servation helps us to produce examples of (non-)steady rings in an another
way:

Proposition 2.7. Let R be a ring and let {ei| 1 ≤ i ≤ n} be an orthogonal
set of idempotents satisfying

∑
i≤n ei = 1. Suppose that S is a subring of R

such that eiRei ⊆ S for each i ≤ n. Then R is right steady if and only if S is
right steady.

Proof. Note eiRei = eiSei for every i ≤ n. Applying Corollary 2.5 for both
the rings R and S we see that R is right steady iff eiRei = eiSei is right steady
for every i ≤ n iff S is right steady. ¤

Using Proposition 2.7 we can easily see that any subring of the full matrix
ring over R of degree n containing all diagonal matrices is right steady iff R
is right steady.

3. Largeness and density of DS(R)

This section is devoted to studying the question how large can be the
class DS(R). Obviously, representative class of dually slender modules over
a right steady ring is only a set, more precisely, DS(R) contains at most
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max(2card(R), ω) non-isomorphic dually slender (i.e. finitely generated) mod-
ules. We will show that even when we restrict our considerations to regular
non-steady rings, the representative class of dually slender modules can be
quite small set as well as a proper class.

First, denote by I(R) the class of all injective modules over R and recall
two elementary lemmas [14, Theorem 1.6]:

Lemma 3.1. Let κ be an infinite cardinal. If there exists an embedding R
(κ)
R →

RR, then I(R) ⊆ Rκ(R) (⊆ DS(R)).

Proof. Fix E ∈ I. If N is a κ-generated submodule of E, there exists an
epimorphism f : R

(κ)
R → N which may be extended to a homomorphism

g : R → E such that N ⊆ g(R). As g(R) is a cyclic module we have E ∈
Rκ(R). ¤
Lemma 3.2. If there exists an embedding R2

R → RR, then I(R) ⊆ Rω(R)
(⊆ DS(R)).

Proof. Fix elements a, b ∈ R such that R2
R
∼= aR ⊕ bR. It is easy to see that

bnaR ∼= R and bnaR ∩ ∑
i<n biaR = 0, hence R(ω) ∼= ⊕

n<ω bnaR is a right
ideal of R. ¤

Remark that the hypothesis of Lemma 3.1 is satisfied for example by the
endomorphism ring End(V ) for any κ-dimensional vector space V . More-
over, any non-commutative domain which does not satisfy right Ore condition
(for instance polynomials in two non-commuting variables Z[x, y]) satisfies the
hypothesis of Lemma 3.2. Hence over such rings we have a proper class of
non-isomorphic dually slender modules.

In [5, Lemma 1.10] it is proved the following analogical claim:

Proposition 3.3. Let R be a simple ring containing an infinite orthogonal
set of idempotents. Then I(R) ⊆ Rω(R) (⊆ DS(R).

Corollary 3.4. Let R be a non-artinian simple von Neumann regular ring.
Then I(R) ⊆ Rω(R) (⊆ DS(R).

In case the regular ring is “close enough” to commutativity (such as abelian
regular rings are), we are able to bound the cardinality of an arbitrary dually
slender module, however the ring need not be right steady.

Denote by Gκ(R) the class of all R-modules which are at most κ-generated
for any infinite cardinal κ.

Proposition 3.5. Let R be a regular ring with primitive factors artinian and
put κ = max(2card(R), ω). Then DS(R) ⊆ Gκ(R).

Proof. The claim is trivial for finite rings, suppose R is infinite. Let M ∈
DS(R) and denote by {Iα| α < λ} the set of all maximal two-sided ideals.
It is well known (see e.g. [7, 6.19]) that

⋂
α<λ MIα = 0, hence M embeds

into
∏

α<λ M/MIα. Since the ring R/Iα is right artinian and so steady and
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M/MIα ∈ DS(R/Iα) = FG(R/Iα), we can take a finitely generated R-module
Fα such that Fα +MIα = M , α < λ. Then (M/

∑
α<λ Fα)Iβ = 0 for each β <

λ, hence M =
∑

α<λ Fα. Now, it remains to bound card(F ) ≤ card(R) and the
number of maximal two-sided λ ≤ 2card(R). Thus gen(M) ≤ card(M) ≤ κ. ¤

The paper [15] contains a generalization of the previous observation which
makes clear how “dense” (with respect to the subclasses of κ-generated mod-
ules Gκ(R)) is the class DS(R) in Mod-R. We will sum up claims [15, 1.1 –
1.4] in the following formulation:

Theorem 3.6. Let R be a ring and put κ = card(R)+. Denote by Simp
the representative set of all simple modules. Then R is not right steady iff∏

S∈Simp Sκ ⊕ ⊕
S∈Simp E(S) contains an infinitely generated dually slender

submodule.

Corollary 3.7. Put κ = 22card(R)
. If R is not a right steady ring, then DS(R)∩

Gκ * FG(R).

For commutative regular rings it is proved in [15, Theorem 2.7] the follow-
ing easier form of a module-theoretical criterion of existence of an infinitely
generated dually slender module:

Theorem 3.8. Let R be a commutative regular ring. Then R is steady if and
only if the R-module R∗ = HomZ(R,Q/Z) contains no infinitely generated
dually slender submodule.

We conclude the paper with a short list of open problems:
- Provide a ring-theoretical criterion of steadiness (at least for commu-

tative rings).
- Does the condition DS(R) = Rκ(R) imply R is right steady?
- Exists a ring R over which DS(R) is closed under products?
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