UNJ-RINGS

M. TAMER KOSAN, TRUONG CONG QUYNH, AND JAN ZEMLICKA

ABSTRACT. In analogy to the elementwise definitions of UU and UJ-rings, a
ring R is called UNJ if 1 + N(R) + J(R) = U(R). After presenting several
characterizations and properties, we consider the UNJ property within many
well-studied classes of rings. In particular, we examine Dedekind finite rings,

2-primal rings, (semi)regular rings, m-regular rings and rings has the identity

22 = z. Finally, we close the paper with group rings.

1. INTRODUCTION

All rings are associative with unity and all modules are unitary right modules.
For a ring R, the Jacobson radical and the set of nilpotent elements and the set of
invertible elements of R are denoted by J(R) and N(R) and U(R), respectively.
The symbols M, (R) and T,,(R) stand for the n x n matrix ring and the n x n
upper triangular matrix ring over R, respectively. R[z] stands for the polynomial
ring over R. For an endomorphism ¢ of a ring R, let R[z;o] denote the ring of
left skew polynomials over R. Hence, elements of R[z;o| are polynomials in z
with coefficients in R written on the left, subject to the relation xr = o(r)x for
all r € R. The group ring of a group G over a ring R is denoted by RG. Let Z be
the ring of integers and Z,, be the ring of Z modulo n. We also use N to denote
the set of natural numbers.

We recall two popular facts on the ring theory: 1+ J(R) € U(R) and 1 +
N(R) C U(R). A ring R which satisfies the equalities 1 + J(R) = U(R) and
14+ N(R) = U(R) is said to be a UlJ-ring ([14] and [21]) or a UU-ring ([6]),
respectively. Let us remark that for any elements n € N(R) and j € J(R) we
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have 1+n+j € U(R). They offer us the natural definition: a ring R is a UNJ-ring
if 1+ N(R)+ J(R) =U(R).

The outline of this paper is as follows. We begin by giving several examples of
both UNJ and UU (or UJ)-rings. For example, we prove that 2-primal UNJ-rings
are UJ. Furthermore, if R is a semilocal ring then R is UJ iff R is UNJ iff there
exists n € N such that R/J(R) = Z4. We then develop some preliminary results
which we utilize throughout the paper. In this section, we also study the UNJ
property within the well-studied classes of Dedekind finite rings, 2-primal rings,
(semi)regular rings, m-regular rings. It is shown that every UNJ-ring is Dedekind
finite, and if R is a UN J-ring then R is semiregular iff R is an exchange ring iff
R is a clean ring. Finally, we close this section with #-rings (or rings with the
involution). For a x-ring R, we prove that R is a x-regular UNJ-ring iff R is a
m-*-regular, reduced and UNJ-ring iff R has the identity 2> = z = z*. In the last
section, we study the group rings. Let G be a locally finite group and R be a
ring. Put H = GN 1+ J(RG). Then the group RG is UNJ if and only if G/H
is a 2-group, J(R) C J(R(G/H)) and R is a UNJ-ring.

2. UNJ RINGS

It is easy to see that 1+n+j € U(R) for any elements n € N(R) and j € J(R).
Hence R is said to be a UNJ-ring if we have 1 + N(R) + J(R) = U(R).

We begin with several examples of both UNJ and UU (or UJ)-rings to initiate
the reader and to motivate our study.

Examples 2.1. (1) Any UU or UJ-ring is a UNJ-ring. Let R be the Fo-
algebra generated by x,y and with the relation 22 = 0. Then R is a
UNJ-ring which is not a UJ-ring.

(2) A field is UNJ if and only if it is the field Fs.

(3) If R is a UU-ring, then S = R[[z]] is a UNJ-ring (since the ideal (z)
generated by x in S is contained in J(.9)).

(4) For a UU-ring R and n > 1, the ring of upper triangular matrix 7,,(R) is
a UNJ-ring (since the strictly upper matrices (only 0’s on the diagonal)
form a nilpotent ideal and hence are contained in the Jacobson radical of
R).

(5) The polynomial ring Fy[z] is a UNJ-ring (since its a unit trivial ring and
both its Jacobson radical and its nilpotent elements set are equal to {0}).

(6) If R is a local ring with the residue field Fy, then R is UNJ, but it is not
UU unless its Jacobson radical is nil.
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The following observations characterize UNJ-rings in terms of N(R) and U(R)
for a ring R.

Proposition 2.2. The following conditions are equivalent for a ring R:
(1) R is a UNJ-ring,
(2) UR/J(R)) ={14n+ J(R) :ne€ N(R)},
(3) 1+ U(R)=N(R)+ J(R).

Proof. This is straightforward. U

Proposition 2.3. The following conditions are equivalent for a ring R such that
N(R) is closed under the addition.

(1) R is UNJ.
(2) U(R)+ U(R) € N(R) + J(R).

Proof. (2) = (1) This is obvious.

(1) = (2) Let u,u’ € U(R). We write u = 1+n+j and v’ = 1+ n' + 5" for some
n,n' € N and j,j' € J. Then u—u =n—n'+j— 35" € N+ J by our assumption
which implies U(R) + U(R) C N(R) + J(R). O

First, make an elementary but useful observation on invertible elements.

Lemma 2.4. Let R be a ring, I C J(R) an ideal and u € R. Then v € U(R) if
and only if u+1 € U(R/I).

In the following proposition, we collect a few basic properties of UNJ-rings.
Recall that a ring R is called 2-primal if its prime radical contains N (R).

Proposition 2.5. For a ring R, the following hold.

(1) If R is a UNJ-ring, then R/J(R) is a UU-ring.

(2) If R/J(R) is a UU-ring, then, for any uw € U(R), there exists r € N such
that u" € 1+ N(R) + J(R).

(3) If R is a UNJ-ring then, for any ideal I of R contained in J(R), R/I is
also a UNJ-ring.

(4) Let I be a nil ideal in R such that N(R) is closed under addition. If R/
1s @ UNJ-ring then R is a UNJ-ring.

(5) If R is a UNJ-ring, then a power of 2 belongs to J(R).

(6) If R is a 2-primal UNJ-ring then R is a UJ-ring.

Proof. (1) If R is a UNJ-ring, then

UR/J(R)) ={u+J(R)|uecU(R)}
={l1+n+J(R)|ne N(R)}



4 M. T. KOSAN, T. C. QUYNH, AND J. ZEMLICKA

by Lemma 2.4. Hence the quotient ring R/J(R) is clearly a UU-ring.

(2) Suppose that R/J is a UU-ring and u € U(R). Then u+ J(R) € U(R/J(R))
and so there exists n € N(R/J(R)) such that u—1—n € J(R). Now we can find
| € N such that both 2!,n' € J(R). This leads to (1 +n)* € 1+ J(r) for some
s € N. Now we obtain u® € 1+ J(R), as required.

(3) This is clear since J(R/I) = J(R)/I.

(4) Let w € U(R) and I be a nil ideal of R. Then u+ I € U(R/I) and u + I =
1+n+7+41 with n+ I anilpotent in R/I and j € J(R) by the hypothesis. Since
I is a nil ideal, we obtain n is also a nilpotent in R and so there exists n’ € I.
Hence it is a nilpotent in R, with u = 1+n+n'+j. Finally, n+n' € N(R). We
deduce that R is UNJ.

(5) Since —1+ J(R) € U(R/J(R)) and R/J(R) is a UU-ring by (1), we have
2+ J(R) =n+ J(R) for some n+ J(R) € N(R/J(R)). This leads to the fact
that a power of 2 belongs to J(R).

(6) If R is a 2-primal ring, then we have that N(R) is the prime radical of R and
hence N(R) C J(R). This implies that U(R) = 1+ N(R) + J(R) = 1+ J(R).
Hence R is a UlJ-ring. O

Remark 2.6. The converse implication of Proposition 2.5(4) is not true in general.
For example, the ring Z /27Z is UNJ. But, Z is not a UNJ-ring.

A ring R is reduced if R has no nonzero nilpotents.

Proposition 2.7. The following are equivalent for a ring R:

(1) R is a UJ-ring.
(2) R is a UNJ-ring and R/J(R) is reduced.

Proof. (1) = (2) This follows from [14, Proposition 2.3].
(2) = (1) Let w € U(R). Then u —1—j € N(R) for some j € J(R), and so
u— 1+ J(R) is a nilpotent in R/J(R). By (2), we get u — 1 € J(R). O

For an endomorphism ¢ of R, R is called o-compatible if, for any a,b € R,
ab =0 < ao(b) = 0, and in this case o is clearly injective. An automorphism o
of R is said to be of locally finite order if for every a € R there exists an integer
n(a) with c™(a) = a.

Theorem 2.8. Let R be a 2-primal ring and o a locally finite order automorphism
of R such that R is o-compatible. The following are equivalent:

(1) R[x,o] is a UNJ-ring.

(2) J(R) = N(R) and U(R) =1+ J(R) (R is a UJ-ring).
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Proof. (1) = (2) Assume that R[z,0] is a UNJ-ring. By [4, Theorem 3.1],
1+ J(R) €1+ J(R[z,0]) + N(R[z,0]) C 1+ [R[z,0] + N(R|x,0])

for some nil ideal I of R. It follows that J(R) C IR[x,o]+ N(R|z,c]). Once can
check that J(R) C I + N(R). Since R is a 2-primal ring, J(R) C N(R). Hence
J(R) = N(R).

For the rest, take an arbitrary unit u of R. Since Rz, o] is a UNJ-ring, we get
u =14 ag + by for some nilpotent elements ag, by of R. Then u € 1 + N(R) =
1+ J(R).
(2) = (1) Since R is a 2-primal ring, we get by (2) that J(R) = Nil.(R) = P(R),
where P(R) is the prime radical and Nil,(R) is the lower nilradical of R. Then
R/J(R) is a reduced ring. Since o(J(R)) C J(R), the map ¢ : R/J(R) —
R/J(R) defined by 6(z) = o(a) is an endomorphism of R/J(R). We next show
that R/J(R) is -compatible. To this, we must show that ab € P(R) < ao(b) €
P(R) for any a,b € R. But this equivalence ” < ” has been established in the
proof of Claims 1 and 2 of [1, Theorem 3.6].

Now since R/J(R) is a reduced ring and it is 6-compatible, we get

R R
Ul——=lz,0]) = U(—=
which is equal to {1} by [7, Corollary 2.12] and (2). Now
Rlr,0] R 1z,5]
J(R)[z,0]  J(R)"T
. Rlx,0] . . . .
which shows that ————— is a UNJ-ring. On the other hand, since R is a 2-
J(R)[z, 0]

primal ring that is o-compatible, and Nil,.(R[z,0]) = Nil.(R)[t, o] by [7, Lemma
2.2], we have J(R)[z,0| = Nil.(R|z,o]) is nil. By [10, Theorem 2.4], we obtain
that R[z, o] is a UNJ-ring. O

Corollary 2.9. . A 2-primal ring R[z] is a UNJ ring if and only if J(R) = N(R)
and U(R) =1+ J(R).

The following result gives a description of UNJ-rings and UJ-ring that are
semilocal. UU-rings and UlJ-rings were handled by Danchev and Lam in [10,
Theorem 2.8] and Kogan, Leroy and Matczuk in [14, Proposition 1.4], respectively.

Theorem 2.10. The following conditions are equivalent for a semilocal ring R:
(1) R is a UNJ-ring,
(2) R is a UJ-ring,
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(3) there ezists n € N such that R/J(R) = Zj.

Proof. (1)=>(3). Note that R/J(R) is a UU-ring by Proposition 2.5(1). Hence
R/J(R) = Z for some n by [10, Theorem 2.8].

(2)<(3) is proved in [14, Proposition 1.4].

(2)=-(1) This is obvious. O

Example 2.11. By Theorem 2.10, any semilocal domain, say R, satisfying
R/J(R) = ZY for some n (for example, the localization of integers in the ideal
27Z) is a UNJ-ring and a UJ-ring. On the other hand, if J(R) # 0, it is not a
UU-ring by [10, Theorem 2.8].

The following technical lemma generalizes [10, Theorem 2.7].

Lemma 2.12. Let R be a ring, g,h € R be non-zero orthogonal idempotents and
a € gRh, b € hRg such that ab = g and ba = h. If f = g+ h, then f is an
idempotent and both the rings fRf and R are not UU-rings.

Proof. Since gh = 0 = hg and a = gah, b = hbg, we can easily compute that
ag = 0 = ha, gb = 0 = bh, and so a* = aha = 0 and b* = bgb = 0. Obviously,
f =g+ h is a non-zero idempotent and g, h,a,b € fRf. Put u =g+ a+ b and
v=f—u=h—(a+b). Then

w=(g+a+b)P=g+gat+tab+bgt+ba=f+g+a+b=f+u,

hence uwv = u(f —u) = u — u? = —g and symmetrically vu = v — u?> = —g,
which proves that u,v € U(fRf). As N(fRf)NU(fRf) = 0, we obtain that
f—u=v¢ N(fRf). Thus fRf is not a UU-ring. By [10, Theorem 2.6(2)], R
is not a UU-ring. 0

The following results show that UNJ-rings and UU-rings are Dedekind finite.
UlJ-rings were handled by Kosan, Leroy and Matczuk in [14, Proposition 1.3(6)].

Theorem 2.13. Fvery UU-ring is Dedekind finite.

Proof. Assume that a ring R is not Dedekind finite. Hence there exist x,y € R
such that zy = 1 and yxr # 1. Let e = yx and observe that e is a nonzero
idempotent and it holds ze = z and ey = y. Put a = (1 — e)ze, b = ey(l — e),
g = ab, and h = ba. We will verify that these elements satisfy the hypothesis of
Lemma 2.12. First note that

g=ab=(1—e)zey(l—e) = (L —e)(zy)(zy)(1—e)=(1—e)’ = (L —¢)
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is a nonzero idempotent. Moreover, h? = b(ab)a = b(1 — e)a = h and ahb =
1 —e # 0, so h is a nonzero idempotent as well. Since a®> = 0 = b%, we obtain
that gh = 0 = hg, i.e. f and g forms an orthogonal pair of nonzero idempotents.
Clearly, a = ga = aba = ah and b = bg = bab = hb. Hence a € gRh and b € hRg.
Now R is not a UU-ring by Lemma 2.12. OJ

Theorem 2.14. Every UNJ-ring is Dedekind finite.

Proof. Suppose that R is not Dedekind finite and let x,y € R such that zy = 1
and e = yr # 1. Then 0 # e ¢ J(R) and 1 — e ¢ J(R). Hence R/J(R) is not
Dedekind finite. As R/J(R) is not UU-ring by Theorem 2.13, R is not a UNJ-ring
by Proposition 2.5(1). O

Recall that a ring R is said to be regular in the sense of yon Neumann if for
every a € R, there is an x € R such that axa = a, and R is said to be m-regular
if for each a € R, a™ € a"Ra™ for some positive integer n.

Theorem 2.15. The following are equivalent for a ring R:

(1) R is a reqular UNJ-ring.
(2) R is a w-reqular, reduced and UNJ-ring.
(3) R has the identity x* = x (i.e., R is a Boolean ring).

Proof. (1) = (2). Since R is regular, J(R) = 0 and every nonzero right ideal
contains a nonzero idempotent. Assume R is not reduced. Then there exists
a nonzero element a € R such that a* = 0. By [16, Theorem 2.1], there is
an idempotent e € RaR such that eRe = My(T") for some non-trivial ring 7" If
u € U(eRe), then u+1—e € U(R). Since R is a UNJ-ring, we have u—e € N(R),
that is (u — €)*¥ = 0 for some positive integer k. It follows that u — e € N(eRe),
and so eRe = My(T) is a UNJ-ring. On the other hand, A = G (1)) € My(T)
0 1
1 -1
(2) = (3) Since reduced rings are abelian, R is strongly m-regular and J(R) =
N(R) = 0by [3, Lemma5]. Let z € R. By [19, Theorem 1], there exist ¢* = ¢ € R
and u € U(R) such that x = e +u and ze = ex € N(R) = 0. So we have

and A — I, = ( ) € U(My(T)), a contradiction.

r=x—ze=z(l—ce)=u(l—e)=(1—eu=1-—ce,

since R is a UNJ-ring. Thus, 2 = x.
(3) = (1). Clearly, R is regular. Let u € U(R). Then u? = u which implies
uw =1, and so R is a UNJ-ring. OJ
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A ring R is semiregular ([17]) if R/J(R) is regular and idempotents lift modulo
J(R), and R is exchange ([18]) if for each a € R there exists ¢* = e € aR such
that 1 —e € (1 —a)R.

Theorem 2.16. The following are equivalent for a ring R:
(1) R is a semireqular UNJ-ring.
(2) R is an exchange UNJ-ring.
(3) R/J(R) is a Boolean ring.

Proof. This follows from the proof of Theorem 2.15 and the fact that semiregular
rings are exchange. 0

R is called a clean ring if every element of R is a sum of an idempotent and
a unit ([18]). By [12], R is a clean ring if and only if R/J(R) is clean and
idempotents lift modulo J(R). Also, by [18], R/J(R) is clean and so R is clean.

Corollary 2.17. The following are equivalent for a UN J-ring R:
(1) R is a semiregular ring.
(2) R is an exchange ring.
(3) R is a clean ring.

A ring R is said to be a *-ring or ring with the involution if there exists a map

x : R — R such that
(r+y)" =" +y,
(zy)" =ya"
and
(%) =2

for all x,y € R. A *ring R is called %-regular if R is regular and the involution
is proper (that is, z* = 0 implies x = 0 for all x € R) [5]. Equivalently, for each
r € R, rR = pR for some projection p € R (that is, p* = p = p*).

Theorem 2.18. The following are equivalent for a x-ring R:
(1) R is a *-reqular UNJ-ring.
(2) R is a w-x-regular, reduced and UNJ-ring.
(3) R has the identity x* = x = x*.

Proof. (1) = (2) Remark that s-regular rings are m-*-regular and regular. Now
(2) follows from Theorem 2.15.

(2) = (3) From the proof of Theorem 2.15, we must show that every idempotent
of R is a projection. Take e an idempotent of R. As R is m-x-regular, eR = pR
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for some p?> = p* = p € R. Hence e = pe and p = ep. Since R is abelian, we get

e=p.
(3) = (1) This follows from Theorem 2.15. O

Corollary 2.19. Let R be a x-ring. Then R is a w-reqular UNJ-ring if and only
if R is a regular UNJ-ring and x = 1g.

A x-ring R is called semi-*-regular if R/J(R) is *-regular and idempotents lift
modulo J(R). According to [22], R is called a x-clean ring if every element of R
is a sum of a projection and a unit.

Theorem 2.20. The following are equivalent for a x-ring R:
(1) R is a semi-x-reqular UNJ-ring.
(2) R is a x-clean UNJ-ring.
(3) R/J(R) has the identity z* = x = x*.

Proof. (1) = (2) By [9, Proposition 4.9], a x-ring R is *-clean if and only if
R/J(R) is x-clean and every projection of R/J(R) can be lifted to a projection
of R. Now assume that R is a semi-x-regular UNJ-ring. Then idempotents lift
modulo J(R) and every projection of R/J(R) can be lifted to a projection of R.
Note that every nonzero right ideal of R contains a nonzero idempotent. Then
R/J(R) is reduced, and hence R = R/J(R) is an abelian regular ring. Let a € R.
By [19, Theorem 1], we obtain a = e + u for some e¢* = ¢ € R and u € U(R). We
next show that R is #-clean. Clearly, R is *-regular and hence eR = pR for some
p? = p* = p € R. This implies e = pe = ep = p since R is abelian.

(2) = (3) This is clear.

(3) = (1) This follows from Corollary 2.18 and Theorem 2.18. O
Remark 2.21. Let R = Zs X Zs be the trivial extension of Zs by Zy. An involution
x of R is defined by (g 2) — (g _ab). Clearly, « # 1z. We have that
R/J(R) = Zj has the identity 22 = 2 = * and R is a semi-*-regular UNJ-ring.

Corollary 2.22. Let R be a UNJ x-ring. Then R is semi-x-reqular if and only
if R is x-clean.

3. GROUP RINGS

The following observation describes some particular cases of ring extensions
which preserves the UNJ-property.

Lemma 3.1. Let R and S be rings andi: R — S, € : S — R be ring homomor-
phisms such that €L = idg.
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(1) e(N(9)) = N(R), e(U(5)) = U(R), e(J(5)) S N(R).

(2) If S is a UNJ-ring, then R is a UNJ-ring as well.

(3) If R is a UNJ-ring, Kere C N(S) + J(S) and e(J(S)) = J(R), then S is
a UNJ-ring.

Proof. (1) Clearly, ¢(N(S)) € N(R) and €¢(U(S)) € U(R). On the other hand,
N(R) = el(N(R)) C e(N(9)) and U(R) = e(U(R)) C €(U(S)). Let I be a
maximal ideal of R. Since ¢ is a homomorphism onto R, ¢ !(I) is a maximal
ideal of S, hence J(S) C ¢ *(I) which implies that €(J(S)) C J(R).

(2) Let S be a UNJ-ring. Then U(S) =1+ N(S) + J(5), hence by (1)

U(R) = e(U(5)) = 1+ e(N(5)) +e(J(S5)) € 1+ N(R) + J(R)
(3) If R is a UNJ-ring we have
U(S)=¢ " (UR)) =1+ N(S)+ J(S) + Kere =1+ N(S) + J(5)
by (1). O

Remark 3.2. It is easy to see that Lemma 3.1 (2) and (3) hold also for UU and
UlJ-rings.

Given a ring R and a group G, we denote the group ring of R over G by RG.
An arbitrary element of RG, say o € RG, is of the form o = )
r € R.

Let us remark that if R is a ring and M is a monoid, then RM is a monoid
ring which is defined in the same way as a group ring, using the monoid structure
to get a multiplication (see e.g.[15, section I1.3]). In particular, RM is a group
ring if M is group or RM is isomorphic to a polynomial ring R[X] for any set of
variables for the additive monoid M = NSX)(qL).

Proposition 3.3. Let R be a ring, M a monoid and RM a monoid ring. If RM
1s a UNJ-ring, then R is a UNJ-ring as well.

gec Tgg where

Proof. Let us consider the inclusion ¢ : R — RM (i.e. i(r) = re for a monoid
unit e) and € : RM — R is the augmentation homomorphism €(}, .., rmm) =
Y men Tm (cf. [15, Proposition 11.3.1]). Then it is enough to apply Lemma 3.1(2).

UJ

As a consequence we get that if the polynomial ring R[X] is a UNJ-ring, then
R is a UNJ-ring. For polynomial rings over commutative rings we can obtain
more.

Remark 3.4. Tt is well-known that if R is a commutative ring with identity and
f=ay+az+--+ayx, € R[x] is a polynomial, then
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(1) fisaunit in R[x] if and only if a¢ is a unit in R and aq, as, .. .,a, € N(R)
are nilpotent in R.
(2) fis a nilpotent in R[x] if and only if all the coefficients are nilpotents.

From Remark 3.4, we have the following.

Proposition 3.5. A polynomial ring R|x] over a commutative ring R with iden-

tity is UNJ if and only if R is UNJ.
A(RG) denotes the ideal of RG generated by the set {g — 1|g € G}.

Lemma 3.6. Let G be a locally finite 2-group, R a ring and I an ideal of R. If
R/I is UU-ring and I C J(RG), then A(RG) C J(RG).

Proof. Repeating parts of proofs of [11, Theorem 2.1(ii)] and [13, Theorem 2.22],
observe that 2 € N(R/I) by [10, Theorem 2.6(1)], hence A((R/I1)G) C N((R/I)G)
by [8, Corollary, p.682]. As A((R/I)G) is anil ideal, it is contained in J((R/I)G).
Since IG C J(RG) by the assumption, we get

J((R/T)G) = J(RG/IG) = J(RG)/IG.
Thus A(RG) C J(RG). O

Proposition 3.7. Let R be a UNJ-ring and G be a locally finite 2-group. If
J(R) C J(RG), then for each u € U(RG) there exist n € N(R) and j € J(RGQG)
such that w =14 n+ 7. In particular, RG is a UNJ-ring.

Proof. Since R/J(R) is a UU-ring by Proposition 2.5 and J(R) C J(RG), we get
that A(RG) C J(RG) by Lemma 3.6.

Now, let u € U(RG). Then e¢(u) = 1+ e(u — 1) € U(R) by Lemma 3.1(1)
used for the augmentation map e and the inclusion ¢. Since R is a UNJ-ring,
there exist n € N(R) and j € J(R) such that e(u) = 1 4+ n + j. Now we can
easily compute using Lemma 3.1(1) again that e(u — 1 —n — j) = 0, and so
u—1—n—j € A(RG) C J(RG). As j € J(R) C J(RG), we can see that
u—1—n € J(RG). Thus u = 14+n+ (u—1—n) presents a desired decomposition
of U. O

Lemma 3.8. Let G be a locally finite 2-group, R be a ring and I and ideal such
that I C J(R) N J(RG) and R/I is a UU-ring. Then J(R) C J(RG).
Proof. Observe that A(RG) C J(RG) by Lemma 3.6. Then we obtain
RG _, RG/A(RG) _ R
J(RG) J(RG)/A(RG) J(R)’
which implies that J(R) C J(GR). O
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Now we are able to formulate an analogue of [11, Theorem 2.1(ii)] and [13,
Theorem 2.22] which characterizes UNJ-rings over locally finite groups.

Theorem 3.9. Let G be a locally finite group and R be a ring. Put H=GN1+
J(RG). Then H is a normal subgroup of G. Furthermore, RG is a UNJ-ring if
and only if G/H is a 2-group, J(R) C J(R(G/H)) and R is a UNJ-ring.

Proof. Obviously, G is a subgroup of the group U(RG). Consider a group ho-
momorphism ¢ : G — U(RG/J(RG)) defined by ¢(9) = g + J(RG). Then
Kerop = {g € G| | g—1 € J(RG)} = H which implies that H is a normal
subgroup of the group G and G/H is isomorphic to a subgroup of the group
U(RG/J(RG)).

(=) By Proposition 2.5, RG/J(RG) is a UU-ring. Put I = RN J(RG).
Applying Lemma 3.1(1) for the augmentation map € : RG — R and the inclusion
t: R — RG, we see that [ = e(I) C e(J(RG)) C J(R). Then we have a natural
embedding R/I — RG/J(RG) which means that R/I is a subring of the UU-ring
RG/J(RG). So it is a UU-ring as well by [10, Theorem 2.6].

Since U(RG/J(RG)) is a 2-group by [10, Theorem 3.4] and G/H is isomor-
phic to a subgroup of U(RG/J(RG)), it is a 2-group as well. Finally, applying
Lemma 3.8 on the group G/H and the ideal I, we obtain J(R) C J(R(G/H)).
Finally, R is a UNJ-ring by Proposition 3.3.

(<) Let us denote by A(H) an ideal of RG generated by the set {h—1|h € H}
and recall that RG/A(H) = R(G/H) by [20, Corollary 3.3.5]. Furthermore, let us
observe that h — 1 € J(RGQ) for every h € H by the definition of the subgroup H.
Hence A(H) C J(RG) N A(RG) which implies J(RG/A(H)) = J(RG)/A(H).

Let u € U(RG). Thenu+A(H) € U(RG/A(H)) 2 U(R(G/H)) and we obtain
from Proposition 3.7 applied on the locally finite 2-group G/H and the ring R
that there exist n € R and j + A(H) € J(RG)/A(H) = J(RG/A(H) such that
u+ A(H)=1+n+j+ A(H). Since A(H) C J(RG) there exists j €C J(RG)
for which u = 14 n+r +j with n € N(R) C N(RG) and j + j € J(RG), which
finishes the proof. 0
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