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M. TAMER KOŞAN, TRUONG CONG QUYNH, AND JAN ŽEMLIČKA

Abstract. In analogy to the elementwise definitions of UU and UJ-rings, a

ring R is called UNJ if 1 + N(R) + J(R) = U(R). After presenting several

characterizations and properties, we consider the UNJ property within many

well-studied classes of rings. In particular, we examine Dedekind finite rings,

2-primal rings, (semi)regular rings, π-regular rings and rings has the identity

x2 = x. Finally, we close the paper with group rings.

1. Introduction

All rings are associative with unity and all modules are unitary right modules.

For a ring R, the Jacobson radical and the set of nilpotent elements and the set of

invertible elements of R are denoted by J(R) and N(R) and U(R), respectively.

The symbols Mn(R) and Tn(R) stand for the n × n matrix ring and the n × n
upper triangular matrix ring over R, respectively. R[x] stands for the polynomial

ring over R. For an endomorphism σ of a ring R, let R[x;σ] denote the ring of

left skew polynomials over R. Hence, elements of R[x;σ] are polynomials in x

with coefficients in R written on the left, subject to the relation xr = σ(r)x for

all r ∈ R. The group ring of a group G over a ring R is denoted by RG. Let Z be

the ring of integers and Zn be the ring of Z modulo n. We also use N to denote

the set of natural numbers.

We recall two popular facts on the ring theory: 1 + J(R) ⊆ U(R) and 1 +

N(R) ⊆ U(R). A ring R which satisfies the equalities 1 + J(R) = U(R) and

1 + N(R) = U(R) is said to be a UJ-ring ([14] and [21]) or a UU-ring ([6]),

respectively. Let us remark that for any elements n ∈ N(R) and j ∈ J(R) we
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have 1+n+j ∈ U(R). They offer us the natural definition: a ring R is a UNJ-ring

if 1 +N(R) + J(R) = U(R).

The outline of this paper is as follows. We begin by giving several examples of

both UNJ and UU (or UJ)-rings. For example, we prove that 2-primal UNJ-rings

are UJ. Furthermore, if R is a semilocal ring then R is UJ iff R is UNJ iff there

exists n ∈ N such that R/J(R) ∼= Zn
2 . We then develop some preliminary results

which we utilize throughout the paper. In this section, we also study the UNJ

property within the well-studied classes of Dedekind finite rings, 2-primal rings,

(semi)regular rings, π-regular rings. It is shown that every UNJ-ring is Dedekind

finite, and if R is a UNJ-ring then R is semiregular iff R is an exchange ring iff

R is a clean ring. Finally, we close this section with ∗-rings (or rings with the

involution). For a ∗-ring R, we prove that R is a ∗-regular UNJ-ring iff R is a

π-∗-regular, reduced and UNJ-ring iff R has the identity x2 = x = x∗. In the last

section, we study the group rings. Let G be a locally finite group and R be a

ring. Put H = G ∩ 1 + J(RG). Then the group RG is UNJ if and only if G/H

is a 2-group, J(R) ⊆ J(R(G/H)) and R is a UNJ-ring.

2. UNJ rings

It is easy to see that 1+n+j ∈ U(R) for any elements n ∈ N(R) and j ∈ J(R).

Hence R is said to be a UNJ-ring if we have 1 +N(R) + J(R) = U(R).

We begin with several examples of both UNJ and UU (or UJ)-rings to initiate

the reader and to motivate our study.

Examples 2.1. (1) Any UU or UJ-ring is a UNJ-ring. Let R be the F2-

algebra generated by x, y and with the relation x2 = 0. Then R is a

UNJ-ring which is not a UJ-ring.

(2) A field is UNJ if and only if it is the field F2.

(3) If R is a UU-ring, then S = R[[x]] is a UNJ-ring (since the ideal (x)

generated by x in S is contained in J(S)).

(4) For a UU-ring R and n ≥ 1, the ring of upper triangular matrix Tn(R) is

a UNJ-ring (since the strictly upper matrices (only 0’s on the diagonal)

form a nilpotent ideal and hence are contained in the Jacobson radical of

R).

(5) The polynomial ring F2[x] is a UNJ-ring (since its a unit trivial ring and

both its Jacobson radical and its nilpotent elements set are equal to {0}).
(6) If R is a local ring with the residue field F2, then R is UNJ, but it is not

UU unless its Jacobson radical is nil.
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The following observations characterize UNJ-rings in terms of N(R) and U(R)

for a ring R.

Proposition 2.2. The following conditions are equivalent for a ring R:

(1) R is a UNJ-ring,

(2) U(R/J(R)) = {1 + n+ J(R) : n ∈ N(R)},
(3) 1 + U(R) = N(R) + J(R).

Proof. This is straightforward. �

Proposition 2.3. The following conditions are equivalent for a ring R such that

N(R) is closed under the addition.

(1) R is UNJ.

(2) U(R) + U(R) ⊆ N(R) + J(R).

Proof. (2)⇒ (1) This is obvious.

(1)⇒ (2) Let u, u′ ∈ U(R). We write u = 1 + n+ j and u′ = 1 + n′+ j′ for some

n, n′ ∈ N and j, j′ ∈ J . Then u−u′ = n−n′+ j− j′ ∈ N +J by our assumption

which implies U(R) + U(R) ⊆ N(R) + J(R). �

First, make an elementary but useful observation on invertible elements.

Lemma 2.4. Let R be a ring, I ⊆ J(R) an ideal and u ∈ R. Then u ∈ U(R) if

and only if u+ I ∈ U(R/I).

In the following proposition, we collect a few basic properties of UNJ-rings.

Recall that a ring R is called 2-primal if its prime radical contains N(R).

Proposition 2.5. For a ring R, the following hold.

(1) If R is a UNJ-ring, then R/J(R) is a UU-ring.

(2) If R/J(R) is a UU-ring, then, for any u ∈ U(R), there exists r ∈ N such

that ur ∈ 1 +N(R) + J(R).

(3) If R is a UNJ-ring then, for any ideal I of R contained in J(R), R/I is

also a UNJ-ring.

(4) Let I be a nil ideal in R such that N(R) is closed under addition. If R/I

is a UNJ-ring then R is a UNJ-ring.

(5) If R is a UNJ-ring, then a power of 2 belongs to J(R).

(6) If R is a 2-primal UNJ-ring then R is a UJ-ring.

Proof. (1) If R is a UNJ-ring, then

U(R/J(R)) = {u+ J(R) | u ∈ U(R)}
= {1 + n+ J(R) | n ∈ N(R)}
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by Lemma 2.4. Hence the quotient ring R/J(R) is clearly a UU-ring.

(2) Suppose that R/J is a UU-ring and u ∈ U(R). Then u+ J(R) ∈ U(R/J(R))

and so there exists n ∈ N(R/J(R)) such that u−1−n ∈ J(R). Now we can find

l ∈ N such that both 2l, nl ∈ J(R). This leads to (1 + n)s ∈ 1 + J(r) for some

s ∈ N. Now we obtain us ∈ 1 + J(R), as required.

(3) This is clear since J(R/I) = J(R)/I.

(4) Let u ∈ U(R) and I be a nil ideal of R. Then u + I ∈ U(R/I) and u + I =

1+n+ j+ I with n+ I a nilpotent in R/I and j ∈ J(R) by the hypothesis. Since

I is a nil ideal, we obtain n is also a nilpotent in R and so there exists n′ ∈ I.

Hence it is a nilpotent in R, with u = 1 +n+n′+ j. Finally, n+n′ ∈ N(R). We

deduce that R is UNJ .

(5) Since −1 + J(R) ∈ U(R/J(R)) and R/J(R) is a UU-ring by (1), we have

2 + J(R) = n + J(R) for some n + J(R) ∈ N(R/J(R)). This leads to the fact

that a power of 2 belongs to J(R).

(6) If R is a 2-primal ring, then we have that N(R) is the prime radical of R and

hence N(R) ⊆ J(R). This implies that U(R) = 1 + N(R) + J(R) = 1 + J(R).

Hence R is a UJ-ring. �

Remark 2.6. The converse implication of Proposition 2.5(4) is not true in general.

For example, the ring Z /2Z is UNJ. But, Z is not a UNJ-ring.

A ring R is reduced if R has no nonzero nilpotents.

Proposition 2.7. The following are equivalent for a ring R:

(1) R is a UJ-ring.

(2) R is a UNJ-ring and R/J(R) is reduced.

Proof. (1)⇒ (2) This follows from [14, Proposition 2.3].

(2) ⇒ (1) Let u ∈ U(R). Then u − 1 − j ∈ N(R) for some j ∈ J(R), and so

u− 1 + J(R) is a nilpotent in R/J(R). By (2), we get u− 1 ∈ J(R). �

For an endomorphism σ of R, R is called σ-compatible if, for any a, b ∈ R,

ab = 0 ⇔ aσ(b) = 0, and in this case σ is clearly injective. An automorphism σ

of R is said to be of locally finite order if for every a ∈ R there exists an integer

n(a) with σn(a) = a.

Theorem 2.8. Let R be a 2-primal ring and σ a locally finite order automorphism

of R such that R is σ-compatible. The following are equivalent:

(1) R[x, σ] is a UNJ-ring.

(2) J(R) = N(R) and U(R) = 1 + J(R) (R is a UJ-ring).
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Proof. (1)⇒ (2) Assume that R[x, σ] is a UNJ-ring. By [4, Theorem 3.1],

1 + J(R) ⊆ 1 + J(R[x, σ]) +N(R[x, σ]) ⊆ 1 + IR[x, σ] +N(R[x, σ])

for some nil ideal I of R. It follows that J(R) ⊆ IR[x, σ] +N(R[x, σ]). Once can

check that J(R) ⊆ I + N(R). Since R is a 2-primal ring, J(R) ⊆ N(R). Hence

J(R) = N(R).

For the rest, take an arbitrary unit u of R. Since R[x, σ] is a UNJ-ring, we get

u = 1 + a0 + b0 for some nilpotent elements a0, b0 of R. Then u ∈ 1 + N(R) =

1 + J(R).

(2)⇒ (1) Since R is a 2-primal ring, we get by (2) that J(R) = Nil∗(R) = P (R),

where P (R) is the prime radical and Nil∗(R) is the lower nilradical of R. Then

R/J(R) is a reduced ring. Since σ(J(R)) ⊆ J(R), the map σ̄ : R/J(R) →
R/J(R) defined by σ̄(x̄) = σ(a) is an endomorphism of R/J(R). We next show

that R/J(R) is σ̄-compatible. To this, we must show that ab ∈ P (R)⇔ aσ(b) ∈
P (R) for any a, b ∈ R. But this equivalence ” ⇔ ” has been established in the

proof of Claims 1 and 2 of [1, Theorem 3.6].

Now since R/J(R) is a reduced ring and it is σ̄-compatible, we get

U(
R

J(R)
[x, σ̄]) = U(

R

J(R)
),

which is equal to {1} by [7, Corollary 2.12] and (2). Now

R[x, σ]

J(R)[x, σ]
∼=

R

J(R)
[x, σ̄],

which shows that
R[x, σ]

J(R)[x, σ]
is a UNJ-ring. On the other hand, since R is a 2-

primal ring that is σ-compatible, and Nil∗(R[x, σ]) = Nil∗(R)[t, σ] by [7, Lemma

2.2], we have J(R)[x, σ] = Nil∗(R[x, σ]) is nil. By [10, Theorem 2.4], we obtain

that R[x, σ] is a UNJ-ring. �

Corollary 2.9. . A 2-primal ring R[x] is a UNJ ring if and only if J(R) = N(R)

and U(R) = 1 + J(R).

The following result gives a description of UNJ-rings and UJ-ring that are

semilocal. UU-rings and UJ-rings were handled by Danchev and Lam in [10,

Theorem 2.8] and Koşan, Leroy and Matczuk in [14, Proposition 1.4], respectively.

Theorem 2.10. The following conditions are equivalent for a semilocal ring R:

(1) R is a UNJ-ring,

(2) R is a UJ-ring,
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(3) there exists n ∈ N such that R/J(R) ∼= Zn
2 .

Proof. (1)⇒(3). Note that R/J(R) is a UU-ring by Proposition 2.5(1). Hence

R/J(R) ∼= Zn
2 for some n by [10, Theorem 2.8].

(2)⇔(3) is proved in [14, Proposition 1.4].

(2)⇒(1) This is obvious. �

Example 2.11. By Theorem 2.10, any semilocal domain, say R, satisfying

R/J(R) ∼= Zn
2 for some n (for example, the localization of integers in the ideal

2Z) is a UNJ-ring and a UJ-ring. On the other hand, if J(R) 6= 0, it is not a

UU-ring by [10, Theorem 2.8].

The following technical lemma generalizes [10, Theorem 2.7].

Lemma 2.12. Let R be a ring, g, h ∈ R be non-zero orthogonal idempotents and

a ∈ gRh, b ∈ hRg such that ab = g and ba = h. If f = g + h, then f is an

idempotent and both the rings fRf and R are not UU-rings.

Proof. Since gh = 0 = hg and a = gah, b = hbg, we can easily compute that

ag = 0 = ha, gb = 0 = bh, and so a2 = aha = 0 and b2 = bgb = 0. Obviously,

f = g + h is a non-zero idempotent and g, h, a, b ∈ fRf . Put u = g + a + b and

v = f − u = h− (a+ b). Then

u2 = (g + a+ b)2 = g + ga+ ab+ bg + ba = f + g + a+ b = f + u,

hence uv = u(f − u) = u − u2 = −g and symmetrically vu = u − u2 = −g,

which proves that u, v ∈ U(fRf). As N(fRf) ∩ U(fRf) = ∅, we obtain that

f − u = v /∈ N(fRf). Thus fRf is not a UU-ring. By [10, Theorem 2.6(2)], R

is not a UU-ring. �

The following results show that UNJ-rings and UU-rings are Dedekind finite.

UJ-rings were handled by Koşan, Leroy and Matczuk in [14, Proposition 1.3(6)].

Theorem 2.13. Every UU-ring is Dedekind finite.

Proof. Assume that a ring R is not Dedekind finite. Hence there exist x, y ∈ R
such that xy = 1 and yx 6= 1. Let e = yx and observe that e is a nonzero

idempotent and it holds xe = x and ey = y. Put a = (1 − e)xe, b = ey(1 − e),
g = ab, and h = ba. We will verify that these elements satisfy the hypothesis of

Lemma 2.12. First note that

g = ab = (1− e)xey(1− e) = (1− e)(xy)(xy)(1− e) = (1− e)2 = (1− e)
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is a nonzero idempotent. Moreover, h2 = b(ab)a = b(1 − e)a = h and ahb =

1 − e 6= 0, so h is a nonzero idempotent as well. Since a2 = 0 = b2, we obtain

that gh = 0 = hg, i.e. f and g forms an orthogonal pair of nonzero idempotents.

Clearly, a = ga = aba = ah and b = bg = bab = hb. Hence a ∈ gRh and b ∈ hRg.

Now R is not a UU-ring by Lemma 2.12. �

Theorem 2.14. Every UNJ-ring is Dedekind finite.

Proof. Suppose that R is not Dedekind finite and let x, y ∈ R such that xy = 1

and e = yx 6= 1. Then 0 6= e /∈ J(R) and 1 − e /∈ J(R). Hence R/J(R) is not

Dedekind finite. As R/J(R) is not UU-ring by Theorem 2.13, R is not a UNJ-ring

by Proposition 2.5(1). �

Recall that a ring R is said to be regular in the sense of yon Neumann if for

every a ∈ R, there is an x ∈ R such that axa = a, and R is said to be π-regular

if for each a ∈ R, an ∈ anRan for some positive integer n.

Theorem 2.15. The following are equivalent for a ring R:

(1) R is a regular UNJ-ring.

(2) R is a π-regular, reduced and UNJ-ring.

(3) R has the identity x2 = x (i.e., R is a Boolean ring).

Proof. (1) ⇒ (2). Since R is regular, J(R) = 0 and every nonzero right ideal

contains a nonzero idempotent. Assume R is not reduced. Then there exists

a nonzero element a ∈ R such that a2 = 0. By [16, Theorem 2.1], there is

an idempotent e ∈ RaR such that eRe ∼= M2(T ) for some non-trivial ring T . If

u ∈ U(eRe), then u+1−e ∈ U(R). Since R is a UNJ-ring, we have u−e ∈ N(R),

that is (u− e)k = 0 for some positive integer k. It follows that u− e ∈ N(eRe),

and so eRe ∼= M2(T ) is a UNJ-ring. On the other hand, A =

(
1 1

1 0

)
∈ M2(T )

and A− I2 =

(
0 1

1 −1

)
∈ U(M2(T )), a contradiction.

(2) ⇒ (3) Since reduced rings are abelian, R is strongly π-regular and J(R) =

N(R) = 0 by [3, Lemma 5]. Let x ∈ R. By [19, Theorem 1], there exist e2 = e ∈ R
and u ∈ U(R) such that x = e+ u and xe = ex ∈ N(R) = 0. So we have

x = x− xe = x(1− e) = u(1− e) = (1− e)u = 1− e,

since R is a UNJ-ring. Thus, x2 = x.

(3) ⇒ (1). Clearly, R is regular. Let u ∈ U(R). Then u2 = u which implies

u = 1, and so R is a UNJ-ring. �
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A ring R is semiregular ([17]) if R/J(R) is regular and idempotents lift modulo

J(R), and R is exchange ([18]) if for each a ∈ R there exists e2 = e ∈ aR such

that 1− e ∈ (1− a)R.

Theorem 2.16. The following are equivalent for a ring R:

(1) R is a semiregular UNJ-ring.

(2) R is an exchange UNJ-ring.

(3) R/J(R) is a Boolean ring.

Proof. This follows from the proof of Theorem 2.15 and the fact that semiregular

rings are exchange. �

R is called a clean ring if every element of R is a sum of an idempotent and

a unit ([18]). By [12], R is a clean ring if and only if R/J(R) is clean and

idempotents lift modulo J(R). Also, by [18], R/J(R) is clean and so R is clean.

Corollary 2.17. The following are equivalent for a UNJ-ring R:

(1) R is a semiregular ring.

(2) R is an exchange ring.

(3) R is a clean ring.

A ring R is said to be a ∗-ring or ring with the involution if there exists a map

∗ : R→ R such that

(x+ y)∗ = x∗ + y∗,

(xy)∗ = y∗x∗

and

(x∗)∗ = x

for all x, y ∈ R. A ∗-ring R is called ∗-regular if R is regular and the involution

is proper (that is, x∗ = 0 implies x = 0 for all x ∈ R) [5]. Equivalently, for each

r ∈ R, rR = pR for some projection p ∈ R (that is, p2 = p = p∗).

Theorem 2.18. The following are equivalent for a ∗-ring R:

(1) R is a ∗-regular UNJ-ring.

(2) R is a π-∗-regular, reduced and UNJ-ring.

(3) R has the identity x2 = x = x∗.

Proof. (1) ⇒ (2) Remark that ∗-regular rings are π-∗-regular and regular. Now

(2) follows from Theorem 2.15.

(2)⇒ (3) From the proof of Theorem 2.15, we must show that every idempotent

of R is a projection. Take e an idempotent of R. As R is π-∗-regular, eR = pR
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for some p2 = p∗ = p ∈ R. Hence e = pe and p = ep. Since R is abelian, we get

e = p.

(3)⇒ (1) This follows from Theorem 2.15. �

Corollary 2.19. Let R be a ∗-ring. Then R is a π-regular UNJ-ring if and only

if R is a regular UNJ-ring and ∗ = 1R.

A ∗-ring R is called semi-∗-regular if R/J(R) is ∗-regular and idempotents lift

modulo J(R). According to [22], R is called a ∗-clean ring if every element of R

is a sum of a projection and a unit.

Theorem 2.20. The following are equivalent for a ∗-ring R:

(1) R is a semi-∗-regular UNJ-ring.

(2) R is a ∗-clean UNJ-ring.

(3) R/J(R) has the identity x2 = x = x∗.

Proof. (1) ⇒ (2) By [9, Proposition 4.9], a ∗-ring R is ∗-clean if and only if

R/J(R) is ∗-clean and every projection of R/J(R) can be lifted to a projection

of R. Now assume that R is a semi-∗-regular UNJ-ring. Then idempotents lift

modulo J(R) and every projection of R/J(R) can be lifted to a projection of R.

Note that every nonzero right ideal of R contains a nonzero idempotent. Then

R/J(R) is reduced, and hence R̄ = R/J(R) is an abelian regular ring. Let a ∈ R̄.

By [19, Theorem 1], we obtain a = e+ u for some e2 = e ∈ R̄ and u ∈ U(R̄). We

next show that R̄ is ∗-clean. Clearly, R̄ is ∗-regular and hence eR̄ = pR̄ for some

p2 = p∗ = p ∈ R̄. This implies e = pe = ep = p since R̄ is abelian.

(2)⇒ (3) This is clear.

(3)⇒ (1) This follows from Corollary 2.18 and Theorem 2.18. �

Remark 2.21. Let R = Z2×Z2 be the trivial extension of Z2 by Z2. An involution

∗ of R is defined by

(
a b

0 a

)
7→
(
a −b
0 a

)
. Clearly, ∗ 6= 1R. We have that

R/J(R) ∼= Z2 has the identity x2 = x = x∗ and R is a semi-∗-regular UNJ-ring.

Corollary 2.22. Let R be a UNJ ∗-ring. Then R is semi-∗-regular if and only

if R is ∗-clean.

3. Group rings

The following observation describes some particular cases of ring extensions

which preserves the UNJ-property.

Lemma 3.1. Let R and S be rings and i : R→ S, ε : S → R be ring homomor-

phisms such that ει = idR.
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(1) ε(N(S)) = N(R), ε(U(S)) = U(R), ε(J(S)) ⊆ N(R).

(2) If S is a UNJ-ring, then R is a UNJ-ring as well.

(3) If R is a UNJ-ring, Ker ε ⊆ N(S) + J(S) and ε(J(S)) = J(R), then S is

a UNJ-ring.

Proof. (1) Clearly, ε(N(S)) ⊆ N(R) and ε(U(S)) ⊆ U(R). On the other hand,

N(R) = ει(N(R)) ⊆ ε(N(S)) and U(R) = ει(U(R)) ⊆ ε(U(S)). Let I be a

maximal ideal of R. Since ε is a homomorphism onto R, ε−1(I) is a maximal

ideal of S, hence J(S) ⊆ ε−1(I) which implies that ε(J(S)) ⊆ J(R).

(2) Let S be a UNJ-ring. Then U(S) = 1 +N(S) + J(S), hence by (1)

U(R) = ε(U(S)) = 1 + ε(N(S)) + ε(J(S)) ⊆ 1 +N(R) + J(R)

(3) If R is a UNJ-ring we have

U(S) = ε−1(U(R)) = 1 +N(S) + J(S) + Ker ε = 1 +N(S) + J(S)

by (1). �

Remark 3.2. It is easy to see that Lemma 3.1 (2) and (3) hold also for UU and

UJ-rings.

Given a ring R and a group G, we denote the group ring of R over G by RG.

An arbitrary element of RG, say α ∈ RG, is of the form α =
∑

g∈G rgg where

r ∈ R.

Let us remark that if R is a ring and M is a monoid, then RM is a monoid

ring which is defined in the same way as a group ring, using the monoid structure

to get a multiplication (see e.g.[15, section II.3]). In particular, RM is a group

ring if M is group or RM is isomorphic to a polynomial ring R[X] for any set of

variables for the additive monoid M = N(X)
0 (+).

Proposition 3.3. Let R be a ring, M a monoid and RM a monoid ring. If RM

is a UNJ-ring, then R is a UNJ-ring as well.

Proof. Let us consider the inclusion ι : R → RM (i.e. i(r) = re for a monoid

unit e) and ε : RM → R is the augmentation homomorphism ε(
∑

m∈M rmm) =∑
m∈M rm (cf. [15, Proposition II.3.1]). Then it is enough to apply Lemma 3.1(2).

�

As a consequence we get that if the polynomial ring R[X] is a UNJ-ring, then

R is a UNJ-ring. For polynomial rings over commutative rings we can obtain

more.

Remark 3.4. It is well-known that if R is a commutative ring with identity and

f = a0 + a1x+ · · ·+ anxn ∈ R[x] is a polynomial, then
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(1) f is a unit in R[x] if and only if a0 is a unit in R and a1, a2, . . . , an ∈ N(R)

are nilpotent in R.

(2) f is a nilpotent in R[x] if and only if all the coefficients are nilpotents.

From Remark 3.4, we have the following.

Proposition 3.5. A polynomial ring R[x] over a commutative ring R with iden-

tity is UNJ if and only if R is UNJ.

∆(RG) denotes the ideal of RG generated by the set {g − 1|g ∈ G}.

Lemma 3.6. Let G be a locally finite 2-group, R a ring and I an ideal of R. If

R/I is UU-ring and I ⊆ J(RG), then ∆(RG) ⊆ J(RG).

Proof. Repeating parts of proofs of [11, Theorem 2.1(ii)] and [13, Theorem 2.22],

observe that 2 ∈ N(R/I) by [10, Theorem 2.6(1)], hence ∆((R/I)G) ⊆ N((R/I)G)

by [8, Corollary, p.682]. As ∆((R/I)G) is a nil ideal, it is contained in J((R/I)G).

Since IG ⊆ J(RG) by the assumption, we get

J((R/I)G) ∼= J(RG/IG) = J(RG)/IG.

Thus ∆(RG) ⊆ J(RG). �

Proposition 3.7. Let R be a UNJ-ring and G be a locally finite 2-group. If

J(R) ⊆ J(RG), then for each u ∈ U(RG) there exist n ∈ N(R) and j ∈ J(RG)

such that u = 1 + n+ j. In particular, RG is a UNJ-ring.

Proof. Since R/J(R) is a UU-ring by Proposition 2.5 and J(R) ⊆ J(RG), we get

that ∆(RG) ⊆ J(RG) by Lemma 3.6.

Now, let u ∈ U(RG). Then ε(u) = 1 + ε(u − 1) ∈ U(R) by Lemma 3.1(1)

used for the augmentation map ε and the inclusion ι. Since R is a UNJ-ring,

there exist n ∈ N(R) and j ∈ J(R) such that ε(u) = 1 + n + j. Now we can

easily compute using Lemma 3.1(1) again that ε(u − 1 − n − j) = 0, and so

u − 1 − n − j ∈ ∆(RG) ⊆ J(RG). As j ∈ J(R) ⊆ J(RG), we can see that

u−1−n ∈ J(RG). Thus u = 1+n+(u−1−n) presents a desired decomposition

of U . �

Lemma 3.8. Let G be a locally finite 2-group, R be a ring and I and ideal such

that I ⊆ J(R) ∩ J(RG) and R/I is a UU-ring. Then J(R) ⊆ J(RG).

Proof. Observe that ∆(RG) ⊆ J(RG) by Lemma 3.6. Then we obtain

RG

J(RG)
∼=

RG/∆(RG)

J(RG)/∆(RG)
∼=

R

J(R)
,

which implies that J(R) ⊆ J(GR). �
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Now we are able to formulate an analogue of [11, Theorem 2.1(ii)] and [13,

Theorem 2.22] which characterizes UNJ-rings over locally finite groups.

Theorem 3.9. Let G be a locally finite group and R be a ring. Put H = G∩ 1 +

J(RG). Then H is a normal subgroup of G. Furthermore, RG is a UNJ-ring if

and only if G/H is a 2-group, J(R) ⊆ J(R(G/H)) and R is a UNJ-ring.

Proof. Obviously, G is a subgroup of the group U(RG). Consider a group ho-

momorphism ϕ : G → U(RG/J(RG)) defined by ϕ(g) = g + J(RG). Then

Kerϕ = {g ∈ G| | g − 1 ∈ J(RG)} = H which implies that H is a normal

subgroup of the group G and G/H is isomorphic to a subgroup of the group

U(RG/J(RG)).

(⇒) By Proposition 2.5, RG/J(RG) is a UU-ring. Put I = R ∩ J(RG).

Applying Lemma 3.1(1) for the augmentation map ε : RG→ R and the inclusion

ι : R→ RG, we see that I = ει(I) ⊆ ε(J(RG)) ⊆ J(R). Then we have a natural

embedding R/I → RG/J(RG) which means that R/I is a subring of the UU-ring

RG/J(RG). So it is a UU-ring as well by [10, Theorem 2.6].

Since U(RG/J(RG)) is a 2-group by [10, Theorem 3.4] and G/H is isomor-

phic to a subgroup of U(RG/J(RG)), it is a 2-group as well. Finally, applying

Lemma 3.8 on the group G/H and the ideal I, we obtain J(R) ⊆ J(R(G/H)).

Finally, R is a UNJ-ring by Proposition 3.3.

(⇐) Let us denote by ∆(H) an ideal of RG generated by the set {h−1|h ∈ H}
and recall that RG/∆(H) ∼= R(G/H) by [20, Corollary 3.3.5]. Furthermore, let us

observe that h−1 ∈ J(RG) for every h ∈ H by the definition of the subgroup H.

Hence ∆(H) ⊆ J(RG) ∩∆(RG) which implies J(RG/∆(H)) = J(RG)/∆(H).

Let u ∈ U(RG). Then u+∆(H) ∈ U(RG/∆(H)) ∼= U(R(G/H)) and we obtain

from Proposition 3.7 applied on the locally finite 2-group G/H and the ring R

that there exist n ∈ R and j + ∆(H) ∈ J(RG)/∆(H) = J(RG/∆(H) such that

u + ∆(H) = 1 + n + j + ∆(H). Since ∆(H) ⊆ J(RG) there exists j̃ ∈⊆ J(RG)

for which u = 1 + n+ r+ j̃ with n ∈ N(R) ⊆ N(RG) and j + j̃ ∈ J(RG), which

finishes the proof. �
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