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Abstract. A right R-module M is called (strongly) virtually regular if every cyclic

(finitely generated) submodule is isomorphic to a direct summand of M , and M

said to be completely virtually regular if every submodule of M is virtually regu-

lar. In this paper, we provide description of classes of (strongly) virtually regular

rings, in particular for semiperfect rings. Furthermore, we completely characterize

(strongly/completely) virtually regular Abelian groups, which generalizes recently

published results.

1. Introduction

In a series of papers [4, 5], Facchini et all and, independently, Behboodi et all [9]

introduced and studied structures of modules with chain conditions up to isomorphism,

and they called a module M virtually/iso semisimple if every submodule of M is iso-

morphic to a direct summand of M . A non-zero indecomposable virtually semisimple

right R-module is called virtually/iso simple. Recently, the authors of [10] introduced

the concepts of virtually regular modules: a right R-module M (strongly) virtually reg-

ular if every cyclic (finitely generated) submodule is isomorphic to a direct summand

of M , and a module M said to be completely virtually regular if every submodule of M

is virtually regular. Let us recall that these terms generalize the following well-known

concepts: A ring R is said to be von Neumann regular if for each x ∈ R, there exists an

element y in R such that x = xyx. Various module theoretic versions of von Neumann

regular rings have been considered by Azumaya [3], Fieldhouse [11], Ware [16], and

Zelmanowitz [17], in particular, a module M is said to be

Zelmanowitz-regular if for each x ∈ M there exists a homomorphism f : M → R

such that f(x)x = x;

Azumaya-regular if every submodule of M is locally split in M (i.e., for any x0 ∈ N

there exists a homomorphism s : M → N such that s(x0) = x0). Equivalently, every

cyclic submodule of M is a direct summand?

Recalling a well-known characterization of regular rings as rings such that each prin-

cipal left (or right) ideal is generated by an idempotent, we obtain in Proposition 2.2

similar result that R is a right virtually regular ring if and only if r(a) is a summand of

R for each a ∈ R if and only if r(a) is generated by an idempotent for each a ∈ R, where
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r(a) denotes the right annihilator of a ∈ R. This useful characterization leads to obtain

the important closure property that the class of virtually regular rings is inherited by

direct products (Theorem 2.3). Moreover, they yield that a local ring is right virtually

regular if and only if it is a domain (Corollary 2.5) and, if R is an abelian semiperfect

ring, then R is right virtually regular if and only if R is isomorphic to a product of

finitely many local domains (Theorem 2.6). By the chart in [10], virtually/iso semisim-

ple modules are strongly virtually regular (and hence, virtually regular). It is shown in

Theorem 2.7 that the converse is true if R is a semiperfect right Kasch ring. Section

2 is closed by the following result: R is right virtually regular and satisfies the right

C2-condition (i.e. every right ideal of R that is isomorphic to a direct summand of R

is a direct summand of R) if and only if R is a von Neumann regular ring (Theorem

2.8).

In section 3, we obtained a new characterization of strongly virtually regular ring

over semiperfect rings Rs, and it is shown in Theorem 3.5 that, R is right strongly

virtually regular ring if and only if there exists natural numbers k, n1, . . . , nk and right

chain domains Si for all i = 1, . . . , k such that R ∼=
∏k

i=1Mni(Si). This yields that a

commutative semiperfect ring is strongly virtually regular if and only if it is a finite

product of valuation domains (Corollary 3.6).

The assertion of [10, Proposition 16] that a non-zero finite abelian p-group A is

virtually regular iff A ∼= (Zp)
a1 ⊕ (Zp2)

a2 ⊕ . . . ⊕ (Zpk)
ak for some positive integers

a1, . . . ak is generalized in Proposition 4.1, which claims that a bounded abelian p-group

A is virtually regular if and only if there exist non-zero cardinals αi for each i ≤ n such

that A ∼=
⊕

i<ϵp(A) Z
(αi)

pi
. Since a torsion group is virtually regular if and only if each

p-torsion component is virtually regular by [10, Proposition 17] and bounded torsion

group is a direct sum of finitely many p-torsion components, we obtained Corollary

4.2. It is also shown in Corollary 4.4 that a torsion abelian group A is virtually regular

if and only if A contains a subgroup
⊕

p∈P
⊕

i<ϵp(A)Ai of A such that Api
∼= Zpi is a

pure subgroup of A for each p ∈ P and i < ϵp(A). Since a torsion-free module over a

domain R is virtually regular if and only if it contains a direct summand isomorphic

to R by [10, Proposition 11], we can say that virtually regular torsion-free groups are

exactly those containing a free summand of rank 1. Thus, we have a characterization

of virtually regular mixed abelian groups (i.e. groups which are neither torsion, nor

torsion-free). Let A be a mixed abelian group. It is shown in Theorem 4.5 that A is

virtually regular if and only if A contains a direct summand isomorphic to Z and a

subgroup
⊕

p∈P
⊕

i<ϵp(A)Ai such that Api
∼= Zpi is a pure subgroup of A for each p ∈ P

and i < ϵp(A).

Suppose A is a torsion-free abelian group. Let {fi}∈I be the collection of all homo-

morphisms A → Z, and let A+ be ∩i∈Iker(fi) (recall Arnold-Vinsonhaler invariants

[1, 2]). For each ordinal α, we inductively define a subgroup Aα, as follows:

A0 := A;
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if α > 0 and Aβ has been defined for all β < α;

Aα := ∩β<α(Aβ)
+.

We say A is free-reduced if there exists some α such that Aα = 0. Section 4 is devoted

to the characterization of strongly virtually regular abelian groups. Let G be an abelian

group with torsion T and A := G/T be the corresponding torsion-free quotient. It is

obtained in Theorem 4.6 that T is completely virtually regular iff pTp = 0 for all primes

p; A is completely virtually regular iff it is free-reduced, and, finally, G is completely

virtually regular iff T and A are completely virtually regular. We will close section 4

with some characterizations of torsion-free completely virtually regular abelian groups.

As an early result, we discuss situations in which a free-reduced group must actually

be free (Proposition 4.11). Recall that a finite rank torsion-free group is called a

Butler group if it can be embedded as a pure subgroup of a group that is completely

decomposable (of finite rank), which holds exactly when it is a homomorphic image of

such a (finite rank) completely decomposable group. It is shown in Theorem 4.12 that

if A is a torsion-free group such that there is a composition series and (not necessarily

Butler) finite-rank subgroups Cγ (0 ≤ γ < λ) such that each Bγ+1 = Bγ + Cγ , then A

is free-reduced iff if it is free. This theorem yield the following interesting results: If A

is a B2-group (it is a generalization of Butler groups of finite-rank which coincide in the

case of groups of countable rank) , then A is free-reduced iff it is free (Corollary 4.13),

a (torsion-free) group of countable rank is free-reduced iff it is free (Corollary 4.14),

and if A = G/T is either of countable rank or is a B2-group, where G is a mixed group

G with torsion T , then G is completely virtually regular iff G has a decomposition

G ∼= T ⊕A such that T is semisimple and A is free (Corollary 4.15).

In order to obtain a surprising connection between free-reduced groups and the con-

tinuum hypothesis, we use scalar products on the Baer-Specker group P . Recall that

P =
∏

ω Z is the set of all elements x =
∑

i∈ω xiei with xi ∈ Z and ei ∈ P defined by

the Kronecker symbol, addition is defined component-wise. We also remark that the

continuum hypothesis in [12], in short CH, means 2ω = ω1. Note that the Baer-Specker

group P has the subgroup S of all elements x of finite support, i.e. xi = 0 for almost

all i ∈ ω. Now, it is shown in Theorem 4.17 that the continuum hypothesis is logically

equivalent that every (torsion-free) free-reduced group A of cardinality |A| < 2ω is

necessarily free. We also produce some relevant examples.

Throughout,

(i) R is an associative ring with unit 1 and modules MR are usually stand for a unital

right R-module and Zn is the ring of integers modulo n.

(ii) J(R) denotes the Jacobson radical of R,

(iii) X ≤⊕ M means X is a direct summand of M ,

(iv) a ring R is said to be domain if rR(a) = 0 for each non-zero a ∈ R, where rR(a)

denotes the right annihilator of a ∈ R, denote such a group with T ≤ G its torsion
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(v) A is an abelian group with torsion T an groups and if p is a prime, then Tp ≤ T

will denote its p-torsion,

(vi) for a prime integer p, an abelian group A is said to be p-group if the order of

every element of A is a power of p.

(vii) the expression rank of A will refer to its torsion-free rank.

(viii) for a prime p, the p-rank of G will be the dimension of the p-socle, G[p], as a

vector space over Z(p).
Furthermore, our notation and notions are all standard and may be found in the

books [14, 15, 6, 7, 8].

2. Virtually regular rings

We begin with the following elementary examples of virtually regular rings.

Example 2.1. (1) The ring Zn, n ≥ 2, is virtually regular if and only if n is square-free.

(2) The homomorphic images of a virtually regular ring need not virtually regular:

Z is virtually regular, but Z4 is not.

Recall that a ring R is said to be right Rickart if rR(a) is generated by an idempotent

for each a ∈ R.

We introduce the easy extension of the characterization [10, Proposition 1(1)].

Proposition 2.2. The following conditions are equivalent for a ring R:

(1) R is right virtually regular,

(2) R is right Rickart,

(3) every principal right ideal of R is projective.

Proof. (1)⇔(3) is proved in [10, Proposition 1(1)].

(2)⇔(3) is proved in [15, Proposition 7.48]. □

The class of virtually regular rings is closed under taking the direct product:

Theorem 2.3. The ring
∏

iRi is right virtually regular if and only if each ring Ri is

right virtually regular.

Proof. Denote by (ei)i the set of central orthogonal idempotents ofR such that eiR ∼= Ri

and R ∼=
∏

i eiR, i.e. we may identify rings Ri and eiR, and consider Ri as an ideal in

R generated by a central idempotent ei.

(:⇒) Let a ∈ Ri for a fixed i. Note that eia = a and eja = 0 for all others j ̸= i. Since

there exists an idempotent, say f ∈ R, such that rR(a) = fR by Proposition 2.2, we

have that rRi(a) = eifR. Furthermore, as each ei is a central idempotent, we obtain

that eif is an idempotent of Ri again by Proposition 2.2. Thus each Ri is a right

virtually regular ring.

(⇐:) Let a ∈ R. Then there exists an idempotent fi ∈ Ri such that rRi(eia) = fiRi

by Proposition 2.2. Let f := (fi) ∈ R. Then it is easy to see that f2 = f ∈ R and

rR(a) = fR as desired by Proposition 2.2. □



ON VIRTUALLY REGULAR MODULES AND RINGS 5

Recall that any commutative domain is right and left virtually regular by [10, Ex-

ample 2(2)]. We show that it is the only kind of examples right virtually regular rings

which are indecomposable as modules.

Proposition 2.4. Assume that a ring R contains only trivial idempotents. Then R is

right (left) virtually regular if and only if it is a domain.

Proof. (:⇒) If R is right virtually regular and a ∈ R is non-zero, then r(a) is a direct

summand of R by Proposition 2.2. On the other hand, since rR(a) ̸= R is generated

by an idempotent by Proposition 2.2, we get that rR(a) = 0. Hence a · b ̸= 0 for each

non-zero b ∈ R.

(⇐:) If R is a domain and a ∈ R is non-zero, then rR(a) = 0. It means that rR(a) is

generated by the idempotent 0 and the assertion follows from Proposition 2.2, cf. [10,

Example 2(2)]. □

Now, Proposition 2.4 yields the following consequence.

Corollary 2.5. A local ring is right virtually regular if and only if it is a domain.

Recall that a ring is called abelian provided each its idempotent is central.

Theorem 2.6. Let R be an abelian semiperfect ring. The following conditions are

equivalent:

(1) R is right virtually regular,

(2) R is isomorphic to a product of finitely many local domains.

Proof. (1)⇒(2). Let R be right virtually regular. Since R is an abelian semiperfect

ring, there exists a finite sequence (ei | i ≤ n) of orthogonal central idempotents such

that
∑

i ei = 1 and eiR is a local ring by [14, Theorem 23.6]. Then R ∼=
∏

i eiR,

where each eiR is a virtually regular ring by Theorem 2.3. Hence eiR is a domain by

Corollary 2.5 for each i.

(2)⇒(1). The claim follows from Proposition 2.2 and Theorem 2.3. □

Recall that, a ring R is called right Kasch if every simple right R-module embeds

into R.

Proposition 2.7. Let R be a semiperfect right Kasch ring. The following conditions

are equivalent:

(1) R is right virtually regular,

(2) R is semisimple.

Proof. (1)⇒(2). Since R is a semiperfect ring, there exists an orthogonal sequence

(ei | i ≤ n) of idempotents such that
∑

i ei = 1 and eiR is an indecomposable right

ideal by [14, Theorem 23.6]. Let i ≤ n. As R is a right Kasch and right virtually regular

ring, we obtain that the simple module eiR/eiJ(R) is isomorphic to a right ideal of R,

and hence it is projective. This implies that eiJ(R) is a direct summand in eiR and so
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eiJ(R) = 0 because eiR is indecomposable. We have proved that eiJ(R) = 0 for each

i. Hence J(R) =
∑

eiJ(R) = 0 and R ∼= R/J(R) is semisimple.

(2)⇒(1). The claim is clear by the definition. □

A ring R satisfies the right C2-condition if every right ideal of R that is isomorphic

to a direct summand of R is a direct summand of R.

Theorem 2.8. The following are equivalent for a ring R:

(1) R is von Neumann regular,

(2) R is right virtually regular and satisfies the right C2-condition,

(3) R is strongly right virtually regular and satisfies the right C2-condition.

Proof. (1)⇒(3) Since the strong virtually regularity is obvious, we need to show that

R satisfies the right C2-condition. Let I be an ideal of R such that I ∼= eR for some

e2 = e ∈ R. Then I = aR for some a ∈ R. Since R is regular, we obtain that I = aR

is a direct summand of R, as desired.

(3)⇒ (2) This is obvious.

(2)⇒ (1) Let I be a principal ideal of R. Since R is a right virtually regular ring, we

have that I ∼= eR for some e2 = e ∈ R. Now, by the right C2-condition, I = aR is a

direct summand of R which means that R is a regular ring. □

3. Strongly virtually regular rings

Recall that a module M is chain if the lattice of submodules of M is linearly ordered

(equivalently, if, for each a, b ∈ M , either aR ⊆ bR or bR ⊆ aR).

Example 3.1. Let R be a right chain domain.

Claim. The matrix ring Mn(R) is semiperfect right strongly virtually regular: Since

every finitely generated right ideal of R is principal, it is isomorphic to RR, which

means that R is local, right strongly virtually regular, and so right semihereditary.

Furthermore Mn(R) is right semihereditary as well by [15, Theorem 7.62] and every

finitely generated submodule of Rn
R is isomorphic to Rk for some natural k by [15,

Theorem 2.29]. Since R is right Ore, there exists the division ring of right fractions Q

which is flat as left R-module by [15, Proposition 4.4]. If we have a monomorphism

Rk ↪→ Rn, it induces an embedding

Qk
Q
∼= Rk

R ⊗R QQ ↪→ Rn
R ⊗R QQ

∼= Qn
Q,

thus k ≤ n, i.e. Rn contains only submodules isomorphic to Rk for suitable k ≤ n.

Then any right ideal of End(Rn
R) generated by finitely many endomorphisms σ1, . . . , σs

is generated by arbitrary epimorphism Rn →
∑

i im(σi), which exists as
∑

i im(σi) ∼=
Rk for k ≤ n, This implies that the ring End(Rn

R)
∼= Mn(R) is right Bezout and

right semihereditary, and hence it is a right strongly virtually regular ring (cf. [10,

Proposition 1(2)]). Finally, note that Mn(R) is semiperfect by [14, Corollary 23.9].
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In the rest of the section, we show that semiperfect right strongly virtually regular

rings are necessarily of the form presented in Example 3.1.

Let us denote by l(M) a composition length of any semisimple module M , i.e. the

number l(M) = l such that there exists simple modules S1, . . . Sl for which M =⊕l
i=1 Si.

Lemma 3.2. If R is a semiperfect right strongly virtually regular ring, then every

central idempotent of R/J(R) can be lifted to a central idempotent of R.

Proof. Let e ∈ R/J(R) be a central idempotent. Since R is semiperfect, e can be lifted

to an idempotent e ∈ R.

Claim. (1 − e)Re = 0: Let r ∈ R and put c := (1 − e)re and M =: cR + eR.

Then M = cR ⊕ eR is a principal right ideal as R is strongly virtually regular, and

M/J(M) ∼= cR/J(cR) ⊕ eR/eJ . Hence there exists an epimorphism of RR = eR ⊕
(1 − e)R onto M/J(M). Note that Hom((1 − e)R/(1 − e)J(R), eR/eJ(R)) = 0 and

Hom((1−e)R, eR/eJ) = 0 since e+J = e is a central idempotent of R/J(R). Moreover

cR is a homomorphic image of eR, which means that Hom((1 − e)R, cR/J(cR)) = 0.

Then

Hom(R,M/J(M)) = Hom(eR,M/J(M))⊕Hom((1− e)R,M/J(M))

= Hom(eR,M/J(M)) ∼= Hom(eR/eJ,M/J(M)),

and hence

l(M/J(M)) = l(cR/J(cR)) + l(eR/eJ(R)) ≤ l(eR/eJ(R)),

which already proves that cR/J(cR) = 0 and so (1 − e)re = c = 0. We have shown

that (1− e)Re = 0 and the symmetric argument for 1− e gives us that eR(1− e) = 0,

i.e. e is central. □

We need the following easy observation.

Lemma 3.3. If R is a semilocal ring and C is a cyclic module, then l(C/J(C)) ≤
l(R/R(J)) < ∞.

Now, we are ready to describe semiperfect strongly virtually regular rings with only

one simple module up to isomorphism.

Lemma 3.4. Let R be a semiperfect right strongly virtually regular ring. If R/J(R) is

an indecomposable ring, then there exists a right chain domain S such that R ∼= Mn(S)

for n = l(R/J(R))

Proof. Since R is semiperfect and R/J(R) is indecomposable, we obtain that

• there exists a complete orthogonal sequence (ei | i ≤ n) of idempotents such that∑
i ei = 1,

• eiR ∼= ejR are indecomposable right ideals for all i, j, and

• S ∼= eiR/eiJ(R) is up to isomorphism unique right simple module over R by [14,
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Theorem 23.6], which implies that R ∼= End(
⊕

i eiR) ∼= Mn(e1Re1).

Claim 1. e1R is a chain right ideal: Assume to contrary that there exist a, b ∈ e1R

such that aR ⊈ bR and bR ⊈ aR. Then C = aR ∩ bR is a proper submodule of both

right ideals aR and bR and aR + bR/C ∼= aR/C ⊕ bR/C. Hence there exists a right

ideal D such that C ≤ D ≤ aR+ bR and aR+ bR/D ∼= S2. As

E = aR+ bR+ (1− e1)R = aR+ bR⊕ (1− e1)R,

there exists an epimorphism of E/J(E) onto

E/(D ⊕ ((1− e1)J)) ∼= S2 ⊕ (1− e1)R/(1− e1)J ∼= Sn+1.

Since E is finitely generated and R is right strongly virtually regular ring, it is cyclic

and we obtain in such way l(E/J(E)) > n which contradicts to l(R/J(R)) = n by

Lemma 3.3. We have proved that e1R is a chain right ideal, and hence e1Re1 is a right

chain ring.

Claim 2. e1Re1 is a domain: It suffices to show that rR(e1re1) ∩ e1R = 0 for each

e1re1 ̸= 0. Let e1re1 ̸= 0. There exists an idempotent f ̸= 1 such that rR(e1re1) = fR

by Proposition 2.2. Clearly, (1− e1) ∈ fR, which implies that (1− e1)R ⊆ fR. Since

R/(1− e1)R ∼= e1R and fR/(1− e1)R is isomorphic to a cyclic submodule of eR which

is projective by Proposition 2.2 as R1 is right virtually regular, we obtain that there

exists a right ideal A for which

fR ∼= A⊕ (1− e1)R and R ∼= (1− f)R⊕A⊕ (1− e1)R.

Furthermore, as l((1− f)R/(1− f)J) > 0, l((1− e1)R) = n− 1 and

n = l(R/J(R)) = l((1− f)R/(1− f)J ⊕A/AJ ⊕ (1− e1)R/(1− e1)J)

= l((1− f)R/(1− f)J) + l(A/AJ) + l((1− e1)R/(1− e1)J),

we get that A = 0. Finally, we can see that fR = (1− e1)R and fR ∩ e1R = 0, which

proves that e1Re1 a domain. □

Theorem 3.5. Let R be a semiperfect ring. The following are equivalent:

(1) R is right strongly virtually regular ring,

(2) there exists natural numbers k, n1, . . . , nk and right chain domains Si for all

i = 1, . . . , k such that R ∼=
∏k

i=1Mni(Si).

Proof. (1) ⇒ (2). Since R/J(R) ∼=
∏k

i=1Mni(Di) for some k, n1, . . . , nk and division

rings Di by Wedderburn–Artin theorem, there exists central idempotents ei ∈ R such

that R ∼=
∏k

i=1 eiR and eiR/J(eiR) ∼= Mni(Di) by Lemma 3.2. Observe that eiR is a

right strongly virtually regular ring by Theorem 2.3. Hence Lemma 3.4 implies that

there exists a right chain domain Si satisfying eiR ∼= Mni(Si) for each i = 1, . . . , k,

which finishes the proof.

(1) ⇒ (2). The implication follows from Example 3.1. □
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Note that the Jategaonkar’s example [13, Theorem 4.6] of a left chain domain which

is not right chain witnesses that the notion of a strongly virtually regular ring is not

right-left symmetric.

In commutative case we obtain the following immediate consequence.

Corollary 3.6. A commutative semiperfect ring is strongly virtually regular if and only

if it is a finite product of valuation domains.

4. Virtually regular Abelian groups

Denote by P the set of all prime numbers. If A is an abelian group and p ∈ P, denote
by

ϵp(A) = sup{k + 1 ∈ N ∪ {0} | ∃a ∈ A : ord(A) = pk}
and observe that ϵp(A) = ω precisely if the p-torsion component Ap is unbounded, and

k = pϵp(A)−1 is the least natural number such that kAp = 0 whenever Ap is bounded.

We can extend [10, Proposition 16]:

Proposition 4.1. Let A be a bounded p-group. The following are equivalent:

(1) A is virtually regular,

(2) there exist non-zero cardinals αi for each i ≤ n such that A ∼=
⊕

i<ϵp(A) Z
(αi)

pi
.

Proof. (1)⇒(2). Let A be virtually regular. Since A is a bounded p-group, it is a

direct sum of cyclic groups of order pi for some i < ϵp(A) by [8, Theorem 3.5.1].

Thus A ∼=
⊕

i<ϵp(A) Z
(αi)

pi
for some cardinals αi. It remains to show that αi > 0 for

each i < ϵp(A). Since A contains an element a of the order pϵp(A)−1, the subgroup

⟨apϵp(A)−i−1⟩ ∼= Zpi is isomorphic to a direct summand of A. Hence we obtain that

αi > 0 by the Krull-Schmidt-Azumaya theorem as desired.

(2)⇒(1). Let A =
⊕

i<ϵp(A) Z
(αi)

pi
. Then each cyclic subgroup is isomorphic to Zpi

for some i < ϵp(A) which is a direct summand of A, which means that A is virtually

regular. □

Since a torsion group is virtually regular if and only if each p-torsion component is

virtually regular by [10, Proposition 17] and a bounded torsion group is a direct sum

of finitely many p-torsion components, we get the following consequence:

Corollary 4.2. The following are equivalent for a bounded (torsion) group A:

(1) A is virtually regular,

(2) A is isomorphic to a group
⊕

i≤n

⊕
j≤ei

Z(αij)

pji
for non-negative integers n, ei,

prime numbers pi, and non-zero cardinals αij, where i ≤ n and j ≤ ei.

Now, we describe the structure of general virtually regular p-groups.

Lemma 4.3. Let A be an abelian p-group. The following are equivalent:

(1) A is virtually regular,
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(2) there exists a subgroup
⊕

i<ϵp(A)Ai of A such that Ai
∼= Zpi is a pure subgroup

of A for each i < ϵp(A).

Proof. (1)⇒(2). This inclusion follows from the fact that any p-basic subgroup B ≤ A

(which will be pure), has for each i < ϵp(A), a cyclic summand of order pi.

(2)⇒(1). Assume that A contains a subgroup
⊕

i<ϵp(A)Ai such that Ai
∼= Zpi is a pure

in A for each i < ϵp(A). Let a ∈ A. Then there exists i < ϵp(A) such that ord(a) = pi.

Hence ⟨a⟩ ∼= Zpi
∼= Ai. Since Ai is pure in A, it is a direct summand of A by [8, Lemma

5.2.1]. □

The following follows immediately from [10, Proposition 17], Lemma 4.3 and the fact

that a torsion group is a direct sum of its p-torsion components.

Corollary 4.4. The following conditions are equivalent:

(1) A torsion abelian group A is virtually regular,

(2) A contains a subgroup
⊕

p∈P
⊕

i<ϵp(A)Api of A such that Api
∼= Zpi is a pure

subgroup of A for each p ∈ P and i < ϵp(A).

Recall that a torsion-free module over a domain R is virtually regular if and only

if it contains a direct summand isomorphic to R by [10, Proposition 11], so virtually

regular torsion-free groups are exactly those containing a free summand of rank 1. Now

we can sum all our observation to characterize virtually regular mixed abelian groups,

i.e. groups which are neither torsion, nor torsion-free.

Theorem 4.5. The following conditions are equivalent a mixed abelian group A:

(1) A is virtually regular,

(2) A contains a direct summand isomorphic to Z and a subgroup
⊕

p∈P
⊕

i<ϵp(A)Api

such that Api
∼= Zpi is a pure subgroup of A for each p ∈ P and i < ϵp(A).

Proof. (1)⇒(2). Let A be virtually regular and let T (A) denote the torsion part of A.

Then A/T (A) and T (A) are virtually regular by [10, Corollary 3]. Then A/T (A) con-

tains a free summand of rank 1 by [10, Proposition 11] and there exists an epimorphism

A → Z. Thus there exists a direct summand of A isomorphic to Z. As T (A) is virtually

regular, there exists a subgroup
⊕

p∈P
⊕

i<ϵp(A)Ai of T (A) for which Api
∼= Zpi is a

pure subgroup of T (A) for p ∈ P and i < ϵp(A) by Corollary 4.4. Since T (A) is pure in

A, we obtain that Api is pure in A, which finished the proof.

(2)⇒(1). The claim follows from Corollary 4.4and [10, Corollary 3 and Proposition

11]. □

We have following description of completely virtually regular abelian groups.

Theorem 4.6. Let G be a group with torsion T and A := G/T be the corresponding

torsion-free quotient. The following statements hold:

(a) T is completely virtually regular if and only if pTp = 0 for all primes p;
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(b) A is completely virtually regular if and only if it is free-reduced;

(c) G is completely virtually regular if and only if T and A are completely virtually

regular.

Proof. Regarding (a), suppose first that T is completely virtually regular. If pT ̸= 0 for

some prime p, then there is an x ∈ T of order p2. Then S = ⟨x⟩ ∼= Z(p2) has a cyclic

subgroup isomorphic to Z(p), but S has no a direct summand of that order, i.e. S is

not virtually regular. Therefore, T is not completely virtually regular.

Conversely, suppose that pTp = 0 for all primes p. If S ≤ T , then pSp = 0 for

all primes p as well. Since S is semisimple, we have that all of its subgroups, and in

particular, all its cyclic subgroups, are direct summands, i.e. S is virtually regular.

Therefore, T is completely virtually regular.

Turning to (b), suppose first that A is completely virtually regular. Define, for all

ordinals α, the descending subgroups Aα in the definition contained in the introduction.

If β is any ordinal, Aβ ̸= 0 and α = β + 1, it will suffice to show that Aα ̸= Aβ:

Let 0 ̸= x ∈ Aβ ̸= 0. Since A is torsion-free, we must have ⟨x⟩ ∼= Z. Now, the

complete virtually regularity of A gives that Aβ is virtually regular, and so there exists

a decomposition Aβ = Z ⊕ Y , where Z ∼= Z. It follows that Aα ≤ Y < Aβ, i.e.

Aα ̸= Aβ, completing this implication.

Conversely, suppose that Aα = 0 for some ordinal α and 0 ̸= x ∈ B < A. Clearly,

⟨x⟩ ∼= Z. Let β < α be the smallest ordinal such that B ≤ Aβ. Therefore, B will not

be contained in Aβ+1 which means that there is a homomorphism ϕ : Aβ → Z such

that ϕ(B) ̸= 0. If K = ker(ϕ)∩B, then it follows that B = Z⊕K, where Z ∼= Z ∼= ⟨x⟩.
This shows that B is virtually regular, i.e. A is completely virtually regular.

Finally, regarding (c), suppose first that G is completely virtually regular. Since

it is clear that an arbitrary subgroup of a completely virtually regular group inherits

that property, the group T is completely virtually regular. Turning to A = G/T , if A

failed to be completely virtually regular, then there would be a non-zero B ≤ A such

that every homomorphism B → Z is 0. If H/T = B, then it would follow that H

has elements of infinite order. But, since any homomorphism H → Z factors through

B = H/T → Z, we could conclude that every homomorphism H → Z is 0. Therefore,

H is not virtually regular, i.e. G is not completely virtually regular.

Conversely, suppose that T and A are completely virtually regular and 0 ̸= x ∈ B ≤
G. If x has infinite order, then 0 ̸= B := [B+T ]/T ≤ A. Since we are assuming that A

is completely virtually regular, there must be a non-zero homomorphism B → Z. But
then, B → B → Z will also be non-zero, i.e. B will have the required infinite cyclic

summand. Now, if x has finite order, say n, then x ∈ TB := B ∩T . Since T is assumed

to be completely virtually regular, we obtain that TB is virtually regular. Therefore,

TB has a cyclic direct summand of order n, and since TB is pure in B, this (bounded

pure) subgroup will also be a summand of B. Therefore, each such B will be virtually

regular, i.e G is completely virtually regular. □
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We now want to present some results and examples related to groups that are are

not free-reduced, i.e., torsion-free completely virtually regular.

In the following, unless specifically noted otherwise, we are assuming all groups are

torsion-free.

We include a few easy to verify observations, whose proofs we leave to the reader

(for α = 1, one uses the definition, and then a natural transfinite induction gives the

result for arbitrary α):

Fact 4.7. If ϕ : A → B is a group homomorphism, then we conclude that ϕ(Aα) ≤ Bα

for every ordinal α.

Fact 4.8. From Fact 4.7, we can conclude that if {Ai}i∈I is a collection of groups and

α is an ordinal, then (⊕
i∈I

Ai

)
α

=
⊕
i∈I

(Ai)α.

Fact 4.9. The following statements hold for a group A:

(a) If η ≤ α, then (A/Aα)η = Aη/Aα.

(b) If η ≥ α, then (A/Aα)η = 0.

Example 4.10. If A has a rank-1 subgroup C that is not cyclic, then A is not free-

reduced. On the other hand, there is a group A such that every rank-1 subgroup C ≤ A

is cyclic (i.e., A is homogeneous of type 0), but A is not free-reduced.

Proof. Assume that A has such a rank-1 subgroup C that is not cyclic. Then it is clear

that C is not be virtually regular, which implies that A is not completely virtually

regular, a contradiction.

On the other hand, by the standard constructions, there are indecomposable groups

A of rank exceeding 1 such that every rank-1 subgroup is cyclic. Since such a group

is not virtually regular, which implies, in particular, that A is not completely virtually

regular. □

We now discuss some situations in which a free-reduced group A must actually be

free.

Proposition 4.11. The following statements are equivalent for a torsion-free group A

of finite rank:

(a) A is free-reduced,

(b) A is free.

Proof. (a) ⇒ (b). Suppose that A is free-reduced. By an obvious induction on its rank,

we obtain a decomposition A ∼= C1 ⊕ · · · ⊕ Ck such that each Ci is indecomposable.

By Fact 4.8, we have that each Ci is free-reduced. Since an indecomposable group is

virtually regular if and only if it is cyclic, we can conclude that A is free.

(b) ⇒ (a). The claim is clear. □
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Recall that there are two generalizations of this Butler groups of infinite rank, which

coincide in the case of groups of countable rank. One of these is the following: The

(torsion-free) group A is a B2-group if and only if there is an ascending sequence of

pure subgroups

0 = B0 ≤ B1 ≤ B2 ≤ · · · ≤ Bλ = A (†)

such that whenever 0 ≤ γ < λ, there is a finite rank Butler group Cγ ≤ A such that

Bγ+1 = Bγ + Cγ . We use the idea of such a composition series in the following.

Theorem 4.12. Suppose that A is a torsion-free group such that there is a composition

series (†) and there exist (arbitrary, i.e. not necessarily Butler) finite-rank subgroups

Cγ (0 ≤ γ < λ) such that each Bγ+1 = Bγ + Cγ. Then the following statements are

equivalent:

(a) A is free-reduced,

(b) A is free.

Proof. (a) ⇒ (b). Suppose that A is free-reduced, i.e. completely virtually regular.

Since an arbitrary subgroup of a completely virtually regular group retains that prop-

erty, using the above notation, we obtain that each Cγ ≤ A is free-reduced. Since Cγ

is of finite rank, it is free by Proposition 4.11, and hence, it is finitely generated. Now,

for each such γ, we have that

Bγ+1/Bγ = [Bγ + Cγ ]/Bγ
∼= Cγ/[Bγ ∩ Cγ ].

Since these quotients are clearly finitely generated and torsion-free, we obtain that they

are free. Therefore,

A ∼=
⊕

0≤γ<λ

(Bγ+1/Bγ)

is free.

(b) ⇒ (a). The claim is clear. □

Corollary 4.13. Then the following statements are equivalent for a B2-group A:

(a) A is free-reduced,

(b) A is free.

Corollary 4.14. Then the following statements are equivalent for a (torsion-free) group

A of countable rank:

(a) A is free-reduced,

(b) A is free.

Proof. It is easy to obtain a decomposition series as in (†) such that λ = ω and each Bγ

has finite rank. For each γ < ω, if we let Cγ = Bγ+1, then the result is an immediate

consequence of Proposition 4.12 □
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Corollary 4.15. Suppose that G is a mixed group with torsion T and A := G/T .

If A is either of countable rank or is a B2-group, then the following statements are

equivalent:

(a) G is completely virtually regular,

(b) G is torsion splitting, i.e. G has a decomposition G ∼= T ⊕ A such that T is

semisimple and A is free.

Proof. (a) ⇒ (b). If A is either of countable rank or is a B2-group, then A must be

free-reduced by Theorem 4.6(b or c). Hence, we can conclude that A must be free.

Therefore, the splitting necessarily happens, as indicated.

(b) ⇒ (a). The claim is an immediate consequence of Theorem 4.6(c). □

We recall the following well-known (and straightforward to verify) observation.

Fact 4.16. If P =
∏

ω is the Baer-Specker group and S is the Z-adic closure of S :=⊕
ω Z ≤ P in P , then |S| = 2ω = c and S/S is divisible.

Let P denote the Baer-Specker group,
∏

ω Z. We now present a possibly surprising

connection between free-reduced groups and the continuum hypothesis, or CH, i.e.,

2ω = ω1.

Theorem 4.17. The following two statements are logically equivalent (and so, both

independent of ZFC):

(a) The continuum hypothesis,

(b) Every (torsion-free) free-reduced group, say A, of cardinality |A| < 2ω is neces-

sarily free.

Proof. (a) ⇒ (b). Suppose that CH holds. Let A be a free-reduced group with |A| < 2ω.

Then A must have countable rank. So, by Corollary 4.14, we can conclude that A is

free, i.e. (b) holds.

(b) ⇒ (a). Suppose on contrary that (a) fails, i.e. ω1 < 2ω. By Fact 4.16, there is a

A ≤ S with S ≤ A and A/S divisible of rank ω1. Clearly, A is free-reduced. By (b), we

assume that A is free. An elementary argument gives us that A has a decomposition

A = M ⊕ N such that S ≤ M and M is countable. Since N is free of rank ω1 and

maps to a direct summand of A/S ∼= (M/S) ⊕N , this contradicts that A/S ≤⊕ S/S

is divisible. □

We now construct an auxiliary lemma that will allow us to produce some relevant

examples.

Lemma 4.18. If P :=
∏

ω Z is the Baer-Specker group and E is a countable group

that is not cotorsion, then Ext(P,E) has (torsion-free) rank 22
ω
= 2c, where c is the

continuum.

In particular, this group of extensions has (non-zero) elements of infinite order.
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Proof. Let S :=
⊕

ω Z. Then we have a short exact sequence

0 → S → P → H → 0

where H = P/S. Let S ≤ P be the closure of S in P in the Z-adic topology so that

S/S ∼=
⊕

cQ ≤⊕ P/S = H. If we apply Ext(−, E) to the long exact sequence, we

obtain that

0 → Hom(H,E) → Hom(P,E) → Hom(S,E)
δ→ Ext(H,E) → Ext(P,E) → 0,

where Ext(S,E) = 0 since S is free. Note that

Hom(S,E) ∼= Hom(
⊕
ω

Z, E) ∼=
∏
ω

Hom(Z, E) ∼=
∏
ω

E

will have cardinality |E|ω = c. On the other hand, we will also have that∏
c

Ext(Q, E) ∼= Ext(
⊕
c

Q, E) ∼= Ext(S/S,E) ≤⊕ Ext(H,E).

Since Ext(Q, E) is divisible of (torsion-free) rank c, we obtain that

|
∏
c

Ext(Q, E)| = cc = 2c > c.

Therefore, Ext(H,E) will have rank 2c, which implies that

Ext(P,E) ∼= Ext(H,E)/δ(Hom(S,E))

will also have (torsion-free) rank 2c, giving the result. □

By Corollary 4.15, one may conjecture that every completely virtually regular mixed

group is torsion-splitting. The following example eliminates this possibility.

Example 4.19. Let E =
⊕

p Z(p) be semisimple and P be the Baer-Specker group.

Clearly, E is countable and it is not cotorsion. Now, by Lemma 4.18, there is a non-

splitting short exact sequence 0 → E → G → P → 0. By Theorem 4.6, G is completely

virtually regular and it is not torsion-splitting by the construction.

We now want to verify that there are examples of (torsion-free) completely virtually

regular groups A such that a chain of subgroups Aα is arbitrarily long. We begin with

the first step.

Example 4.20. Let P denote the Baer-Specker group. There exists a free-reduced

group A such that A/A1
∼= P and A1

∼= Z, so that A2 = 0.

Proof. Since Z is certainly countable and not cotorsion, we have, by Lemma 4.18, a

short exact sequence 0 → Z → A → P → 0 that represents an element of infinite order

in Ext(P,Z). Let Z1 be the image of the left injection, so that Z1 ∼= Z.
Claim. A1 = Z1: Certainly, if x ∈ A \ Z1, then x + Z1 is a non-zero element of P .

Hence, there is a homomorphism P → Z such that x + Z1 7→ w ̸= 0. Therefore, the

composition ϕ : A → P → Z satisfies ϕ(x) ̸= 0. Ergo, A1 ≤ Z1. For the converse
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inclusion, suppose that z ∈ Z1. We want to show z ∈ A1. Assume on contrary that

z /∈ A1, Then there exists a homomorphism γ : A → Z such that γ(Z1) ̸= 0. Suppose

that the composite of Z ∼= Z1 with γ is multiplication by a non-zero n ∈ Z. Then there

is a commutative diagram

0 −→ Z −→ A → P −→ 0

·n ↓ γ ↙
Z

However, the existence of such a diagram would imply that 0 → Z → A → P → 0 was

an element of finite order |n| ≠ 0 in Ext(P,Z), contrary to its construction.

It follows that A1 = Z1 ∼= Z, so that A2 = 0. □

We now use an induction to generalize Example 4.20 to construct a group A whose

corresponding descending chain Aα is as long as desired.

Example 4.21. If α is an ordinal, then there is a group Aα such that (Aα)α ∼= Z, so
that (Aα)η = 0 for all η > α.

Proof. Certainly, if α = 0, we can just let A0 = Z. Example 4.20 shows that the result

is true if α = 1. So, suppose we can construct such groups Aη for all η < α, where

α ≥ 2.

Case 1. α is a limit ordinal: For each η < α, we can find an Aη such that

(Aη)η := Zη ∼= Z (and (Aη)η+1 = 0).

Let

K := {x = (xη)η<α ∈
⊕
η<α

Zη :
∑
η<α

xη = 0}.

Now, we let Aα = (
⊕

η<αA
η)/K (in other words, we are simply identifying the sub-

groups (Aη)η = Zη for all η < α) and we let Zα := (
⊕

η<α Z
η)/K ∼= Z. Then, for each

η < α, we can identify Aη with a subgroup of Aα so that Zα = Zη. For every η < α,

by Fact 4.7, we obtain that

Zα = Zη = (Aη)η ≤ (Aα)η,

which implies that Zα ≤ ∩η<α(A
α)η = (Aα)α.

For the converse, by Facts 4.7, 4.8 and 4.9, we obtain that

(Aα)α 7→ [Aα/Zα]α ∼= [
⊕
η<α

Aη/Zη]α =
⊕
η<α

[Aη/Zη]α = 0,

where Aα 7→ Aα/Zα is the natural epimorphism. Hence (Aα)α ≤ Zα, as desired.

Case 2. α = η+1 is not a limit ordinal: Let H be the group from Example 4.20 with

H1
∼= Z. For each non-zero y ∈ H, let Ay be a copy of Aη, and let (Ay)η =: Zy ∼= Z.

Consider the epimorphism with L kernel⊕
y∈H

Zy → H
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which sends each 1 ∈ Zy to y ∈ H. Let

Aα := [
⊕
y∈H

Ay]/L.

Hence, we can think of H as a subgroup of Aα. Now, for every y ∈ H, we also can also

think of Ay as a subgroup of Aα. Therefore, for every y ∈ H, by Fact 4.7, we have that

y ∈ Zy = (Ay)η ≤ (Aα)η,

i.e. H ≤ (Aα)η.

For the converse, using Facts 4.7, 4.8 and 4.9, and considering the natural epimor-

phism Aα 7→ Aα/H, we obtain that

(Aα)η 7→ [Aα/H]η ∼= [
⊕
y∈H

Ay/Zy]η =
⊕
y∈H

[Ay/Zy]η = 0,

which implies that (Aα)η ≤ H.

Therefore, (Aα)η = H, (Aα)α = H1
∼= Z, completing the proof. □

Remark 4.22. Note that if Aα is the group constructed in Example 4.21 and Bα :=

Aα/(Aα)α, then (Bα)α = 0 and (Bα)η ̸= 0 for all η < α, so we can think of Bα as

having free-reduced length exactly α. It can also be seen that whenever η < α, then

(Aα)η/(A
α)η+1 will be a direct sum of copies of the Baer-Specker group.
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