ON VIRTUALLY REGULAR MODULES AND RINGS
PATRICK W. KEEF, M. TAMER KOSAN, AND JAN ZEMLICKA

ABSTRACT. A right R-module M is called (strongly) virtually regular if every cyclic
(finitely generated) submodule is isomorphic to a direct summand of M, and M
said to be completely virtually regular if every submodule of M is virtually regu-
lar. In this paper, we provide description of classes of (strongly) virtually regular
rings, in particular for semiperfect rings. Furthermore, we completely characterize
(strongly /completely) virtually regular Abelian groups, which generalizes recently
published results.

1. INTRODUCTION

In a series of papers [4, 5], Facchini et all and, independently, Behboodi et all [9]
introduced and studied structures of modules with chain conditions up to isomorphism,
and they called a module M wvirtually/iso semisimple if every submodule of M is iso-
morphic to a direct summand of M. A non-zero indecomposable virtually semisimple
right R-module is called virtually/iso simple. Recently, the authors of [10] introduced
the concepts of virtually regular modules: a right R-module M (strongly) virtually reg-
ular if every cyclic (finitely generated) submodule is isomorphic to a direct summand
of M, and a module M said to be completely virtually reqular if every submodule of M
is virtually regular. Let us recall that these terms generalize the following well-known
concepts: A ring R is said to be von Neumann reqular if for each z € R, there exists an
element y in R such that x = zyz. Various module theoretic versions of von Neumann
regular rings have been considered by Azumaya [3], Fieldhouse [11], Ware [16], and
Zelmanowitz [17], in particular, a module M is said to be

Zelmanowitz-regular if for each © € M there exists a homomorphism f : M — R
such that f(z)x = x;

Azumaya-regular if every submodule of M is locally split in M (i.e., for any zp € N
there exists a homomorphism s : M — N such that s(zg) = xg). Equivalently, every
cyclic submodule of M is a direct summand?

Recalling a well-known characterization of regular rings as rings such that each prin-
cipal left (or right) ideal is generated by an idempotent, we obtain in Proposition 2.2
similar result that R is a right virtually regular ring if and only if r(a) is a summand of
R for each a € R if and only if r(a) is generated by an idempotent for each a € R, where
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r(a) denotes the right annihilator of @ € R. This useful characterization leads to obtain
the important closure property that the class of virtually regular rings is inherited by
direct products (Theorem 2.3). Moreover, they yield that a local ring is right virtually
regular if and only if it is a domain (Corollary 2.5) and, if R is an abelian semiperfect
ring, then R is right virtually regular if and only if R is isomorphic to a product of
finitely many local domains (Theorem 2.6). By the chart in [10], virtually/iso semisim-
ple modules are strongly virtually regular (and hence, virtually regular). It is shown in
Theorem 2.7 that the converse is true if R is a semiperfect right Kasch ring. Section
2 is closed by the following result: R is right virtually regular and satisfies the right
C2-condition (i.e. every right ideal of R that is isomorphic to a direct summand of R
is a direct summand of R) if and only if R is a von Neumann regular ring (Theorem
2.8).

In section 3, we obtained a new characterization of strongly virtually regular ring
over semiperfect rings Rs, and it is shown in Theorem 3.5 that, R is right strongly
virtually regular ring if and only if there exists natural numbers k, n1,...,n; and right
chain domains S; for all i = 1,...,k such that R = Hle M, (S;). This yields that a
commutative semiperfect ring is strongly virtually regular if and only if it is a finite
product of valuation domains (Corollary 3.6).

The assertion of [10, Proposition 16] that a non-zero finite abelian p-group A is
virtually regular iff A = (Z,)" © (Z,2)" © ... ® (Z,)* for some positive integers
ai, . ..ay is generalized in Proposition 4.1, which claims that a bounded abelian p-group
A is virtually regular if and only if there exist non-zero cardinals «; for each ¢ < n such
that A = @, ep(A) Z](D?i). Since a torsion group is virtually regular if and only if each
p-torsion component is virtually regular by [10, Proposition 17] and bounded torsion
group is a direct sum of finitely many p-torsion components, we obtained Corollary
4.2. It is also shown in Corollary 4.4 that a torsion abelian group A is virtually regular
if and only if A contains a subgroup @pdp @D, e (4) A; of A such that Ay = Z, is a
pure subgroup of A for each p € P and i < ¢,(A). Since a torsion-free module over a
domain R is virtually regular if and only if it contains a direct summand isomorphic
to R by [10, Proposition 11], we can say that virtually regular torsion-free groups are
exactly those containing a free summand of rank 1. Thus, we have a characterization
of virtually regular mixed abelian groups (i.e. groups which are neither torsion, nor
torsion-free). Let A be a mixed abelian group. It is shown in Theorem 4.5 that A is
virtually regular if and only if A contains a direct summand isomorphic to Z and a
subgroup @pep b, <ep(A) Aj; such that Ap; & Z,,: is a pure subgroup of A for each p € P
and i < €,(A).

Suppose A is a torsion-free abelian group. Let {fi}cr be the collection of all homo-
morphisms A — Z, and let A" be Njerker(f;) (recall Arnold-Vinsonhaler invariants
[1, 2]). For each ordinal «, we inductively define a subgroup A,, as follows:



ON VIRTUALLY REGULAR MODULES AND RINGS 3

if o« > 0 and Ag has been defined for all 3 < o

Ay = ﬂ5<a(Aﬁ)+.

We say A is free-reduced if there exists some a such that A, = 0. Section 4 is devoted
to the characterization of strongly virtually regular abelian groups. Let G be an abelian
group with torsion 7' and A := G/T be the corresponding torsion-free quotient. It is
obtained in Theorem 4.6 that T is completely virtually regular iff pT}, = 0 for all primes
p; A is completely virtually regular iff it is free-reduced, and, finally, G is completely
virtually regular iff T" and A are completely virtually regular. We will close section 4
with some characterizations of torsion-free completely virtually regular abelian groups.
As an early result, we discuss situations in which a free-reduced group must actually
be free (Proposition 4.11). Recall that a finite rank torsion-free group is called a
Butler group if it can be embedded as a pure subgroup of a group that is completely
decomposable (of finite rank), which holds exactly when it is a homomorphic image of
such a (finite rank) completely decomposable group. It is shown in Theorem 4.12 that
if A is a torsion-free group such that there is a composition series and (not necessarily
Butler) finite-rank subgroups C (0 < v < X) such that each B,41 = B, + C,, then A
is free-reduced iff if it is free. This theorem yield the following interesting results: If A
is a Bo-group (it is a generalization of Butler groups of finite-rank which coincide in the
case of groups of countable rank) , then A is free-reduced iff it is free (Corollary 4.13),
a (torsion-free) group of countable rank is free-reduced iff it is free (Corollary 4.14),
and if A = G/T is either of countable rank or is a Bs-group, where G is a mixed group
G with torsion T, then G is completely virtually regular iff G has a decomposition
G = T & A such that T is semisimple and A is free (Corollary 4.15).

In order to obtain a surprising connection between free-reduced groups and the con-
tinuum hypothesis, we use scalar products on the Baer-Specker group P. Recall that
P =1T],Z is the set of all elements x = >, x;e; with z; € Z and e; € P defined by
the Kronecker symbol, addition is defined component-wise. We also remark that the
continuum hypothesis in [12], in short CH, means 2 = w;. Note that the Baer-Specker
group P has the subgroup S of all elements x of finite support, i.e. z; = 0 for almost
all ¢ € w. Now, it is shown in Theorem 4.17 that the continuum hypothesis is logically
equivalent that every (torsion-free) free-reduced group A of cardinality |A| < 2% is
necessarily free. We also produce some relevant examples.

Throughout,

(1) R is an associative ring with unit 1 and modules My are usually stand for a unital
right R-module and Z,, is the ring of integers modulo n.

(13) J(R) denotes the Jacobson radical of R,

(i73) X <P M means X is a direct summand of M,

(iv) a ring R is said to be domain if rg(a) = 0 for each non-zero a € R, where rr(a)
denotes the right annihilator of a € R, denote such a group with T' < G its torsion
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(v) A is an abelian group with torsion 7" an groups and if p is a prime, then 7, <T
will denote its p-torsion,

(vi) for a prime integer p, an abelian group A is said to be p-group if the order of
every element of A is a power of p.

(vit) the expression rank of A will refer to its torsion-free rank.

(viii) for a prime p, the p-rank of G will be the dimension of the p-socle, G[p], as a
vector space over Z(p).

Furthermore, our notation and notions are all standard and may be found in the
books [14, 15, 6, 7, §].

2. VIRTUALLY REGULAR RINGS
We begin with the following elementary examples of virtually regular rings.

Example 2.1. (1) The ring Z,, n > 2, is virtually regular if and only if n is square-free.
(2) The homomorphic images of a virtually regular ring need not virtually regular:
7 is virtually regular, but Z4 is not.

Recall that a ring R is said to be right Rickart if rg(a) is generated by an idempotent
for each a € R.
We introduce the easy extension of the characterization [10, Proposition 1(1)].

Proposition 2.2. The following conditions are equivalent for a ring R:
(1) R is right virtually regular,
(2) R is right Rickart,
(3) every principal right ideal of R is projective.

Proof. (1)< (3) is proved in [10, Proposition 1(1)].
(2)<(3) is proved in [15, Proposition 7.48]. O

The class of virtually regular rings is closed under taking the direct product:

Theorem 2.3. The ring [[; R; is right virtually regular if and only if each ring R; is
right virtually reqular.

Proof. Denote by (e;); the set of central orthogonal idempotents of R such that e; R = R;
and R =[], e;R, i.e. we may identify rings R; and e; R, and consider R; as an ideal in
R generated by a central idempotent e;.

(:=) Let a € R; for a fixed i. Note that e;a = a and eja = 0 for all others j # i. Since
there exists an idempotent, say f € R, such that rg(a) = fR by Proposition 2.2, we
have that rg,(a) = e;fR. Furthermore, as each e; is a central idempotent, we obtain
that e;f is an idempotent of R; again by Proposition 2.2. Thus each R; is a right
virtually regular ring.

(«:) Let a € R. Then there exists an idempotent f; € R; such that g, (e;a) = fiR;
by Proposition 2.2. Let f := (f;) € R. Then it is easy to see that f> = f € R and
rr(a) = fR as desired by Proposition 2.2. O
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Recall that any commutative domain is right and left virtually regular by [10, Ex-
ample 2(2)]. We show that it is the only kind of examples right virtually regular rings
which are indecomposable as modules.

Proposition 2.4. Assume that a ring R contains only trivial idempotents. Then R is
right (left) virtually regular if and only if it is a domain.

Proof. (:=) If R is right virtually regular and a € R is non-zero, then r(a) is a direct
summand of R by Proposition 2.2. On the other hand, since rg(a) # R is generated
by an idempotent by Proposition 2.2, we get that rz(a) = 0. Hence a - b # 0 for each
non-zero b € R.

(«<:) If R is a domain and a € R is non-zero, then rr(a) = 0. It means that rr(a) is
generated by the idempotent 0 and the assertion follows from Proposition 2.2, cf. [10,
Example 2(2)]. O

Now, Proposition 2.4 yields the following consequence.
Corollary 2.5. A local ring is right virtually reqular if and only if it is a domain.
Recall that a ring is called abelian provided each its idempotent is central.

Theorem 2.6. Let R be an abelian semiperfect ring. The following conditions are
equivalent:

(1) R is right virtually regular,

(2) R is isomorphic to a product of finitely many local domains.

Proof. (1)=(2). Let R be right virtually regular. Since R is an abelian semiperfect
ring, there exists a finite sequence (e; | i < n) of orthogonal central idempotents such
that ) .e; = 1 and e;R is a local ring by [14, Theorem 23.6]. Then R = [[, e;R,
where each e; R is a virtually regular ring by Theorem 2.3. Hence ¢; R is a domain by
Corollary 2.5 for each 1.

(2)=-(1). The claim follows from Proposition 2.2 and Theorem 2.3. O

Recall that, a ring R is called right Kasch if every simple right R-module embeds
into R.

Proposition 2.7. Let R be a semiperfect right Kasch ring. The following conditions
are equivalent:

(1) R is right virtually regular,

(2) R is semisimple.

Proof. (1)=(2). Since R is a semiperfect ring, there exists an orthogonal sequence
(ei | i < n) of idempotents such that ) ,e; = 1 and e;R is an indecomposable right
ideal by [14, Theorem 23.6]. Let ¢ < n. As R is a right Kasch and right virtually regular
ring, we obtain that the simple module e;R/e;J(R) is isomorphic to a right ideal of R,
and hence it is projective. This implies that e;JJ(R) is a direct summand in e; R and so
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eiJ(R) = 0 because e; R is indecomposable. We have proved that e;J(R) = 0 for each
i. Hence J(R) =) e;J(R) =0 and R = R/J(R) is semisimple.
(2)=(1). The claim is clear by the definition. O

A ring R satisfies the right C2-condition if every right ideal of R that is isomorphic
to a direct summand of R is a direct summand of R.

Theorem 2.8. The following are equivalent for a ring R:

(1) R is von Neumann regular,
(2) R is right virtually reqular and satisfies the right C2-condition,
(3) R is strongly right virtually regular and satisfies the right C2-condition.

Proof. (1)=(3) Since the strong virtually regularity is obvious, we need to show that
R satisfies the right C2-condition. Let I be an ideal of R such that I =2 eR for some
€2 =e € R. Then I = aR for some a € R. Since R is regular, we obtain that I = aR
is a direct summand of R, as desired.

(3)= (2) This is obvious.

(2)= (1) Let I be a principal ideal of R. Since R is a right virtually regular ring, we
have that I = eR for some e? = ¢ € R. Now, by the right C2-condition, I = aR is a
direct summand of R which means that R is a regular ring. U

3. STRONGLY VIRTUALLY REGULAR RINGS

Recall that a module M is chain if the lattice of submodules of M is linearly ordered
(equivalently, if, for each a,b € M, either aR C bR or bR C aR).

Example 3.1. Let R be a right chain domain.

Claim. The matrix ring M, (R) is semiperfect right strongly virtually regular: Since
every finitely generated right ideal of R is principal, it is isomorphic to Rpg, which
means that R is local, right strongly virtually regular, and so right semihereditary.
Furthermore M, (R) is right semihereditary as well by [15, Theorem 7.62] and every
finitely generated submodule of R}, is isomorphic to RF for some natural k by [15,
Theorem 2.29]. Since R is right Ore, there exists the division ring of right fractions @
which is flat as left R-module by [15, Proposition 4.4]. If we have a monomorphism
RF < R™ it induces an embedding

QO = R ®r Qg — RE®r Qo = QP

thus & < n, i.e. R" contains only submodules isomorphic to R* for suitable k < n.
Then any right ideal of End(R}%) generated by finitely many endomorphisms o1, ..., 0
is generated by arbitrary epimorphism R™ — ). im(c;), which exists as ), im(o;) =
RF for k < n, This implies that the ring End(R%) = M,(R) is right Bezout and
right semihereditary, and hence it is a right strongly virtually regular ring (cf. [10,
Proposition 1(2)]). Finally, note that M, (R) is semiperfect by [14, Corollary 23.9].
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In the rest of the section, we show that semiperfect right strongly virtually regular
rings are necessarily of the form presented in Example 3.1.

Let us denote by [(M) a composition length of any semisimple module M, i.e. the
number [(M) = [ such that there exists simple modules Si,...S; for which M =

@2:1 Si.

Lemma 3.2. If R is a semiperfect right strongly virtually regular ring, then every
central idempotent of R/J(R) can be lifted to a central idempotent of R.

Proof. Let € € R/J(R) be a central idempotent. Since R is semiperfect, € can be lifted
to an idempotent e € R.

Claim. (1 —e)Re = 0: Let r € R and put ¢ := (1 —e)re and M =: cR + eR.
Then M = cR @ eR is a principal right ideal as R is strongly virtually regular, and
M/J(M) = cR/J(cR) ® eR/eJ. Hence there exists an epimorphism of Rp = eR &
(1 —e)R onto M/J(M). Note that Hom((1 — e)R/(1 —e)J(R),eR/eJ(R)) = 0 and
Hom((1—e)R,eR/eJ) = 0 since e+.J = € is a central idempotent of R/.J(R). Moreover
¢R is a homomorphic image of eR, which means that Hom((1 — e)R,cR/J(cR)) = 0.
Then

Hom(R,M/J(M)) = Hom(eR,M/J(M))® Hom((1—e)R,M/J(M))
= Hom(eR, M /J(M)) = Hom(eR/eJ, M/J(M)),

and hence
I(M/J(M))=1(cR/J(cR)) + l(eR/eJ(R)) < l(eR/eJ(R)),

which already proves that cR/J(cR) = 0 and so (1 —e)re = ¢ = 0. We have shown
that (1 — e)Re = 0 and the symmetric argument for 1 — e gives us that eR(1 —e) = 0,
i.e. e is central. O

We need the following easy observation.

Lemma 3.3. If R is a semilocal ring and C is a cyclic module, then I(C/J(C)) <
I(R/R(J)) < 0.

Now, we are ready to describe semiperfect strongly virtually regular rings with only
one simple module up to isomorphism.

Lemma 3.4. Let R be a semiperfect right strongly virtually regular ring. If R/J(R) is
an indecomposable ring, then there exists a right chain domain S such that R = M, (S)

forn=1(R/J(R))

Proof. Since R is semiperfect and R/J(R) is indecomposable, we obtain that

e there exists a complete orthogonal sequence (e; | i« < n) of idempotents such that
diei=1,

e ¢;R = ¢;R are indecomposable right ideals for all 4, j, and

e S e R/e;J(R) is up to isomorphism unique right simple module over R by [14,
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Theorem 23.6], which implies that R = End(€D, e;R) = My (e1Re1).

Claim 1. e1R is a chain right ideal: Assume to contrary that there exist a,b € e; R
such that aR ¢ bR and bR ¢ aR. Then C = aRN bR is a proper submodule of both
right ideals aR and bR and aR + bR/C = aR/C & bR/C. Hence there exists a right
ideal D such that C < D < aR + bR and aR +bR/D = S?. As

E=aR+bR+(1—ej))R=aR+bR® (1 —e1)R,
there exists an epimorphism of E/J(E) onto
E/(Do((1—e)))=2S*® (1 —e)R/(1—ey)] =8,

Since E is finitely generated and R is right strongly virtually regular ring, it is cyclic
and we obtain in such way [(E/J(E)) > n which contradicts to [((R/J(R)) = n by
Lemma 3.3. We have proved that e; R is a chain right ideal, and hence e; Re; is a right
chain ring.

Claim 2. ejRe; is a domain: It suffices to show that rr(eire;) N e R = 0 for each
eire; # 0. Let e;re; # 0. There exists an idempotent f # 1 such that rr(ejre;) = fR
by Proposition 2.2. Clearly, (1 —e1) € fR, which implies that (1 —e;)R C fR. Since
R/(1—e1)R=e1R and fR/(1 —e1)R is isomorphic to a cyclic submodule of eR which
is projective by Proposition 2.2 as R is right virtually regular, we obtain that there
exists a right ideal A for which

fREZA®(1—e)R and RE(1— /) R®A® (1 —e1)R.

Furthermore, as [((1 — f)R/(1 — f)J) >0, l((1 —e;)R) =n — 1 and
(

=U(R/J(R) =1 = R/ =[)JOA/ATD(1—e))R/(1 = e1)])
= UL = R/ = [)J) +U(AJAT) + (1 = e)) R/(1 = ex)]),

we get that A = 0. Finally, we can see that fR = (1 —e;)R and fRN e R =0, which
proves that e Re; a domain. O

Theorem 3.5. Let R be a semiperfect ring. The following are equivalent:

(1) R is right strongly virtually regular ring,
(2) there exists natural numbers k, ni,...,n, and right chain domains S; for all
i=1,...,k such that R = Hle M, (S;).

Proof. (1) = (2). Since R/J(R) = Hle M, (D;) for some k, ni,...,n; and division
rings D; by Wedderburn—Artin theorem, there exists central idempotents e; € R such
that R = Hle e;R and e;R/J(e;R) = My, (D;) by Lemma 3.2. Observe that e;R is a
right strongly virtually regular ring by Theorem 2.3. Hence Lemma 3.4 implies that
there exists a right chain domain S; satisfying e;R = M, (S;) for each i = 1,...,k,
which finishes the proof.

(1) = (2). The implication follows from Example 3.1. O
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Note that the Jategaonkar’s example [13, Theorem 4.6] of a left chain domain which
is not right chain witnesses that the notion of a strongly virtually regular ring is not
right-left symmetric.

In commutative case we obtain the following immediate consequence.

Corollary 3.6. A commutative semiperfect ring is strongly virtually reqular if and only
if it is a finite product of valuation domains.

4. VIRTUALLY REGULAR ABELIAN GROUPS

Denote by P the set of all prime numbers. If A is an abelian group and p € P, denote
by
ep(A) =sup{k+1 € NU{0} | Ja € A:ord(A) = p*}
and observe that €,(A) = w precisely if the p-torsion component A, is unbounded, and
k = p(A)~1 ig the least natural number such that kA, = 0 whenever A, is bounded.
We can extend [10, Proposition 16]:

Proposition 4.1. Let A be a bounded p-group. The following are equivalent:
(1) A is virtually regular,

. . . ~ (i)
(2) there exist non-zero cardinals o for each i < n such that A=, (a) L' -

Proof. (1)=(2). Let A be virtually regular. Since A is a bounded p-group, it is a
direct sum of cyclic groups of order p’ for some i < €,(A) by [8, Theorem 3.5.1].
Thus A = P, <ep(A) Zgj‘i) for some cardinals «;. It remains to show that «; > 0 for

(4)

each i < €,(A). Since A contains an element a of the order p® —1 the subgroup

(aP™” (A)_i_1> & Z, is isomorphic to a direct summand of A. Hence we obtain that

a; > 0 by the Krull-Schmidt-Azumaya theorem as desired.

(2)=(1). Let A = D, (a) ZI(;”). Then each cyclic subgroup is isomorphic to Z,:
for some i < €,(A) which is a direct summand of A, which means that A is virtually
regular. ([l

Since a torsion group is virtually regular if and only if each p-torsion component is
virtually regular by [10, Proposition 17] and a bounded torsion group is a direct sum
of finitely many p-torsion components, we get the following consequence:

Corollary 4.2. The following are equivalent for a bounded (torsion) group A:
(1) A is virtually regular,

(

(2) A is isomorphic to a group @,-,, ®j<ei Zp?ij) for non-negative integers n, e;,

prime numbers p;, and non-zero cardinals o;j, where i <n and j < e;.
Now, we describe the structure of general virtually regular p-groups.

Lemma 4.3. Let A be an abelian p-group. The following are equivalent:

(1) A is virtually regular,
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(2) there exists a subgroup @KE A; of A such that A; = Z,; is a pure subgroup
of A for each i < €,(A).

Proof. (1)=(2). This inclusion follows from the fact that any p-basic subgroup B < A
(which will be pure), has for each i < €,(A), a cyclic summand of order p'.

(2)=-(1). Assume that A contains a subgroup ,_,
in A for each i < €,(A). Let a € A. Then there exists i < ¢,(A) such that ord( ) =pt.
Hence (a) = 7Z,: = A;. Since A; is pure in 4, it is a direct summand of A by [8, Lemma
5.2.1]. O

J(A) Aj; such that A; = Z,; is a pure

The following follows immediately from [10, Proposition 17], Lemma 4.3 and the fact
that a torsion group is a direct sum of its p-torsion components.

Corollary 4.4. The following conditions are equivalent:

(1) A torsion abelian group A is virtually regular,
(2) A contains a subgroup @,cp Dicc,(a) Api of A such that Ay = Zyi is a pure
subgroup of A for each p € P and i < ey(A).

Recall that a torsion-free module over a domain R is virtually regular if and only
if it contains a direct summand isomorphic to R by [10, Proposition 11], so virtually
regular torsion-free groups are exactly those containing a free summand of rank 1. Now
we can sum all our observation to characterize virtually regular mixed abelian groups,
i.e. groups which are neither torsion, nor torsion-free.

Theorem 4.5. The following conditions are equivalent a mized abelian group A:

(1) A is virtually regular,
(2) A contains a direct summand isomorphic to Z and a subgroup @ ,cp D, (a)
such that Ap; = Z,: is a pure subgroup of A for each p € P and i < €y(A).

Api

Proof. (1)=(2). Let A be virtually regular and let T'(A) denote the torsion part of A.
Then A/T(A) and T'(A) are virtually regular by [10, Corollary 3]. Then A/T(A) con-
tains a free summand of rank 1 by [10, Proposition 11] and there exists an epimorphism
A — Z. Thus there exists a direct summand of A isomorphic to Z. As T'(A) is virtually
regular, there exists a subgroup €P,cp @i, a)Ai of T(A) for which Ay = Zy is a
pure subgroup of T'(A) for p € P and i < ep(A) by Corollary 4.4. Since T'(A) is pure in
A, we obtain that Ap; is pure in A, which finished the proof.

(2)=(1). The claim follows from Corollary 4.4and [10, Corollary 3 and Proposition

11]. O
We have following description of completely virtually regular abelian groups.

Theorem 4.6. Let G be a group with torsion T and A := G/T be the corresponding
torsion-free quotient. The following statements hold:

(a) T is completely virtually reqular if and only if pT,, = 0 for all primes p;
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(b) A is completely virtually reqular if and only if it is free-reduced;
(c) G is completely virtually regular if and only if T and A are completely virtually
regular.

Proof. Regarding (a), suppose first that 7" is completely virtually regular. If pT" # 0 for
some prime p, then there is an z € T of order p?. Then S = (x) = Z(p?) has a cyclic
subgroup isomorphic to Z(p), but S has no a direct summand of that order, i.e. S is
not virtually regular. Therefore, T is not completely virtually regular.

Conversely, suppose that pT,, = 0 for all primes p. If § < T, then pS, = 0 for
all primes p as well. Since S is semisimple, we have that all of its subgroups, and in
particular, all its cyclic subgroups, are direct summands, i.e. S is virtually regular.

Therefore, T is completely virtually regular.

Turning to (b), suppose first that A is completely virtually regular. Define, for all
ordinals «, the descending subgroups A, in the definition contained in the introduction.
If 8 is any ordinal, Ag # 0 and a = 3 + 1, it will suffice to show that A, # Ag:
Let 0 # = € Ag # 0. Since A is torsion-free, we must have (z) = Z. Now, the
complete virtually regularity of A gives that Ag is virtually regular, and so there exists
a decomposition Ag = Z @Y, where Z = Z. It follows that A, <Y < Ag, ie.
Ay # Ag, completing this implication.

Conversely, suppose that A, = 0 for some ordinal o and 0 # z € B < A. Clearly,
(x) =2 Z. Let B < a be the smallest ordinal such that B < Ag. Therefore, B will not
be contained in Agy; which means that there is a homomorphism ¢ : Ag — Z such
that ¢(B) # 0. If K = ker(¢) N B, then it follows that B = Z® K, where Z = Z = (x).
This shows that B is virtually regular, i.e. A is completely virtually regular.

Finally, regarding (c), suppose first that G is completely virtually regular. Since
it is clear that an arbitrary subgroup of a completely virtually regular group inherits
that property, the group 7' is completely virtually regular. Turning to A = G/T, if A
failed to be completely virtually regular, then there would be a non-zero B < A such
that every homomorphism B — Z is 0. If H/T = B, then it would follow that H
has elements of infinite order. But, since any homomorphism H — Z factors through
B = H/T — 7Z, we could conclude that every homomorphism H — Z is 0. Therefore,
H is not virtually regular, i.e. G is not completely virtually regular.

Conversely, suppose that T" and A are completely virtually regular and 0 # x € B <
G. If z has infinite order, then 0 # B := [B+T]/T < A. Since we are assuming that A
is completely virtually regular, there must be a non-zero homomorphism B — Z. But
then, B — B — Z will also be non-zero, i.e. B will have the required infinite cyclic
summand. Now, if z has finite order, say n, then x € T := BNT. Since T is assumed
to be completely virtually regular, we obtain that Ty is virtually regular. Therefore,
T has a cyclic direct summand of order n, and since Ty is pure in B, this (bounded
pure) subgroup will also be a summand of B. Therefore, each such B will be virtually
regular, i.e G is completely virtually regular. O
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We now want to present some results and examples related to groups that are are
not free-reduced, i.e., torsion-free completely virtually regular.

In the following, unless specifically noted otherwise, we are assuming all groups are
torsion-free.

We include a few easy to verify observations, whose proofs we leave to the reader
(for a = 1, one uses the definition, and then a natural transfinite induction gives the
result for arbitrary «):

Fact 4.7. If $ : A — B is a group homomorphism, then we conclude that ¢p(A,) < B,
for every ordinal o.

Fact 4.8. From Fact 4.7, we can conclude that if {A'}ics is a collection of groups and

« 18 an ordinal, then
(@) -

el el
Fact 4.9. The following statements hold for a group A:
(a) If n < «, then (A/Aq)y = Ay/Aa.
(b) If n > a, then (A/As)y = 0.

Example 4.10. If A has a rank-1 subgroup C' that is not cyclic, then A is not free-
reduced. On the other hand, there is a group A such that every rank-1 subgroup C' < A
is cyclic (i.e., A is homogeneous of type 0), but A is not free-reduced.

Proof. Assume that A has such a rank-1 subgroup C that is not cyclic. Then it is clear
that C' is not be virtually regular, which implies that A is not completely virtually
regular, a contradiction.

On the other hand, by the standard constructions, there are indecomposable groups
A of rank exceeding 1 such that every rank-1 subgroup is cyclic. Since such a group
is not virtually regular, which implies, in particular, that A is not completely virtually
regular. O

We now discuss some situations in which a free-reduced group A must actually be
free.

Proposition 4.11. The following statements are equivalent for a torsion-free group A
of finite rank:

(a) A is free-reduced,

(b) A is free.

Proof. (a) = (b). Suppose that A is free-reduced. By an obvious induction on its rank,
we obtain a decomposition A = Cy @ --- @ C} such that each C; is indecomposable.
By Fact 4.8, we have that each C; is free-reduced. Since an indecomposable group is
virtually regular if and only if it is cyclic, we can conclude that A is free.

(b) = (a). The claim is clear. O
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Recall that there are two generalizations of this Butler groups of infinite rank, which
coincide in the case of groups of countable rank. One of these is the following: The
(torsion-free) group A is a Ba-group if and only if there is an ascending sequence of
pure subgroups

0=By<Bi<By<--<By=4 ()

such that whenever 0 < v < A, there is a finite rank Butler group C, < A such that
B,i1 = B, + C,. We use the idea of such a composition series in the following.

Theorem 4.12. Suppose that A is a torsion-free group such that there is a composition
series (T) and there exist (arbitrary, i.e. not necessarily Butler) finite-rank subgroups
C, (0 <~y < A) such that each By11 = By + C,. Then the following statements are
equivalent:

(a) A is free-reduced,

(b) A is free.

Proof. (a) = (b). Suppose that A is free-reduced, i.e. completely virtually regular.
Since an arbitrary subgroup of a completely virtually regular group retains that prop-
erty, using the above notation, we obtain that each C, < A is free-reduced. Since C,
is of finite rank, it is free by Proposition 4.11, and hence, it is finitely generated. Now,
for each such ~y, we have that

Byi1/By = [By + C]/By = Cy/[By N Oy .

Since these quotients are clearly finitely generated and torsion-free, we obtain that they
are free. Therefore,
A= @ (B/B,)
0<y<A

is free.
b) = (a). The claim is clear. O
(b) = (a)

Corollary 4.13. Then the following statements are equivalent for a Bo-group A:

(a) A is free-reduced,
(b) A is free.

Corollary 4.14. Then the following statements are equivalent for a (torsion-free) group
A of countable rank:

(a) A is free-reduced,
(b) A is free.

Proof. Tt is easy to obtain a decomposition series as in () such that A = w and each B,
has finite rank. For each v < w, if we let C,, = B,1, then the result is an immediate
consequence of Proposition 4.12 ]
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Corollary 4.15. Suppose that G is a mized group with torsion T and A = G/T.
If A is either of countable rank or is a Bs-group, then the following statements are
equivalent:

(a) G is completely virtually regular,
(b) G is torsion splitting, i.e. G has a decomposition G = T ® A such that T is
semisimple and A is free.

Proof. (a) = (b). If A is either of countable rank or is a Ba-group, then A must be
free-reduced by Theorem 4.6(b or ¢). Hence, we can conclude that A must be free.
Therefore, the splitting necessarily happens, as indicated.

(b) = (a). The claim is an immediate consequence of Theorem 4.6(c). O

We recall the following well-known (and straightforward to verify) observation.

Fact 4.16. If P =[], is the Baer-Specker group and S is the Z-adic closure of S :=
@D,Z <P in P, then |S| =2 =c and S/S is divisible.

Let P denote the Baer-Specker group, [[,Z. We now present a possibly surprising
connection between free-reduced groups and the continuum hypothesis, or CH, i.e.,
2% = w1.

Theorem 4.17. The following two statements are logically equivalent (and so, both
independent of ZFC):

(a) The continuum hypothesis,
(b) Every (torsion-free) free-reduced group, say A, of cardinality |A| < 2% is neces-
sarily free.

Proof. (a) = (b). Suppose that CH holds. Let A be a free-reduced group with |A| < 2¢.
Then A must have countable rank. So, by Corollary 4.14, we can conclude that A is
free, i.e. (b) holds.

(b) = (a). Suppose on contrary that (a) fails, i.e. w1 < 2¢. By Fact 4.16, there is a
A < S with § < Aand A/S divisible of rank w;. Clearly, A is free-reduced. By (b), we
assume that A is free. An elementary argument gives us that A has a decomposition
A =M & N such that S < M and M is countable. Since N is free of rank w; and
maps to a direct summand of A/S = (M/S) & N, this contradicts that A/S <% §/S
is divisible. O

We now construct an auxiliary lemma that will allow us to produce some relevant
examples.

Lemma 4.18. If P := [[Z is the Baer-Specker group and E is a countable group
that is not cotorsion, then Ext(P, E) has (torsion-free) rank 22° = 2°¢, where c is the
continuum.

In particular, this group of extensions has (non-zero) elements of infinite order.
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Proof. Let S := @, Z. Then we have a short exact sequence
0—=S—=P—H=0

where H = P/S. Let S < P be the closure of S in P in the Z-adic topology so that
S/S = @.Q <® P/S = H. If we apply Ext(—, F) to the long exact sequence, we
obtain that

0 — Hom(H, E) — Hom(P, E) — Hom(S, E) > Ext(H, E) — Ext(P, E) — 0,
where Ext(S, E) = 0 since S is free. Note that

Hom(S, E) = Hom(@H Z, E) = [ [Hom(Z,E) = [ E

will have cardinality |E|“ = c¢. On the other hand, we will also have that

[[Ext(Q. E) = Ext(EP Q, E) = Ext(S/S, E) <% Ext(H, E).

Since Ext(Q, E) is divisible of (torsion-free) rank ¢, we obtain that
I T[Ext(Q,B)| =" =2°>c.
(&

Therefore, Ext(H, F) will have rank 2¢, which implies that
Ext(P, F) = Ext(H, E)/§(Hom(S, E))
will also have (torsion-free) rank 2¢, giving the result. O

By Corollary 4.15, one may conjecture that every completely virtually regular mixed
group is torsion-splitting. The following example eliminates this possibility.

Example 4.19. Let E = @pZ(p) be semisimple and P be the Baer-Specker group.
Clearly, FE is countable and it is not cotorsion. Now, by Lemma 4.18, there is a non-
splitting short exact sequence 0 - F — G — P — 0. By Theorem 4.6, G is completely
virtually regular and it is not torsion-splitting by the construction.

We now want to verify that there are examples of (torsion-free) completely virtually
regular groups A such that a chain of subgroups A, is arbitrarily long. We begin with
the first step.

Example 4.20. Let P denote the Baer-Specker group. There exists a free-reduced
group A such that A/A; = P and A; ¥ Z, so that A2 = 0.

Proof. Since Z is certainly countable and not cotorsion, we have, by Lemma 4.18, a
short exact sequence 0 — Z — A — P — 0 that represents an element of infinite order
in Ext(P,Z). Let Z! be the image of the left injection, so that Z' = Z.

Claim. A; = Z': Certainly, if z € A \ Z', then x + Z' is a non-zero element of P.
Hence, there is a homomorphism P — Z such that z + Z! — w # 0. Therefore, the
composition ¢ : A — P — Z satisfies ¢(x) # 0. Ergo, A; < Z'. For the converse
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inclusion, suppose that z € Z!. We want to show z € A;. Assume on contrary that
z ¢ Ay, Then there exists a homomorphism v : A — Z such that y(Z!') # 0. Suppose
that the composite of Z = Z! with ~ is multiplication by a non-zero n € Z. Then there
is a commutative diagram

0— Z - A = P—=0
nd v
7

However, the existence of such a diagram would imply that 0 - Z - A — P — 0 was
an element of finite order |n| # 0 in Ext(P,Z), contrary to its construction.
It follows that A; = Z! = Z, so that Ay = 0. O

We now use an induction to generalize Example 4.20 to construct a group A whose
corresponding descending chain A, is as long as desired.

Example 4.21. If « is an ordinal, then there is a group A® such that (A%), = Z, so
that (A%), = 0 for all n > a.

Proof. Certainly, if & = 0, we can just let A° = Z. Example 4.20 shows that the result
is true if & = 1. So, suppose we can construct such groups A" for all n < «a, where
a > 2.

Case 1. « is a limit ordinal: For each n < «, we can find an A" such that

(AN :=7Z" =27 (and (A")y41 = 0).

K :={x=(2y)y<a € @Z" : Z‘T” = 0}.

n<oa n<a
Now, we let A% = (P, _, A")/K (in other words, we are simply identifying the sub-
groups (A"), = Z" for all n < a) and we let Z := (P, ., Z")/K = Z. Then, for each
n < «, we can identify A" with a subgroup of A% so that Z* = Z". For every n < a,
by Fact 4.7, we obtain that

7% =17" = (A"), < (A%Y)y,
which implies that Z¢ < Np<a(AY); = (AY)a.
For the converse, by Facts 4.7, 4.8 and 4.9, we obtain that

(A%)o = [A%) 20 = [P A"/ 27 = EDIA"/ 270 = 0,

n<a n<a

Let

where A® — A%/ Z" is the natural epimorphism. Hence (A%), < Z%, as desired.
Case 2. a =7+ 1 is not a limit ordinal: Let H be the group from Example 4.20 with
H, =2 Z. For each non-zero y € H, let AY be a copy of A", and let (AY), =: Z¥ = Z.
Consider the epimorphism with L kernel

@ZV—HLI

yeH
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which sends each 1 € Z¥ toy € H. Let

A= [P AY)/L.

yeH

Hence, we can think of H as a subgroup of A¢. Now, for every y € H, we also can also
think of AY as a subgroup of A%. Therefore, for every y € H, by Fact 4.7, we have that

y € ZY = (AY), < (A%)y,

ie. H < (A%),.
For the converse, using Facts 4.7, 4.8 and 4.9, and considering the natural epimor-
phism A% — A®/H, we obtain that

(A%)y > [A%/H], = [P 47/ 2], = DAY/ 27], =0,

yeH yeH
which implies that (A%), < H.
Therefore, (A%), = H, (A%)o = Hy = Z, completing the proof. O

Remark 4.22. Note that if A% is the group constructed in Example 4.21 and B¢ :=
A%/(A%)q, then (B*)q = 0 and (B%), # 0 for all n < a, so we can think of B as
having free-reduced length exactly . It can also be seen that whenever n < «, then
(A%)p/(AY)y41 will be a direct sum of copies of the Baer-Specker group.
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