

ON VIRTUALLY REGULAR MODULES AND RINGS

PATRICK W. KEEF, M. TAMER KOŞAN, AND JAN ŽEMLIČKA

ABSTRACT. A right R -module M is called (strongly) virtually regular if every cyclic (finitely generated) submodule is isomorphic to a direct summand of M , and M said to be completely virtually regular if every submodule of M is virtually regular. In this paper, we provide description of classes of (strongly) virtually regular rings, in particular for semiperfect rings. Furthermore, we completely characterize (strongly/completely) virtually regular Abelian groups, which generalizes recently published results.

1. INTRODUCTION

In a series of papers [4, 5], Facchini et all and, independently, Behboodi et all [9] introduced and studied structures of modules with chain conditions up to isomorphism, and they called a module M *virtually/iso semisimple* if every submodule of M is isomorphic to a direct summand of M . A non-zero indecomposable virtually semisimple right R -module is called *virtually/iso simple*. Recently, the authors of [10] introduced the concepts of virtually regular modules: a right R -module M (*strongly*) *virtually regular* if every cyclic (finitely generated) submodule is isomorphic to a direct summand of M , and a module M said to be *completely virtually regular* if every submodule of M is virtually regular. Let us recall that these terms generalize the following well-known concepts: A ring R is said to be *von Neumann regular* if for each $x \in R$, there exists an element y in R such that $x = xyx$. Various module theoretic versions of von Neumann regular rings have been considered by Azumaya [3], Fieldhouse [11], Ware [16], and Zelmanowitz [17], in particular, a module M is said to be

Zelmanowitz-regular if for each $x \in M$ there exists a homomorphism $f : M \rightarrow R$ such that $f(x)x = x$;

Azumaya-regular if every submodule of M is locally split in M (i.e., for any $x_0 \in N$ there exists a homomorphism $s : M \rightarrow N$ such that $s(x_0) = x_0$). Equivalently, every cyclic submodule of M is a direct summand?

Recalling a well-known characterization of regular rings as rings such that each principal left (or right) ideal is generated by an idempotent, we obtain in Proposition 2.2 similar result that R is a right virtually regular ring if and only if $r(a)$ is a summand of R for each $a \in R$ if and only if $r(a)$ is generated by an idempotent for each $a \in R$, where

2010 *Mathematics Subject Classification.* 16D50, 16D60, 18G25.

Key words and phrases. Virtually regular modules and rings, abelian groups.

$r(a)$ denotes the right annihilator of $a \in R$. This useful characterization leads to obtain the important closure property that the class of virtually regular rings is inherited by direct products (Theorem 2.3). Moreover, they yield that a local ring is right virtually regular if and only if it is a domain (Corollary 2.5) and, if R is an abelian semiperfect ring, then R is right virtually regular if and only if R is isomorphic to a product of finitely many local domains (Theorem 2.6). By the chart in [10], virtually/iso semisimple modules are strongly virtually regular (and hence, virtually regular). It is shown in Theorem 2.7 that the converse is true if R is a semiperfect right Kasch ring. Section 2 is closed by the following result: R is right virtually regular and satisfies the right C2-condition (i.e. every right ideal of R that is isomorphic to a direct summand of R is a direct summand of R) if and only if R is a von Neumann regular ring (Theorem 2.8).

In section 3, we obtained a new characterization of strongly virtually regular ring over semiperfect rings R s, and it is shown in Theorem 3.5 that, R is right strongly virtually regular ring if and only if there exists natural numbers k, n_1, \dots, n_k and right chain domains S_i for all $i = 1, \dots, k$ such that $R \cong \prod_{i=1}^k M_{n_i}(S_i)$. This yields that a commutative semiperfect ring is strongly virtually regular if and only if it is a finite product of valuation domains (Corollary 3.6).

The assertion of [10, Proposition 16] that a non-zero finite abelian p -group A is virtually regular iff $A \cong (\mathbb{Z}_p)^{a_1} \oplus (\mathbb{Z}_{p^2})^{a_2} \oplus \dots \oplus (\mathbb{Z}_{p^k})^{a_k}$ for some positive integers a_1, \dots, a_k is generalized in Proposition 4.1, which claims that a bounded abelian p -group A is virtually regular if and only if there exist non-zero cardinals α_i for each $i \leq n$ such that $A \cong \bigoplus_{i < \epsilon_p(A)} \mathbb{Z}_{p^i}^{(\alpha_i)}$. Since a torsion group is virtually regular if and only if each p -torsion component is virtually regular by [10, Proposition 17] and bounded torsion group is a direct sum of finitely many p -torsion components, we obtained Corollary 4.2. It is also shown in Corollary 4.4 that a torsion abelian group A is virtually regular if and only if A contains a subgroup $\bigoplus_{p \in \mathbb{P}} \bigoplus_{i < \epsilon_p(A)} A_i$ of A such that $A_{pi} \cong \mathbb{Z}_{p^i}$ is a pure subgroup of A for each $p \in \mathbb{P}$ and $i < \epsilon_p(A)$. Since a torsion-free module over a domain R is virtually regular if and only if it contains a direct summand isomorphic to R by [10, Proposition 11], we can say that virtually regular torsion-free groups are exactly those containing a free summand of rank 1. Thus, we have a characterization of virtually regular mixed abelian groups (i.e. groups which are neither torsion, nor torsion-free). Let A be a mixed abelian group. It is shown in Theorem 4.5 that A is virtually regular if and only if A contains a direct summand isomorphic to \mathbb{Z} and a subgroup $\bigoplus_{p \in \mathbb{P}} \bigoplus_{i < \epsilon_p(A)} A_i$ such that $A_{pi} \cong \mathbb{Z}_{p^i}$ is a pure subgroup of A for each $p \in \mathbb{P}$ and $i < \epsilon_p(A)$.

Suppose A is a torsion-free abelian group. Let $\{f_i\}_{i \in I}$ be the collection of all homomorphisms $A \rightarrow \mathbb{Z}$, and let A^+ be $\bigcap_{i \in I} \ker(f_i)$ (recall *Arnold-Vinsonhaler invariants* [1, 2]). For each ordinal α , we inductively define a subgroup A_α , as follows:

$$A_0 := A;$$

if $\alpha > 0$ and A_β has been defined for all $\beta < \alpha$;

$$A_\alpha := \cap_{\beta < \alpha} (A_\beta)^+.$$

We say A is *free-reduced* if there exists some α such that $A_\alpha = 0$. Section 4 is devoted to the characterization of strongly virtually regular abelian groups. Let G be an abelian group with torsion T and $A := G/T$ be the corresponding torsion-free quotient. It is obtained in Theorem 4.6 that T is completely virtually regular iff $pT_p = 0$ for all primes p ; A is completely virtually regular iff it is free-reduced, and, finally, G is completely virtually regular iff T and A are completely virtually regular. We will close section 4 with some characterizations of torsion-free completely virtually regular abelian groups. As an early result, we discuss situations in which a free-reduced group must actually be free (Proposition 4.11). Recall that a finite rank torsion-free group is called a *Butler group* if it can be embedded as a pure subgroup of a group that is completely decomposable (of finite rank), which holds exactly when it is a homomorphic image of such a (finite rank) completely decomposable group. It is shown in Theorem 4.12 that if A is a torsion-free group such that there is a composition series and (not necessarily Butler) finite-rank subgroups C_γ ($0 \leq \gamma < \lambda$) such that each $B_{\gamma+1} = B_\gamma + C_\gamma$, then A is free-reduced iff it is free. This theorem yield the following interesting results: If A is a B_2 -group (it is a generalization of Butler groups of finite-rank which coincide in the case of groups of countable rank), then A is free-reduced iff it is free (Corollary 4.13), a (torsion-free) group of countable rank is free-reduced iff it is free (Corollary 4.14), and if $A = G/T$ is either of countable rank or is a B_2 -group, where G is a mixed group with torsion T , then G is completely virtually regular iff G has a decomposition $G \cong T \oplus A$ such that T is semisimple and A is free (Corollary 4.15).

In order to obtain a surprising connection between free-reduced groups and the continuum hypothesis, we use scalar products on the Baer-Specker group P . Recall that $P = \prod_\omega \mathbb{Z}$ is the set of all elements $x = \sum_{i \in \omega} x_i e_i$ with $x_i \in \mathbb{Z}$ and $e_i \in P$ defined by the Kronecker symbol, addition is defined component-wise. We also remark that the *continuum hypothesis* in [12], in short CH, means $2^\omega = \omega_1$. Note that the Baer-Specker group P has the subgroup S of all elements x of finite support, i.e. $x_i = 0$ for almost all $i \in \omega$. Now, it is shown in Theorem 4.17 that the continuum hypothesis is logically equivalent that every (torsion-free) free-reduced group A of cardinality $|A| < 2^\omega$ is necessarily free. We also produce some relevant examples.

Throughout,

- (i) R is an associative ring with unit 1 and modules M_R are usually stand for a unital right R -module and \mathbb{Z}_n is the ring of integers modulo n .
- (ii) $J(R)$ denotes the Jacobson radical of R ,
- (iii) $X \leq^\oplus M$ means X is a direct summand of M ,
- (iv) a ring R is said to be domain if $r_R(a) = 0$ for each non-zero $a \in R$, where $r_R(a)$ denotes the right annihilator of $a \in R$, denote such a group with $T \leq G$ its torsion

(v) A is an abelian group with torsion T and groups and if p is a prime, then $T_p \leq T$ will denote its p -torsion,

(vi) for a prime integer p , an abelian group A is said to be p -group if the order of every element of A is a power of p .

(vii) the expression *rank of A* will refer to its torsion-free rank.

(viii) for a prime p , the p -rank of G will be the dimension of the p -socle, $G[p]$, as a vector space over $\mathbb{Z}(p)$.

Furthermore, our notation and notions are all standard and may be found in the books [14, 15, 6, 7, 8].

2. VIRTUALLY REGULAR RINGS

We begin with the following elementary examples of virtually regular rings.

Example 2.1. (1) The ring \mathbb{Z}_n , $n \geq 2$, is virtually regular if and only if n is square-free.

(2) The homomorphic images of a virtually regular ring need not virtually regular: \mathbb{Z} is virtually regular, but \mathbb{Z}_4 is not.

Recall that a ring R is said to be *right Rickart* if $r_R(a)$ is generated by an idempotent for each $a \in R$.

We introduce the easy extension of the characterization [10, Proposition 1(1)].

Proposition 2.2. *The following conditions are equivalent for a ring R :*

- (1) R is right virtually regular,
- (2) R is right Rickart,
- (3) every principal right ideal of R is projective.

Proof. (1) \Leftrightarrow (3) is proved in [10, Proposition 1(1)].

(2) \Leftrightarrow (3) is proved in [15, Proposition 7.48]. \square

The class of virtually regular rings is closed under taking the direct product:

Theorem 2.3. *The ring $\prod_i R_i$ is right virtually regular if and only if each ring R_i is right virtually regular.*

Proof. Denote by $(e_i)_i$ the set of central orthogonal idempotents of R such that $e_i R \cong R_i$ and $R \cong \prod_i e_i R$, i.e. we may identify rings R_i and $e_i R$, and consider R_i as an ideal in R generated by a central idempotent e_i .

(\Rightarrow) Let $a \in R_i$ for a fixed i . Note that $e_i a = a$ and $e_j a = 0$ for all others $j \neq i$. Since there exists an idempotent, say $f \in R$, such that $r_R(a) = fR$ by Proposition 2.2, we have that $r_{R_i}(a) = e_i f R$. Furthermore, as each e_i is a central idempotent, we obtain that $e_i f$ is an idempotent of R_i again by Proposition 2.2. Thus each R_i is a right virtually regular ring.

(\Leftarrow) Let $a \in R$. Then there exists an idempotent $f_i \in R_i$ such that $r_{R_i}(e_i a) = f_i R_i$ by Proposition 2.2. Let $f := (f_i) \in R$. Then it is easy to see that $f^2 = f \in R$ and $r_R(a) = fR$ as desired by Proposition 2.2. \square

Recall that any commutative domain is right and left virtually regular by [10, Example 2(2)]. We show that it is the only kind of examples right virtually regular rings which are indecomposable as modules.

Proposition 2.4. *Assume that a ring R contains only trivial idempotents. Then R is right (left) virtually regular if and only if it is a domain.*

Proof. (\Rightarrow) If R is right virtually regular and $a \in R$ is non-zero, then $r(a)$ is a direct summand of R by Proposition 2.2. On the other hand, since $r_R(a) \neq R$ is generated by an idempotent by Proposition 2.2, we get that $r_R(a) = 0$. Hence $a \cdot b \neq 0$ for each non-zero $b \in R$.

(\Leftarrow) If R is a domain and $a \in R$ is non-zero, then $r_R(a) = 0$. It means that $r_R(a)$ is generated by the idempotent 0 and the assertion follows from Proposition 2.2, cf. [10, Example 2(2)]. \square

Now, Proposition 2.4 yields the following consequence.

Corollary 2.5. *A local ring is right virtually regular if and only if it is a domain.*

Recall that a ring is called *abelian* provided each its idempotent is central.

Theorem 2.6. *Let R be an abelian semiperfect ring. The following conditions are equivalent:*

- (1) R is right virtually regular,
- (2) R is isomorphic to a product of finitely many local domains.

Proof. (1) \Rightarrow (2). Let R be right virtually regular. Since R is an abelian semiperfect ring, there exists a finite sequence $(e_i \mid i \leq n)$ of orthogonal central idempotents such that $\sum_i e_i = 1$ and $e_i R$ is a local ring by [14, Theorem 23.6]. Then $R \cong \prod_i e_i R$, where each $e_i R$ is a virtually regular ring by Theorem 2.3. Hence $e_i R$ is a domain by Corollary 2.5 for each i .

(2) \Rightarrow (1). The claim follows from Proposition 2.2 and Theorem 2.3. \square

Recall that, a ring R is called *right Kasch* if every simple right R -module embeds into R .

Proposition 2.7. *Let R be a semiperfect right Kasch ring. The following conditions are equivalent:*

- (1) R is right virtually regular,
- (2) R is semisimple.

Proof. (1) \Rightarrow (2). Since R is a semiperfect ring, there exists an orthogonal sequence $(e_i \mid i \leq n)$ of idempotents such that $\sum_i e_i = 1$ and $e_i R$ is an indecomposable right ideal by [14, Theorem 23.6]. Let $i \leq n$. As R is a right Kasch and right virtually regular ring, we obtain that the simple module $e_i R/e_i J(R)$ is isomorphic to a right ideal of R , and hence it is projective. This implies that $e_i J(R)$ is a direct summand in $e_i R$ and so

$e_i J(R) = 0$ because $e_i R$ is indecomposable. We have proved that $e_i J(R) = 0$ for each i . Hence $J(R) = \sum e_i J(R) = 0$ and $R \cong R/J(R)$ is semisimple.

(2) \Rightarrow (1). The claim is clear by the definition. \square

A ring R satisfies *the right C2-condition* if every right ideal of R that is isomorphic to a direct summand of R is a direct summand of R .

Theorem 2.8. *The following are equivalent for a ring R :*

- (1) R is von Neumann regular,
- (2) R is right virtually regular and satisfies the right C2-condition,
- (3) R is strongly right virtually regular and satisfies the right C2-condition.

Proof. (1) \Rightarrow (3) Since the strong virtually regularity is obvious, we need to show that R satisfies the right C2-condition. Let I be an ideal of R such that $I \cong eR$ for some $e^2 = e \in R$. Then $I = aR$ for some $a \in R$. Since R is regular, we obtain that $I = aR$ is a direct summand of R , as desired.

(3) \Rightarrow (2) This is obvious.

(2) \Rightarrow (1) Let I be a principal ideal of R . Since R is a right virtually regular ring, we have that $I \cong eR$ for some $e^2 = e \in R$. Now, by the right C2-condition, $I = aR$ is a direct summand of R which means that R is a regular ring. \square

3. STRONGLY VIRTUALLY REGULAR RINGS

Recall that a module M is *chain* if the lattice of submodules of M is linearly ordered (equivalently, if, for each $a, b \in M$, either $aR \subseteq bR$ or $bR \subseteq aR$).

Example 3.1. Let R be a right chain domain.

Claim. The matrix ring $M_n(R)$ is semiperfect right strongly virtually regular: Since every finitely generated right ideal of R is principal, it is isomorphic to R_R , which means that R is local, right strongly virtually regular, and so right semihereditary. Furthermore $M_n(R)$ is right semihereditary as well by [15, Theorem 7.62] and every finitely generated submodule of R_R^n is isomorphic to R^k for some natural k by [15, Theorem 2.29]. Since R is right Ore, there exists the division ring of right fractions Q which is flat as left R -module by [15, Proposition 4.4]. If we have a monomorphism $R^k \hookrightarrow R^n$, it induces an embedding

$$Q_Q^k \cong R_R^k \otimes_R Q_Q \hookrightarrow R_R^n \otimes_R Q_Q \cong Q_Q^n,$$

thus $k \leq n$, i.e. R^n contains only submodules isomorphic to R^k for suitable $k \leq n$. Then any right ideal of $\text{End}(R_R^n)$ generated by finitely many endomorphisms $\sigma_1, \dots, \sigma_s$ is generated by arbitrary epimorphism $R^n \rightarrow \sum_i \text{im}(\sigma_i)$, which exists as $\sum_i \text{im}(\sigma_i) \cong R^k$ for $k \leq n$. This implies that the ring $\text{End}(R_R^n) \cong M_n(R)$ is right Bezout and right semihereditary, and hence it is a right strongly virtually regular ring (cf. [10, Proposition 1(2)]). Finally, note that $M_n(R)$ is semiperfect by [14, Corollary 23.9].

In the rest of the section, we show that semiperfect right strongly virtually regular rings are necessarily of the form presented in Example 3.1.

Let us denote by $l(M)$ a composition length of any semisimple module M , i.e. the number $l(M) = l$ such that there exists simple modules S_1, \dots, S_l for which $M = \bigoplus_{i=1}^l S_i$.

Lemma 3.2. *If R is a semiperfect right strongly virtually regular ring, then every central idempotent of $R/J(R)$ can be lifted to a central idempotent of R .*

Proof. Let $\bar{e} \in R/J(R)$ be a central idempotent. Since R is semiperfect, \bar{e} can be lifted to an idempotent $e \in R$.

Claim. $(1 - e)Re = 0$: Let $r \in R$ and put $c := (1 - e)re$ and $M =: cR + eR$. Then $M = cR \oplus eR$ is a principal right ideal as R is strongly virtually regular, and $M/J(M) \cong cR/J(cR) \oplus eR/eJ$. Hence there exists an epimorphism of $R_R = eR \oplus (1 - e)R$ onto $M/J(M)$. Note that $\text{Hom}((1 - e)R/(1 - e)J(R), eR/eJ(R)) = 0$ and $\text{Hom}((1 - e)R, eR/eJ) = 0$ since $e + J = \bar{e}$ is a central idempotent of $R/J(R)$. Moreover cR is a homomorphic image of eR , which means that $\text{Hom}((1 - e)R, cR/J(cR)) = 0$. Then

$$\begin{aligned} \text{Hom}(R, M/J(M)) &= \text{Hom}(eR, M/J(M)) \oplus \text{Hom}((1 - e)R, M/J(M)) \\ &= \text{Hom}(eR, M/J(M)) \cong \text{Hom}(eR/eJ, M/J(M)), \end{aligned}$$

and hence

$$l(M/J(M)) = l(cR/J(cR)) + l(eR/eJ(R)) \leq l(eR/eJ(R)),$$

which already proves that $cR/J(cR) = 0$ and so $(1 - e)re = c = 0$. We have shown that $(1 - e)Re = 0$ and the symmetric argument for $1 - e$ gives us that $eR(1 - e) = 0$, i.e. e is central. \square

We need the following easy observation.

Lemma 3.3. *If R is a semilocal ring and C is a cyclic module, then $l(C/J(C)) \leq l(R/R(J)) < \infty$.*

Now, we are ready to describe semiperfect strongly virtually regular rings with only one simple module up to isomorphism.

Lemma 3.4. *Let R be a semiperfect right strongly virtually regular ring. If $R/J(R)$ is an indecomposable ring, then there exists a right chain domain S such that $R \cong M_n(S)$ for $n = l(R/J(R))$*

Proof. Since R is semiperfect and $R/J(R)$ is indecomposable, we obtain that

- there exists a complete orthogonal sequence $(e_i \mid i \leq n)$ of idempotents such that $\sum_i e_i = 1$,
- $e_i R \cong e_j R$ are indecomposable right ideals for all i, j , and
- $S \cong e_i R/e_i J(R)$ is up to isomorphism unique right simple module over R by [14,

Theorem 23.6], which implies that $R \cong \text{End}(\bigoplus_i e_i R) \cong M_n(e_1 R e_1)$.

Claim 1. $e_1 R$ is a chain right ideal: Assume to contrary that there exist $a, b \in e_1 R$ such that $aR \not\subseteq bR$ and $bR \not\subseteq aR$. Then $C = aR \cap bR$ is a proper submodule of both right ideals aR and bR and $aR + bR/C \cong aR/C \oplus bR/C$. Hence there exists a right ideal D such that $C \leq D \leq aR + bR$ and $aR + bR/D \cong S^2$. As

$$E = aR + bR + (1 - e_1)R = aR + bR \oplus (1 - e_1)R,$$

there exists an epimorphism of $E/J(E)$ onto

$$E/(D \oplus ((1 - e_1)J)) \cong S^2 \oplus (1 - e_1)R/(1 - e_1)J \cong S^{n+1}.$$

Since E is finitely generated and R is right strongly virtually regular ring, it is cyclic and we obtain in such way $l(E/J(E)) > n$ which contradicts to $l(R/J(R)) = n$ by Lemma 3.3. We have proved that $e_1 R$ is a chain right ideal, and hence $e_1 R e_1$ is a right chain ring.

Claim 2. $e_1 R e_1$ is a domain: It suffices to show that $r_R(e_1 r e_1) \cap e_1 R = 0$ for each $e_1 r e_1 \neq 0$. Let $e_1 r e_1 \neq 0$. There exists an idempotent $f \neq 1$ such that $r_R(e_1 r e_1) = fR$ by Proposition 2.2. Clearly, $(1 - e_1) \in fR$, which implies that $(1 - e_1)R \subseteq fR$. Since $R/(1 - e_1)R \cong e_1 R$ and $fR/(1 - e_1)R$ is isomorphic to a cyclic submodule of eR which is projective by Proposition 2.2 as R_1 is right virtually regular, we obtain that there exists a right ideal A for which

$$fR \cong A \oplus (1 - e_1)R \quad \text{and} \quad R \cong (1 - f)R \oplus A \oplus (1 - e_1)R.$$

Furthermore, as $l((1 - f)R/(1 - f)J) > 0$, $l((1 - e_1)R) = n - 1$ and

$$\begin{aligned} n = l(R/J(R)) &= l((1 - f)R/(1 - f)J \oplus A/AJ \oplus (1 - e_1)R/(1 - e_1)J) \\ &= l((1 - f)R/(1 - f)J) + l(A/AJ) + l((1 - e_1)R/(1 - e_1)J), \end{aligned}$$

we get that $A = 0$. Finally, we can see that $fR = (1 - e_1)R$ and $fR \cap e_1 R = 0$, which proves that $e_1 R e_1$ a domain. \square

Theorem 3.5. *Let R be a semiperfect ring. The following are equivalent:*

- (1) R is right strongly virtually regular ring,
- (2) there exists natural numbers k, n_1, \dots, n_k and right chain domains S_i for all $i = 1, \dots, k$ such that $R \cong \prod_{i=1}^k M_{n_i}(S_i)$.

Proof. (1) \Rightarrow (2). Since $R/J(R) \cong \prod_{i=1}^k M_{n_i}(D_i)$ for some k, n_1, \dots, n_k and division rings D_i by Wedderburn–Artin theorem, there exists central idempotents $e_i \in R$ such that $R \cong \prod_{i=1}^k e_i R$ and $e_i R/J(e_i R) \cong M_{n_i}(D_i)$ by Lemma 3.2. Observe that $e_i R$ is a right strongly virtually regular ring by Theorem 2.3. Hence Lemma 3.4 implies that there exists a right chain domain S_i satisfying $e_i R \cong M_{n_i}(S_i)$ for each $i = 1, \dots, k$, which finishes the proof.

(1) \Rightarrow (2). The implication follows from Example 3.1. \square

Note that the Jategaonkar's example [13, Theorem 4.6] of a left chain domain which is not right chain witnesses that the notion of a strongly virtually regular ring is not right-left symmetric.

In commutative case we obtain the following immediate consequence.

Corollary 3.6. *A commutative semiperfect ring is strongly virtually regular if and only if it is a finite product of valuation domains.*

4. VIRTUALLY REGULAR ABELIAN GROUPS

Denote by \mathbb{P} the set of all prime numbers. If A is an abelian group and $p \in \mathbb{P}$, denote by

$$\epsilon_p(A) = \sup\{k + 1 \in \mathbb{N} \cup \{0\} \mid \exists a \in A : \text{ord}(a) = p^k\}$$

and observe that $\epsilon_p(A) = \omega$ precisely if the p -torsion component A_p is unbounded, and $k = p^{\epsilon_p(A)-1}$ is the least natural number such that $kA_p = 0$ whenever A_p is bounded.

We can extend [10, Proposition 16]:

Proposition 4.1. *Let A be a bounded p -group. The following are equivalent:*

- (1) *A is virtually regular,*
- (2) *there exist non-zero cardinals α_i for each $i \leq n$ such that $A \cong \bigoplus_{i < \epsilon_p(A)} \mathbb{Z}_{p^i}^{(\alpha_i)}$.*

Proof. (1) \Rightarrow (2). Let A be virtually regular. Since A is a bounded p -group, it is a direct sum of cyclic groups of order p^i for some $i < \epsilon_p(A)$ by [8, Theorem 3.5.1]. Thus $A \cong \bigoplus_{i < \epsilon_p(A)} \mathbb{Z}_{p^i}^{(\alpha_i)}$ for some cardinals α_i . It remains to show that $\alpha_i > 0$ for each $i < \epsilon_p(A)$. Since A contains an element a of the order $p^{\epsilon_p(A)-1}$, the subgroup $\langle a^{p^{\epsilon_p(A)-i-1}} \rangle \cong \mathbb{Z}_{p^i}$ is isomorphic to a direct summand of A . Hence we obtain that $\alpha_i > 0$ by the Krull-Schmidt-Azumaya theorem as desired.

(2) \Rightarrow (1). Let $A = \bigoplus_{i < \epsilon_p(A)} \mathbb{Z}_{p^i}^{(\alpha_i)}$. Then each cyclic subgroup is isomorphic to \mathbb{Z}_{p^i} for some $i < \epsilon_p(A)$ which is a direct summand of A , which means that A is virtually regular. \square

Since a torsion group is virtually regular if and only if each p -torsion component is virtually regular by [10, Proposition 17] and a bounded torsion group is a direct sum of finitely many p -torsion components, we get the following consequence:

Corollary 4.2. *The following are equivalent for a bounded (torsion) group A :*

- (1) *A is virtually regular,*
- (2) *A is isomorphic to a group $\bigoplus_{i \leq n} \bigoplus_{j \leq e_i} \mathbb{Z}_{p_i^j}^{(\alpha_{ij})}$ for non-negative integers n , e_i , prime numbers p_i , and non-zero cardinals α_{ij} , where $i \leq n$ and $j \leq e_i$.*

Now, we describe the structure of general virtually regular p -groups.

Lemma 4.3. *Let A be an abelian p -group. The following are equivalent:*

- (1) *A is virtually regular,*

(2) there exists a subgroup $\bigoplus_{i < \epsilon_p(A)} A_i$ of A such that $A_i \cong \mathbb{Z}_{p^i}$ is a pure subgroup of A for each $i < \epsilon_p(A)$.

Proof. (1) \Rightarrow (2). This inclusion follows from the fact that any p -basic subgroup $B \leq A$ (which will be pure), has for each $i < \epsilon_p(A)$, a cyclic summand of order p^i .

(2) \Rightarrow (1). Assume that A contains a subgroup $\bigoplus_{i < \epsilon_p(A)} A_i$ such that $A_i \cong \mathbb{Z}_{p^i}$ is a pure in A for each $i < \epsilon_p(A)$. Let $a \in A$. Then there exists $i < \epsilon_p(A)$ such that $\text{ord}(a) = p^i$. Hence $\langle a \rangle \cong \mathbb{Z}_{p^i} \cong A_i$. Since A_i is pure in A , it is a direct summand of A by [8, Lemma 5.2.1]. \square

The following follows immediately from [10, Proposition 17], Lemma 4.3 and the fact that a torsion group is a direct sum of its p -torsion components.

Corollary 4.4. *The following conditions are equivalent:*

- (1) *A torsion abelian group A is virtually regular,*
- (2) *A contains a subgroup $\bigoplus_{p \in \mathbb{P}} \bigoplus_{i < \epsilon_p(A)} A_{pi}$ of A such that $A_{pi} \cong \mathbb{Z}_{p^i}$ is a pure subgroup of A for each $p \in \mathbb{P}$ and $i < \epsilon_p(A)$.*

Recall that a torsion-free module over a domain R is virtually regular if and only if it contains a direct summand isomorphic to R by [10, Proposition 11], so virtually regular torsion-free groups are exactly those containing a free summand of rank 1. Now we can sum all our observation to characterize virtually regular mixed abelian groups, i.e. groups which are neither torsion, nor torsion-free.

Theorem 4.5. *The following conditions are equivalent a mixed abelian group A :*

- (1) *A is virtually regular,*
- (2) *A contains a direct summand isomorphic to \mathbb{Z} and a subgroup $\bigoplus_{p \in \mathbb{P}} \bigoplus_{i < \epsilon_p(A)} A_{pi}$ such that $A_{pi} \cong \mathbb{Z}_{p^i}$ is a pure subgroup of A for each $p \in \mathbb{P}$ and $i < \epsilon_p(A)$.*

Proof. (1) \Rightarrow (2). Let A be virtually regular and let $T(A)$ denote the torsion part of A . Then $A/T(A)$ and $T(A)$ are virtually regular by [10, Corollary 3]. Then $A/T(A)$ contains a free summand of rank 1 by [10, Proposition 11] and there exists an epimorphism $A \rightarrow \mathbb{Z}$. Thus there exists a direct summand of A isomorphic to \mathbb{Z} . As $T(A)$ is virtually regular, there exists a subgroup $\bigoplus_{p \in \mathbb{P}} \bigoplus_{i < \epsilon_p(A)} A_i$ of $T(A)$ for which $A_{pi} \cong \mathbb{Z}_{p^i}$ is a pure subgroup of $T(A)$ for $p \in \mathbb{P}$ and $i < \epsilon_p(A)$ by Corollary 4.4. Since $T(A)$ is pure in A , we obtain that A_{pi} is pure in A , which finished the proof.

(2) \Rightarrow (1). The claim follows from Corollary 4.4 and [10, Corollary 3 and Proposition 11]. \square

We have following description of completely virtually regular abelian groups.

Theorem 4.6. *Let G be a group with torsion T and $A := G/T$ be the corresponding torsion-free quotient. The following statements hold:*

- (a) *T is completely virtually regular if and only if $pT_p = 0$ for all primes p ;*

- (b) *A is completely virtually regular if and only if it is free-reduced;*
- (c) *G is completely virtually regular if and only if T and A are completely virtually regular.*

Proof. Regarding (a), suppose first that T is completely virtually regular. If $pT \neq 0$ for some prime p , then there is an $x \in T$ of order p^2 . Then $S = \langle x \rangle \cong \mathbb{Z}(p^2)$ has a cyclic subgroup isomorphic to $\mathbb{Z}(p)$, but S has no a direct summand of that order, i.e. S is not virtually regular. Therefore, T is not completely virtually regular.

Conversely, suppose that $pT_p = 0$ for all primes p . If $S \leq T$, then $pS_p = 0$ for all primes p as well. Since S is semisimple, we have that all of its subgroups, and in particular, all its cyclic subgroups, are direct summands, i.e. S is virtually regular. Therefore, T is completely virtually regular.

Turning to (b), suppose first that A is completely virtually regular. Define, for all ordinals α , the descending subgroups A_α in the definition contained in the introduction. If β is any ordinal, $A_\beta \neq 0$ and $\alpha = \beta + 1$, it will suffice to show that $A_\alpha \neq A_\beta$: Let $0 \neq x \in A_\beta \neq 0$. Since A is torsion-free, we must have $\langle x \rangle \cong \mathbb{Z}$. Now, the complete virtually regularity of A gives that A_β is virtually regular, and so there exists a decomposition $A_\beta = Z \oplus Y$, where $Z \cong \mathbb{Z}$. It follows that $A_\alpha \leq Y < A_\beta$, i.e. $A_\alpha \neq A_\beta$, completing this implication.

Conversely, suppose that $A_\alpha = 0$ for some ordinal α and $0 \neq x \in B < A$. Clearly, $\langle x \rangle \cong \mathbb{Z}$. Let $\beta < \alpha$ be the smallest ordinal such that $B \leq A_\beta$. Therefore, B will not be contained in $A_{\beta+1}$ which means that there is a homomorphism $\phi : A_\beta \rightarrow \mathbb{Z}$ such that $\phi(B) \neq 0$. If $K = \ker(\phi) \cap B$, then it follows that $B = Z \oplus K$, where $Z \cong \mathbb{Z} \cong \langle x \rangle$. This shows that B is virtually regular, i.e. A is completely virtually regular.

Finally, regarding (c), suppose first that G is completely virtually regular. Since it is clear that an arbitrary subgroup of a completely virtually regular group inherits that property, the group T is completely virtually regular. Turning to $A = G/T$, if A failed to be completely virtually regular, then there would be a non-zero $B \leq A$ such that every homomorphism $B \rightarrow \mathbb{Z}$ is 0. If $H/T = B$, then it would follow that H has elements of infinite order. But, since any homomorphism $H \rightarrow \mathbb{Z}$ factors through $B = H/T \rightarrow \mathbb{Z}$, we could conclude that every homomorphism $H \rightarrow \mathbb{Z}$ is 0. Therefore, H is not virtually regular, i.e. G is not completely virtually regular.

Conversely, suppose that T and A are completely virtually regular and $0 \neq x \in B \leq G$. If x has infinite order, then $0 \neq \bar{B} := [B + T]/T \leq A$. Since we are assuming that A is completely virtually regular, there must be a non-zero homomorphism $\bar{B} \rightarrow \mathbb{Z}$. But then, $B \rightarrow \bar{B} \rightarrow \mathbb{Z}$ will also be non-zero, i.e. B will have the required infinite cyclic summand. Now, if x has finite order, say n , then $x \in T_B := B \cap T$. Since T is assumed to be completely virtually regular, we obtain that T_B is virtually regular. Therefore, T_B has a cyclic direct summand of order n , and since T_B is pure in B , this (bounded pure) subgroup will also be a summand of B . Therefore, each such B will be virtually regular, i.e G is completely virtually regular. \square

We now want to present some results and examples related to groups that are not free-reduced, i.e., torsion-free completely virtually regular.

In the following, unless specifically noted otherwise, we are assuming all groups are torsion-free.

We include a few easy to verify observations, whose proofs we leave to the reader (for $\alpha = 1$, one uses the definition, and then a natural transfinite induction gives the result for arbitrary α):

Fact 4.7. *If $\phi : A \rightarrow B$ is a group homomorphism, then we conclude that $\phi(A_\alpha) \leq B_\alpha$ for every ordinal α .*

Fact 4.8. *From Fact 4.7, we can conclude that if $\{A^i\}_{i \in I}$ is a collection of groups and α is an ordinal, then*

$$\left(\bigoplus_{i \in I} A^i \right)_\alpha = \bigoplus_{i \in I} (A^i)_\alpha.$$

Fact 4.9. *The following statements hold for a group A :*

- (a) *If $\eta \leq \alpha$, then $(A/A_\alpha)_\eta = A_\eta/A_\alpha$.*
- (b) *If $\eta \geq \alpha$, then $(A/A_\alpha)_\eta = 0$.*

Example 4.10. If A has a rank-1 subgroup C that is not cyclic, then A is not free-reduced. On the other hand, there is a group A such that every rank-1 subgroup $C \leq A$ is cyclic (i.e., A is homogeneous of type **0**), but A is not free-reduced.

Proof. Assume that A has such a rank-1 subgroup C that is not cyclic. Then it is clear that C is not be virtually regular, which implies that A is not completely virtually regular, a contradiction. \square

On the other hand, by the standard constructions, there are *indecomposable* groups A of rank exceeding 1 such that every rank-1 subgroup is cyclic. Since such a group is not virtually regular, which implies, in particular, that A is not completely virtually regular. \square

We now discuss some situations in which a free-reduced group A must actually be free.

Proposition 4.11. *The following statements are equivalent for a torsion-free group A of finite rank:*

- (a) *A is free-reduced,*
- (b) *A is free.*

Proof. (a) \Rightarrow (b). Suppose that A is free-reduced. By an obvious induction on its rank, we obtain a decomposition $A \cong C_1 \oplus \cdots \oplus C_k$ such that each C_i is indecomposable. By Fact 4.8, we have that each C_i is free-reduced. Since an indecomposable group is virtually regular if and only if it is cyclic, we can conclude that A is free.

(b) \Rightarrow (a). The claim is clear. \square

Recall that there are two generalizations of this Butler groups of infinite rank, which coincide in the case of groups of countable rank. One of these is the following: The (torsion-free) group A is a B_2 -group if and only if there is an ascending sequence of pure subgroups

$$0 = B_0 \leq B_1 \leq B_2 \leq \cdots \leq B_\lambda = A \quad (\dagger)$$

such that whenever $0 \leq \gamma < \lambda$, there is a finite rank Butler group $C_\gamma \leq A$ such that $B_{\gamma+1} = B_\gamma + C_\gamma$. We use the idea of such a composition series in the following.

Theorem 4.12. *Suppose that A is a torsion-free group such that there is a composition series (\dagger) and there exist (arbitrary, i.e. not necessarily Butler) finite-rank subgroups C_γ ($0 \leq \gamma < \lambda$) such that each $B_{\gamma+1} = B_\gamma + C_\gamma$. Then the following statements are equivalent:*

- (a) A is free-reduced,
- (b) A is free.

Proof. (a) \Rightarrow (b). Suppose that A is free-reduced, i.e. completely virtually regular. Since an arbitrary subgroup of a completely virtually regular group retains that property, using the above notation, we obtain that each $C_\gamma \leq A$ is free-reduced. Since C_γ is of finite rank, it is free by Proposition 4.11, and hence, it is finitely generated. Now, for each such γ , we have that

$$B_{\gamma+1}/B_\gamma = [B_\gamma + C_\gamma]/B_\gamma \cong C_\gamma/[B_\gamma \cap C_\gamma].$$

Since these quotients are clearly finitely generated and torsion-free, we obtain that they are free. Therefore,

$$A \cong \bigoplus_{0 \leq \gamma < \lambda} (B_{\gamma+1}/B_\gamma)$$

is free.

(b) \Rightarrow (a). The claim is clear. \square

Corollary 4.13. *Then the following statements are equivalent for a B_2 -group A :*

- (a) A is free-reduced,
- (b) A is free.

Corollary 4.14. *Then the following statements are equivalent for a (torsion-free) group A of countable rank:*

- (a) A is free-reduced,
- (b) A is free.

Proof. It is easy to obtain a decomposition series as in (\dagger) such that $\lambda = \omega$ and each B_γ has finite rank. For each $\gamma < \omega$, if we let $C_\gamma = B_{\gamma+1}$, then the result is an immediate consequence of Proposition 4.12 \square

Corollary 4.15. *Suppose that G is a mixed group with torsion T and $A := G/T$. If A is either of countable rank or is a B_2 -group, then the following statements are equivalent:*

- (a) G is completely virtually regular,
- (b) G is torsion splitting, i.e. G has a decomposition $G \cong T \oplus A$ such that T is semisimple and A is free.

Proof. (a) \Rightarrow (b). If A is either of countable rank or is a B_2 -group, then A must be free-reduced by Theorem 4.6(b or c). Hence, we can conclude that A must be free. Therefore, the splitting necessarily happens, as indicated.

(b) \Rightarrow (a). The claim is an immediate consequence of Theorem 4.6(c). \square

We recall the following well-known (and straightforward to verify) observation.

Fact 4.16. *If $P = \prod_{\omega} \mathbb{Z}$ is the Baer-Specker group and \bar{S} is the \mathbb{Z} -adic closure of $S := \bigoplus_{\omega} \mathbb{Z} \leq P$ in P , then $|\bar{S}| = 2^{\omega} = c$ and \bar{S}/S is divisible.*

Let P denote the Baer-Specker group, $\prod_{\omega} \mathbb{Z}$. We now present a possibly surprising connection between free-reduced groups and the *continuum hypothesis*, or CH, i.e., $2^{\omega} = \omega_1$.

Theorem 4.17. *The following two statements are logically equivalent (and so, both independent of ZFC):*

- (a) *The continuum hypothesis,*
- (b) *Every (torsion-free) free-reduced group, say A , of cardinality $|A| < 2^{\omega}$ is necessarily free.*

Proof. (a) \Rightarrow (b). Suppose that CH holds. Let A be a free-reduced group with $|A| < 2^{\omega}$. Then A must have countable rank. So, by Corollary 4.14, we can conclude that A is free, i.e. (b) holds.

(b) \Rightarrow (a). Suppose on contrary that (a) fails, i.e. $\omega_1 < 2^{\omega}$. By Fact 4.16, there is a $A \leq \bar{S}$ with $S \leq A$ and A/S divisible of rank ω_1 . Clearly, A is free-reduced. By (b), we assume that A is free. An elementary argument gives us that A has a decomposition $A = M \oplus N$ such that $S \leq M$ and M is countable. Since N is free of rank ω_1 and maps to a direct summand of $A/S \cong (M/S) \oplus N$, this contradicts that $A/S \leq^{\oplus} \bar{S}/S$ is divisible. \square

We now construct an auxiliary lemma that will allow us to produce some relevant examples.

Lemma 4.18. *If $P := \prod_{\omega} \mathbb{Z}$ is the Baer-Specker group and E is a countable group that is not cotorsion, then $\text{Ext}(P, E)$ has (torsion-free) rank $2^{2^{\omega}} = 2^c$, where c is the continuum.*

In particular, this group of extensions has (non-zero) elements of infinite order.

Proof. Let $S := \bigoplus_{\omega} \mathbb{Z}$. Then we have a short exact sequence

$$0 \rightarrow S \rightarrow P \rightarrow H \rightarrow 0$$

where $H = P/S$. Let $\bar{S} \leq P$ be the closure of S in P in the \mathbb{Z} -adic topology so that $\bar{S}/S \cong \bigoplus_c \mathbb{Q} \leq^{\oplus} P/S = H$. If we apply $\text{Ext}(-, E)$ to the long exact sequence, we obtain that

$$0 \rightarrow \text{Hom}(H, E) \rightarrow \text{Hom}(P, E) \rightarrow \text{Hom}(S, E) \xrightarrow{\delta} \text{Ext}(H, E) \rightarrow \text{Ext}(P, E) \rightarrow 0,$$

where $\text{Ext}(S, E) = 0$ since S is free. Note that

$$\text{Hom}(S, E) \cong \text{Hom}\left(\bigoplus_{\omega} \mathbb{Z}, E\right) \cong \prod_{\omega} \text{Hom}(\mathbb{Z}, E) \cong \prod_{\omega} E$$

will have cardinality $|E|^{\omega} = c$. On the other hand, we will also have that

$$\prod_c \text{Ext}(\mathbb{Q}, E) \cong \text{Ext}\left(\bigoplus_c \mathbb{Q}, E\right) \cong \text{Ext}(\bar{S}/S, E) \leq^{\oplus} \text{Ext}(H, E).$$

Since $\text{Ext}(\mathbb{Q}, E)$ is divisible of (torsion-free) rank c , we obtain that

$$\left| \prod_c \text{Ext}(\mathbb{Q}, E) \right| = c^c = 2^c > c.$$

Therefore, $\text{Ext}(H, E)$ will have rank 2^c , which implies that

$$\text{Ext}(P, E) \cong \text{Ext}(H, E)/\delta(\text{Hom}(S, E))$$

will also have (torsion-free) rank 2^c , giving the result. \square

By Corollary 4.15, one may conjecture that every completely virtually regular mixed group is torsion-splitting. The following example eliminates this possibility.

Example 4.19. Let $E = \bigoplus_p \mathbb{Z}(p)$ be semisimple and P be the Baer-Specker group. Clearly, E is countable and it is not cotorsion. Now, by Lemma 4.18, there is a non-splitting short exact sequence $0 \rightarrow E \rightarrow G \rightarrow P \rightarrow 0$. By Theorem 4.6, G is completely virtually regular and it is not torsion-splitting by the construction.

We now want to verify that there are examples of (torsion-free) completely virtually regular groups A such that a chain of subgroups A_{α} is arbitrarily long. We begin with the first step.

Example 4.20. Let P denote the Baer-Specker group. There exists a free-reduced group A such that $A/A_1 \cong P$ and $A_1 \cong \mathbb{Z}$, so that $A_2 = 0$.

Proof. Since \mathbb{Z} is certainly countable and not cotorsion, we have, by Lemma 4.18, a short exact sequence $0 \rightarrow \mathbb{Z} \rightarrow A \rightarrow P \rightarrow 0$ that represents an element of infinite order in $\text{Ext}(P, \mathbb{Z})$. Let \mathbb{Z}^1 be the image of the left injection, so that $\mathbb{Z}^1 \cong \mathbb{Z}$.

Claim. $A_1 = \mathbb{Z}^1$: Certainly, if $x \in A \setminus \mathbb{Z}^1$, then $x + \mathbb{Z}^1$ is a non-zero element of P . Hence, there is a homomorphism $P \rightarrow \mathbb{Z}$ such that $x + \mathbb{Z}^1 \mapsto w \neq 0$. Therefore, the composition $\phi : A \rightarrow P \rightarrow \mathbb{Z}$ satisfies $\phi(x) \neq 0$. Ergo, $A_1 \leq \mathbb{Z}^1$. For the converse

inclusion, suppose that $z \in \mathbb{Z}^1$. We want to show $z \in A_1$. Assume on contrary that $z \notin A_1$, Then there exists a homomorphism $\gamma : A \rightarrow \mathbb{Z}$ such that $\gamma(\mathbb{Z}^1) \neq 0$. Suppose that the composite of $\mathbb{Z} \cong \mathbb{Z}^1$ with γ is multiplication by a non-zero $n \in \mathbb{Z}$. Then there is a commutative diagram

$$\begin{array}{ccccccc} 0 \rightarrow & \mathbb{Z} & \rightarrow & A & \rightarrow & P \rightarrow 0 \\ & \cdot n \downarrow & & \gamma \swarrow & & & \\ & & & \mathbb{Z} & & & \end{array}$$

However, the existence of such a diagram would imply that $0 \rightarrow \mathbb{Z} \rightarrow A \rightarrow P \rightarrow 0$ was an element of finite order $|n| \neq 0$ in $\text{Ext}(P, \mathbb{Z})$, contrary to its construction.

It follows that $A_1 = \mathbb{Z}^1 \cong \mathbb{Z}$, so that $A_2 = 0$. \square

We now use an induction to generalize Example 4.20 to construct a group A whose corresponding descending chain A_α is as long as desired.

Example 4.21. If α is an ordinal, then there is a group A^α such that $(A^\alpha)_\alpha \cong \mathbb{Z}$, so that $(A^\alpha)_\eta = 0$ for all $\eta > \alpha$.

Proof. Certainly, if $\alpha = 0$, we can just let $A^0 = \mathbb{Z}$. Example 4.20 shows that the result is true if $\alpha = 1$. So, suppose we can construct such groups A^η for all $\eta < \alpha$, where $\alpha \geq 2$.

Case 1. α is a limit ordinal: For each $\eta < \alpha$, we can find an A^η such that

$$(A^\eta)_\eta := \mathbb{Z}^\eta \cong \mathbb{Z} \text{ (and } (A^\eta)_{\eta+1} = 0\text{).}$$

Let

$$K := \{\mathbf{x} = (x_\eta)_{\eta < \alpha} \in \bigoplus_{\eta < \alpha} \mathbb{Z}^\eta : \sum_{\eta < \alpha} x_\eta = 0\}.$$

Now, we let $A^\alpha = (\bigoplus_{\eta < \alpha} A^\eta)/K$ (in other words, we are simply identifying the subgroups $(A^\eta)_\eta = \mathbb{Z}^\eta$ for all $\eta < \alpha$) and we let $\mathbb{Z}^\alpha := (\bigoplus_{\eta < \alpha} \mathbb{Z}^\eta)/K \cong \mathbb{Z}$. Then, for each $\eta < \alpha$, we can identify A^η with a subgroup of A^α so that $\mathbb{Z}^\alpha = \mathbb{Z}^\eta$. For every $\eta < \alpha$, by Fact 4.7, we obtain that

$$\mathbb{Z}^\alpha = \mathbb{Z}^\eta = (A^\eta)_\eta \leq (A^\alpha)_\eta,$$

which implies that $\mathbb{Z}^\alpha \leq \bigcap_{\eta < \alpha} (A^\alpha)_\eta = (A^\alpha)_\alpha$.

For the converse, by Facts 4.7, 4.8 and 4.9, we obtain that

$$(A^\alpha)_\alpha \mapsto [A^\alpha / \mathbb{Z}^\alpha]_\alpha \cong \left[\bigoplus_{\eta < \alpha} A^\eta / \mathbb{Z}^\eta \right]_\alpha = \bigoplus_{\eta < \alpha} [A^\eta / \mathbb{Z}^\eta]_\alpha = 0,$$

where $A^\alpha \mapsto A^\alpha / \mathbb{Z}^\alpha$ is the natural epimorphism. Hence $(A^\alpha)_\alpha \leq \mathbb{Z}^\alpha$, as desired.

Case 2. $\alpha = \eta + 1$ is not a limit ordinal: Let H be the group from Example 4.20 with $H_1 \cong \mathbb{Z}$. For each non-zero $\mathbf{y} \in H$, let $A^\mathbf{y}$ be a copy of A^η , and let $(A^\mathbf{y})_\eta =: \mathbb{Z}^\mathbf{y} \cong \mathbb{Z}$. Consider the epimorphism with L kernel

$$\bigoplus_{\mathbf{y} \in H} \mathbb{Z}^\mathbf{y} \rightarrow H$$

which sends each $1 \in \mathbb{Z}^{\mathbf{y}}$ to $\mathbf{y} \in H$. Let

$$A^\alpha := [\bigoplus_{\mathbf{y} \in H} A^{\mathbf{y}}]/L.$$

Hence, we can think of H as a subgroup of A^α . Now, for every $\mathbf{y} \in H$, we also can also think of $A^{\mathbf{y}}$ as a subgroup of A^α . Therefore, for every $\mathbf{y} \in H$, by Fact 4.7, we have that

$$\mathbf{y} \in \mathbb{Z}^{\mathbf{y}} = (A^{\mathbf{y}})_\eta \leq (A^\alpha)_\eta,$$

i.e. $H \leq (A^\alpha)_\eta$.

For the converse, using Facts 4.7, 4.8 and 4.9, and considering the natural epimorphism $A^\alpha \rightarrow A^\alpha/H$, we obtain that

$$(A^\alpha)_\eta \rightarrow [A^\alpha/H]_\eta \cong [\bigoplus_{\mathbf{y} \in H} A^{\mathbf{y}}/\mathbb{Z}^{\mathbf{y}}]_\eta = \bigoplus_{\mathbf{y} \in H} [A^{\mathbf{y}}/\mathbb{Z}^{\mathbf{y}}]_\eta = 0,$$

which implies that $(A^\alpha)_\eta \leq H$.

Therefore, $(A^\alpha)_\eta = H$, $(A^\alpha)_\alpha = H_1 \cong \mathbb{Z}$, completing the proof. \square

Remark 4.22. Note that if A^α is the group constructed in Example 4.21 and $B^\alpha := A^\alpha/(A^\alpha)_\alpha$, then $(B^\alpha)_\alpha = 0$ and $(B^\alpha)_\eta \neq 0$ for all $\eta < \alpha$, so we can think of B^α as having *free-reduced length* exactly α . It can also be seen that whenever $\eta < \alpha$, then $(A^\alpha)_\eta/(A^\alpha)_{\eta+1}$ will be a direct sum of copies of the Baer-Specker group.

REFERENCES

- [1] D.M. Arnold, C. Vinsonhaler: Invariants for a class of torsion-free abelian groups, Proc. Amer. Math. Soc. 105 (1989), 293-300.
- [2] D.M. Arnold, C. Vinsonhaler: Duality and invariants for Butler groups. Pac. J. Math. 148 (1991), 1-9.
- [3] G. Azumaya: Some characterizations of regular modules, Publ. Math. (1990) 34, 241–248.
- [4] F. Facchini, Z. Nazemian: Modules with chain conditions up to isomorphism, J. Algebra 453 (2016), 578-601.
- [5] F. Facchini, Z. Nazemian: Artinian dimension and isoradical modules, J. Algebra 484 (2017), 66-87.
- [6] L. Fuchs: Infinite Abelian Groups, Vol. I, Acad. Press (New York, London, 1970).
- [7] L. Fuchs: Infinite Abelian Groups, Vol. II, Acad. Press (New York, London, 1973).
- [8] L. Fuchs: Abelian Groups, Springer, (Switzerland 2015).
- [9] M. Behboodi, A. Daneshvar, M.R. Vedadi: Virtually semisimple modules and a generalization of the Wedderburn-Artin theorem. Comm. Algebra, (2018) 46(6), 2384-2395.
- [10] E. Büyükaşık, Ö. I. Demir: Virtually regular modules, J. Algebra Appl., in press.
- [11] D.J. Fieldhouse: Regular modules, Proc. Amer. Math. Soc., 32(1972), 49-51.
- [12] R. Göbel, S. Shelah: Some nasty reflexive groups, Math. Z. 237 (2001), 547-559.
- [13] A. V. Jategaonkar: A counter-example in ring theory and homological algebra, J. Algebra 12 (1969), 418-440.
- [14] T. Y. Lam: A first course in noncommutative rings, GTM 131, Springer-Verlag, 1991 (Second Edition, 2001).
- [15] T. Y. Lam: Lectures on Modules and Rings, Graduate Texts in Math. 189 Springer-Verlag, Berlin, New York, Heidelberg, 1999.

- [16] R. Ware: Endomorphism rings of projective modules, *Trans. Amer. Math. Soc.*, (1971) 155(1), 233-256.
- [17] J. Zelmanowitz: Regular modules, *Trans. Amer. Math. Soc.*, (1972) 163, 341-355.

DEPARTMENT OF MATHEMATICS, WHITMAN COLLEGE, WALLA WALLA, WA 99362, USA
E-mail address: `keef@whitman.edu`

DEPARTMENT OF MATHEMATICS, FACULTY SCIENCES, GAZI UNIVERSITY, ANKARA, TURKEY
E-mail address: `mtamerkosan@gazi.edu.tr, tkosan@gmail.com`

MFF UK, DEPARTMENT OF ALGEBRA, SOKOLOVSKÁ 83, 186 75 PRAHA 8, CZECHIA
E-mail address: `zemlicka@karlin.mff.cuni.cz`