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Abstract. The aim of the present paper is to describe the structure of hyper-

simple rings, i.e. rings over which injective hulls of simple modules are cyclic.
In particular, hypersimple duo rings are characterized in terms of local pseudo-

Frobenius rings, and commutative Noetherian hypersimple rings are proven to

be exactly quasi-Frobenius rings. Various examples and further divisions of
the class of all hypersimple rings are also presented in the paper.

1. Introduction

While Barbara Osofsky in the paper [17] investigated the class of rings over which
cyclic modules are injective and showed that such rings are precisely semisimple
Artinian ones, the work [3] generalized this problem and introduced the notion of a
right hypercyclic ring, as a ring over which cyclic right modules have cyclic injective
hulls. In particular, it is proved there that left perfect, right hypercyclic rings
are Artinian and uniserial. Recently, Lomp et.al [16] obtained various interesting
results about hypersimple rings, which generalize the notion of a hypercyclic ring;
a module is said to be hypersimple if it is simple and its injective hull is cyclic, and
a ring R is left (resp. right) hypersimple, provided all left (right) simple modules
are hypersimple. Clearly, any hypercyclic ring is hypersimple.

In the first half of this note, we continue to describe the classes of hypersimple
rings and modules. In particular, we formulate several conditions under which
a simple module is injective that presents a borderline example of a hypersimple
module (Proposition 2.2 and 2.3). Next, we prove a criterion for duo hypersimple
rings in terms of local pseudo-Frobenius rings (Theorem 2.7), which are rings such
that the injective hull of a simple module is projective [16, Theorem 2.6]. As
a consequence we describe semilocal hypersimple commutative rings as precisely
pseudo-Frobenius rings (Corollary 2.8), and Noetherian hypersimple commutative
rings, which are quasi-Frobenius (Theorem 2.11). Recall that a ring is said to
be right max if every non-zero right module over the ring contains a maximal
submodule. Although it is much less known about the structure of non-commutative
hypersimple rings, we prove that right Noetherian right hypersimple rings are right
max by Proposition 2.10.

In [12], Köthe considered those rings over which each right module is a direct
sum of cyclic modules, and hence such rings are called right Köthe rings in the
literature. In that paper, Köthe showed that right modules over Artinian principal
ideal rings are direct sums of cyclic modules. In the commutative case the class
of Köthe rings was determined by Cohen and Kaplansky [4]: commutative Köthe
rings are Artinian principal ideal rings. In the series of papers [9, 10, 11], Kawada
concerned algebras for which every indecomposable module is cyclic. Recall that a
ring R is of finite representation type if R is a right Artinian ring which has, up to
isomorphism, only finite number of finitely generated indecomposable (left) right
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modules. Note that Köethe rings present examples of rings of finite representation
type.

Inspired by these results we focus on two subclasses of the class of all hypersimple
rings; rings whose injective indecomposable right R-modules are cyclic, such rings
are said to be right IIMC, and rings whose all indecomposable right R-modules are
cyclic called IMC rings. Clearly, any right IMC ring is a right IIMC ring and it is
right hypersimple. However Examples 3.4 and 3.20 witness that both implication
cannot be reversed in general, Proposition 3.5 shows that a right semiartinian (and
so left perfect) ring is hypersimple if and only if it is IIMC. Finally, we character-
ize the structure of duo IIMC and commutative IMC rings; right duo IIMC rings
are described in terms of injectivity of right uniform factor rings (Theorem 3.10),
while commutative IMC rings are proven to be exactly max rings whose maximal
local factors are chain Frobenius (Theorem 3.18). Finally note that all three stud-
ied classes of rings are closed under taking finite products and direct summands
(Proposition 3.15)

Throughout the paper, R is a ring with identity and all modules are unital right
(left) R-modules. For a module M , we write MR to indicate that M is a right
R-module, and we write N ≤ M if N is a submodule of M . We also denote by
E(M) = ER(M), EndR(M) and Soc(M) the injective hull, the endomorphism ring
and the socle of M , respectively. For two modules X,Y over a ring R, the set
of all R-homomorphisms from X to Y is denoted by HomR(X,Y ) or Hom(X,Y ).
If N is a non-empty subset of a right R-module M , we denote by AnnR(N) =:
{r ∈ R | nr = 0 for all n ∈ N} the annihilator ideal of N in R. Finally, J(M)
denotes the Jacobson radical of a module M and N(R) means the nil radical of
commutative ring R.

2. Hypersimple modules and rings

We start the section by recalling a few notions which will allow us to find exam-
ples of hypersimple modules.

A module M is called dual-Rickart [15] if, for any ρ ∈ End(M), Imρ ≤⊕ M , and
M is called an (n-)epi-retractable module if every (n-generated) submodule of M is
a homomorphic image of M [6]. Azumaya [2], a module M is said to be regular if
every submodule of M is locally split in M (equivalently, every cyclic submodule
of M is a direct summand of M [2, Proposition 5]).

Lemma 2.1. Let R be a ring.

(1) Any dual-Rickart epi-retractable R-module is semisimple.
(2) Any dual-Rickart 1-epi-retractable R-module is regular.

Proof. (1) Let N be a submodule of a dual-Rickart epi-retractable module M . By
the epi-retractability of M , there exists an epimorphism f : M → N . The dual-
Rickartness of M implies that f(M) = N is a direct summand of M . Hence M is
semisimple.
(2) Let N be a cyclic submodule of a dual-Rickart 1-epi-retractable R-module M
and let f : M → N be an epimorphism which exists by the 1-epi-retractability of
M . Then the dual-Rickartness of M implies f(M) = N is a direct summand of M ,
and so M is regular. □

Proposition 2.2. Consider that for a simple module S over a ring R holds one
from the following conditions:

(1) E(S) is 1-epi-retractable and R is right hereditary;
(2) E(S) is a regular;
(3) E(S) is dual-Rickart and 1-epi-retractable.
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Then S is injective, hence it is a hypersimple module.

Proof. First, note that E(S) is indecomposable by [18, Corollary 2] and S is a cyclic
module.
(1) Since E(S) is 1-epi-retractable, there exists an epimorphism f : E(S) → S. As
R is a right hereditary ring, we obtain f(E(S)) = S is injective, and so S is a direct
summand of E(S). But E(S) is indecomposable, which implies that E(S) = S.
(2) Since E(S) is regular, we have that S is a a direct summand of E(S), i.e
E(S) = S.
(3) The claim follows from (2) and Lemma 2.1(2). □

Let M be a module over a ring R. Then by a subfactor of M , we mean a
submodule of a factor module of M , and any module, which is isomorphic to some
subfactor of a direct sum of copies of M , is called an M -subgenerated module. The
full subcategory of the category of all right R-modules whose objects are all M -
subgenerated modules is denoted by σ[MR] and called the Wisbauer category of
the module M (for details see [20]).

Proposition 2.3. Let M be a module over a hereditary ring R and let R1 be the
endomorphism ring of a progenerator in σ[MR]. Assume that every non-zero factor
ring of R1 is a quasi Frobenius ring and N ∈ σ[MR]. If S is simple such that
E(S) ∈ σ[NR], then S is injective, and so hypersimple.

Proof. Let S be a simple right R-module. Then E(S) is epi-retractable by [6,
Theorem 3.5], hence there exists an epimorphism f : E(S) → S. Since R is right
hereditary, any homomorphic image of an injective module is injective, in particular,
f(E(S)) = S is injective, and so E(S) = S. □

Recall from [8, Example 2.1] that an Artinian ring is an FGC ring if and only if
every indecomposable module R is cyclic.

Example 2.4. Any Artinian FGC rings are right hypersimple, since E(S) is in-
decomposable module for each simple right module S.

Let us formulate several elementary observations about (indecomposable) injec-
tive modules, which we will use later.

Lemma 2.5. Let R be a ring, E an injective R-module, A := AnnR(E) and S be
a simple R-module. Then

(1) Hom(B,E) = 0 for each right ideal B ≤ A,
(2) if S ≤ E then A contains no subfactor isomorphic to S,
(3) if E is indecomposable then End(E) is a local ring,
(4) if E(S) ∼= R/A, then R/A is a local right self-injective ring with an essential

socle and Soc(R/A) ∼= S ∼= (R/A)/J(R/A).

Proof. (1) Let B ≤ A be a right ideal and f ∈ Hom(B,E). Then f can be extended

to f̃ ∈ Hom(R,E), and hence

f(B) = f̃(B) = f̃(1)(B) ⊆ EB ⊆ EA = 0,

because A annihilates E.
(2) If A contains a subfactor isomorphic to S, there exist nonzero x ∈ A and an
epimorphism xR → S, which contradicts to (1).
(3) It is well-known that End(E) is a local ring with the unique maximal ideal
formed by all non-injective endomorphisms (see e.g. in [14, Theorem 3.52]).
(4) Since E(S) ∼= R/A is injective and R/A has a structure of an R-module, we
obtain that R/A is right self-injective and End(E(S)) ∼= End(R/A) ∼= R/A. As
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E(S) is injective, we get R/A is a local by (3), and it is the unique simple module
up to an isomorphism over the local ring R/A as S forms a simple socle of R/A. □

Before we formulate a characterization of duo hypersimple ring we prove an easy
description of local duo hypersimple rings. First, let us recall that a ring R is called
right pseudo-Frobenius if R is an injective cogenerator in Mod-R; equivalently if R
is a semiperfect right self injective ring with essential right socle (cf. [16, Theorem
2.6]). Note that any right pseudo-Frobenius ring presents an example of a right
hypersimple ring by [16, Examples 2.4 and 2.5].

Proposition 2.6. Let R be a local right duo ring. Then R is is right hypersimple
if and only if it is right pseudo-Frobenius.

Proof. Let R be a hypersimple local duo ring with the maximal ideal I and A =
Ann(E(R/I)). Since E(R/I) is an injective cogenerator of the category of all
modules over the local ring R, it is enough to prove that R ∼= E(R/I). The
hypothesis that R is right hypersimple implies that there exists a right ideal A
for which E(R/I) ∼= R/A. As R is right duo, A is two-sided, which means that
A = AnnR(E(S)). Since every non-zero module of a local ring contains a subfac-
tor isomorphic a to the simple module, Lemma 2.5(2) implies that A = 0, hence
E(R/I) ∼= R/A ∼= R.

The converse follows from [16, Examples 2.4 and 2.5]. □

Theorem 2.7. The following conditions are equivalent for a right duo ring R:

(1) R is right hypersimple;
(2) for each maximal right ideal I, there exists an ideal AI such that R/AI is

local right hypersimple and AI contains no subfactor isomorphic to R/I;
(3) for each maximal right ideal I, there exists an ideal AI such that R/AI is

local right pseudo-Frobenius and AI contains no subfactor isomorphic to
R/I.

Proof. (1) ⇒ (2) Let I be a maximal right ideal and put A = AnnR(E(R/I)). Since
R is right duo hypersimple, the same argument as in the proof of Proposition 2.6
shows that E(R/I) ∼= R/A. Then R/A is a local ring by Lemma 2.5(4) and A
contains no subfactor isomorphic to R/I by Lemma 2.5(2). Now, it is easy to see
that ER/A(R/I) = ER(R/I) = R/A, which proves that R/A R is right hypersimple.
(2) ⇒ (3) It follows immediately from Proposition 2.6.
(3) ⇒ (1) Since R/I embeds into the cyclic module R/AI , it is enough to prove
that R/AI is an injective R-module for arbitrary maximal right ideal I by applying
the Bear criterion.

Let I be a maximal right ideal, U be an arbitrary right ideal of R and f ∈
Hom(U,R/AI). Note that f(U ∩ AI) ∩ Soc(R/AI) = 0 by the hypothesis, which
implies that f(U ∩AI) = 0. Thus f can be lifted modulo the natural projection

πU : U → (U +AI)/AI
∼= U/(AI ∩ U),

i.e. there exists f̃ ∈ Hom((U + AI)/AI , R/AI) satisfying f = f̃πU . Furthermore,

f̃ can be extended to an endomorphism f̂ ∈ End(R/AI). Now, f̂πR is the desired
extension of the monomorphism f , where πR : R → R/AI denotes the natural
projection again. Hence E(R/I) is a direct summand of the cyclic injective R-
module R/AI and we are done. □

For semilocal right duo rings the notions of hypersimple and pseudo-Frobenius
rings coincide:

Corollary 2.8. Let R be a semilocal right duo ring. Then the following conditions
are equivalent:
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(1) R is right hypersimple;
(2) R is isomorphic to a finite product of local right pseudo-Frobenius rings;
(3) R is right pseudo-Frobenius.

Proof. (1) ⇒ (2) Let R be semilocal right hypersimple right duo ring. Then, by
Theorem 2.7, there exist finitely many maximal right ideals Ii (i ≤ n), correspond-
ing ideals Ai for which

⋂
i≤n Ii = J(R) and it holds for every i ̸= j that simple

modules R/Ii and R/Ij are non-isomorphic. Furthermore, the factor-rings R/Ai

are local right pseudo-Frobenius, and
⋂

i≤n Ai = 0, since it contains no simple sub-

factor. Note that if i ̸= j, then R/Ai and R/Aj are local with different maximal
ideals, which implies that R/(Ai+Aj) is zero, and so Ai and Aj are coprime ideals.
Now, the general Chinese reminder theorem implies that R ∼=

∏
i≤n R/Ai.

(2) ⇒ (3) It is clear immediately from the definition of a right pseudo-Frobenius
ring.
(3) ⇒ (1) It follows from [16, Examples 2.4 and 2.5]. □

Recall that a ring is said to be right max, provided every non-zero right module
over the ring contains a maximal submodule.

Lemma 2.9. Let R be a right hypersimple ring. Then R is right max if and only
if each non-zero submodule of each indecomposable injective cyclic module contains
a maximal submodule.

Proof. It is enough to prove the reverse implication. Suppose that R is not right
max. Hence there exists a non-zero module M such that M = J(M). It is
easy to see that there exists a simple module S and a non-zero homomorphism
φ ∈ Hom(M,E(S)). Since E(S) is cyclic by the hypothesis, we obtain that φ(M)
is a non-zero submodule of a cyclic module without maximal submodules, a con-
tradiction. □

The previous observation allows us to prove useful property of Noetherian hy-
persimple rings.

Proposition 2.10. Right Noetherian right hypersimple rings are right max.

Proof. Let R be a right Noetherian right hypersimple ring. Since each non-zero
submodule of any cyclic module over R is finitely generated, it contains a maximal
submodule. Hence R is right max by Lemma 2.9. □

In the commutative case we obtain a criterion.

Theorem 2.11. The following conditions are equivalent for a commutative Noe-
therian ring R:

(1) R is hypersimple;
(2) R is Artinian and E(R/J(R)) is cyclic;
(3) R is quasi-Frobenius;
(4) R ∼=

∏n
i=1 Ri, where each Ri, i = 1, . . . , n, is a local Frobenius ring.

Proof. (1)⇒(4) By Proposition 2.10, R is a max ring. Hence R/J(R) is abelian
regular and J(R) is T-nilpotent by [7]. Since R is Noetherian, we get that R/J(R) is
semisimple and J(R) is a finitely generated nil ideal, hence it is nilpotent. Thus R is
an Artinian ring. As R is commutative, R ∼=

∏n
i=1 Ri, where each Ri, i = 1, . . . , n,

is a local Artinian hypersimple ring by Theorem 2.7. Finally Ri is Frobenius for
each i = 1, . . . , n by Lemma 2.5(4) and [14, Theorem 16.14].
(3)⇔(4) This follows from [14, Theorems 15.27 and 16.14].
(3)⇒(2) By [14, Theorem 15.1], R is Artinian and E(R/J(R)) ∼= R is cyclic.
(2)⇒(1) Since R is Artinian, arbitrary simple R-module S is embeddable into
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R/J(R) and so E(S) is a direct summand of E(R/J(R)). As E(R/J(R)) is cyclic,
E(S) is cyclic as well. □

3. Stronger conditions

In this section we will consider two stronger ring conditions than this one defining
hypersimple rings. First, define the notion of a right IIMC ring by the condition
that all injective indecomposable right modules over it are cyclic (the abbreviation
means injective indecomposable modules are cyclic).

Before we formulate the following elementary observation, recall that a module
is said to be uniform if all its non-zero submodules are essential.

Lemma 3.1. Let R be a ring. Then R is right IIMC if and only if E(C) is cyclic
for each uniform (cyclic) right R-module C.

Proof. The direct implication is obvious. Suppose E(C) is cyclic for each inde-
composable cyclic right R-module C. Let E be an injective indecomposable right
R-module and C an arbitrary non-zero cyclic submodule of E. Clearly, E ∼= E(C)
and C is indecomposable, hence E(C) is cyclic, as desired. □

Proposition 3.2. Let R be a ring.

(1) If R is quasi-Frobenius, then is right IIMC,
(2) If R is right IIMC, then R is right hypersimple.

Proof. (1) Let M be an arbitrary injective indecomposable R-module. Since R
is quasi-Frobenius and Soc(M) is essential in M , Soc(M) is simple and the both
modules Soc(M) and M are embeddable into R. As M is injective, it is isomorphic
to a direct summand of R. Hence it is cyclic, as desired.
(2) Let S be a simple right R-module. Since E(S) is indecomposable, E(S) is cyclic
by Lemma 3.1. □

The next examples show that no one implication from Proposition 3.2 can be
reversed. First, we need to recall that R is said to be a (right) V-ring, if each simple
(right) R-module is injective and note that right V-rings are right hypersimple by
[16, Example 2.8].

Example 3.3. Let R be an abelian regular ring and C be a cyclic right R-module.
Note that C has a structure of an abelian regular ring, which implies that C is
indecomposable if and only if it is simple. Since R is a (right) V-ring, any simple
(right) R-module is injective, hence R is a right IIMC ring by Lemma 3.1, which
is not quasi-Frobenius whenever R is not semisimple.

A ring R is said to be right semiartinian if every non-zero right R-module has a
non-zero socle ([5]).

Example 3.4. [14, Example 19.24] If R is a complete discrete valuation ring with
the unique simple module S, then the trivial extension T = R ⊕ E(S) of the ring
R by the bimodule E(S) is a local pseudo-Frobenius by [14, Example 19.24 and
Theorem 19.25], hence it is hypersimple by Proposition 2.6. Note that R = T/E(S)
is a domain and E(R) is indecomposable injective, which is annihilated by the ideal
E(S) of T since Soc(E(R)) = 0 and E(S) is semiartinian. If E(R) was cyclic, it
would be a homomorphic image of R, but no factor of R is injective. This is why
T is not IIMC.

Although the classes of all IIMC and all hypersimple differ, in the case of semi-
artinian rings they coincide:

Proposition 3.5. Let R be a right semiartinian ring. Then R is right IIMC if and
only if R is right hypersimple.
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Proof. By Proposition 3.2 it suffices to prove the reverse implication. Let E be
an injective indecomposable right R-module and let R be right hypersimple. Since
Soc(E) is essential in E, it is simple and E ∼= E(Soc(E)) is cyclic. □

Since any left perfect ring is right semiartinian (see, [1, Theorem 28.4]), we get
the following consequence.

Corollary 3.6. A left perfect ring is right IIMC if and only if it is right hypersim-
ple.

As every commutative noetherian hypersimple ring is Artinian and so perfect by
Theorem 2.11, we can easily see that hypersimple and IIMC rings coincides in this
case:

Corollary 3.7. Let R be a commutative noetherian ring. Then R is IIMC if and
only if R is hypersimple.

Now, we focus on the case of duo IIMC rings.
We say that a two-sided ideal P of a ring R is a right weak prime, if R/P is right

uniform, equivalently, if P ̸= R and for each a, b /∈ P we get (aR+P )∩(bR+P ) ⊈ P .
Denote by W(R) the set of all right weak prime ideals of R. If P ∈ W(R), we say
that AP ∈ W(R) is minimal with respect to P , if R/P is embeddable as a right
module into R/AP and for each Q ∈ W(R), it holds that AP ⊆ Q whenever R/P
is embeddable into R/Q.

Example 3.8. Let R be a right duo ring. Then every right maximal ideal of R
belongs to W(R). Furthermore, if I is a maximal ideal, then the ideal AI from
Theorem 2.7 is minimal with respect to I.

Lemma 3.9. Let R be a right duo ring, M an injective indecomposable module,
a ∈ M a non-zero element, P = Ann(aR), and let AP ∈ mathcalW (R) be minimal
with respect to P .

(1) P ∈ W(R) and R/AP is embeddable into M .
(2) If b ∈ R is non-zero, Q = Ann(bR) and AQ is minimal with respect to Q

such that R/AQ is right self-injective, then AP = AQ.
(3) If M is cyclic, then R/P is a local right self-injective ring.

Proof. (1) Since M is uniform R/P ∼= aR is uniform as well, hence P ∈ W(R).
As M is injective and we have monomorphisms f ∈ Hom(R/P,R/AP ) and g ∈
Hom(R/P,M), there exists a homomorphism h ∈ Hom(R/AP ,M) such that hf =
g, which is an embedding since R/AP is uniform and so f(R/P ) is essential in
R/AP .

(2) Obviously, bR ∼= R/Q embeds into aR ∼= R/P , which implies that AQ ⊆ AP

by the definition. Note that AQ ⊆ P,Q, which implies R/P and R/Q can be
viewed as modules over the right self-injective ring R/AQ. Hence an embedding
R/Q → R/AQ factorizes through the monomorphism R/Q → R/P , and since R/P
is uniform, there exists an embedding of R/P into R/AQ. Now AP ⊆ AQ, by
minimality of AP .

(3) Put NP = {m ∈ M | mP = 0}. Clearly, NP has a structure of a module

over the ring R̃ = R/P and using the Baer criterion it is easy to see that NP

is injective over R̃. To show that NP is cyclic, fix an arbitrary n ∈ NP . Since
Ann(aR) ⊆ Ann(nR), there exists φ ∈ Hom(aR, nR) for which φ(a) = n. As M is
injective, φ can be extended to φ̃ ∈ End(M). Moreover, M is a cyclic module over

a right duo ring, hence End(M) ∼= R/Ann(M) and there exists r ∈ R̃ such that

φ̃(m) = ar = n. Thus NP
∼= R̃ is a cyclic injective uniform module over the ring

R̃, which proves that R̃ i a right self-injective ring. Finally, R̃ ∼= End(R̃) is local by
Lemma 2.5. □
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Now we are ready to formulate characterization of right duo IIMC rings:

Theorem 3.10. The following conditions are equivalent for a right duo ring R:

(1) R is IIMC;
(2) R/P is local right self-injective for each P ∈ W(R), and for each maximal

right ideal I there exists an ideal AI ∈ W(R) such that R/AI is local right
IIMC and AI contains no subfactor isomorphic to R/I;

(3) for each P ∈ W(R) there exists AP ∈ W(R) such that AP is minimal with
respect to P and R/AP is local right self-injective.

Proof. First, recall that every right maximal ideal of a right duo ring is weak prime
(cf. Example 3.8). We will use freely in the proof that if I is a maximal right
ideal and A,B ⊆ I are ideals such that R/B is local and A contains no subfactor
isomorphic to R/I, then A ⊆ B.

(1) ⇒ (2) Let P ∈ W(R) and A = Ann(E(R/P )). Since E(R/P ) is indecompos-
able injective, it is cyclic by the hypothesis and so R/A ∼= End(E(R/P )) is local
by Lemma 2.5(3). Moreover, R/A ∼= E(R/P ) as right modules, thus R/P is right
self-injective by Lemma 3.9(3).

Suppose that I is a maximal right ideal of R. As R is a right hypersimple by
Proposition 3.2, we may apply Theorem 2.7, which implies that there exists an
ideal AI such that R/AI is local, AI contains no subfactor isomorphic to R/I,
and R/AI

∼= End(R/I). It remains to prove that R/AI is local right IIMC. Let

R̃ = R/AI and fix an indecomposable injective module M̃ over the ring R̃. Then by

Lemma 3.1 there exists P̃ ∈ W(R̃), and so P ∈ W(R), such that M̃ = ER̃(R̃/P̃ ) =
ER̃(R/P ). Put M = ER(R/P ) and A = AnnR(M), i.e. M is an injective hull of
R/P over the ring R. Then M is cyclic by the hypothesis, hence R/A ∼= EndR(M)
is local by Lemma 2.5(3) and so AI ⊆ A. It follows that AI annihilates M , hence

M ∼= M̃ is cyclic.
(2) ⇒ (3) Let P ∈ W(R). ThenR/P is local by the hypothesis, hence there exists

a maximal right ideal I ∈ W(R) and an ideal AI ∈ W(R) such that AI ⊆ P ⊆ I
and AI contains no subfactor isomorphic to R/I. Since R/AI is right IIMC , we
get that ER/AI

(R/P ) is cyclic. Define AP := AnnR(ER/AI
(R/P )). Clearly, R/P

is embeddable into R/AP and to prove the minimality of AP let us suppose that
for Q ∈ W(R) there exists an embedding of R/P into R/Q. As R/Q is local by
the hypothesis and R/P is a factor ring of R/Q we get that AI ⊆ Q ⊆ I. Now,
the injectivity of R/AP

∼= ER/AI
(R/P ) implies that R/Q embeds into R/AI , from

which it follows that AP ⊆ Q. Thus AP is minimal with respect to P .
(3) ⇒ (1) Suppose that M is an injective indecomposable R-module, let a1, a2 ∈

M be non-zero elements, and put Pi := Ann(aiR), i = 1, 2. Then there exists a
non-zero element b ∈ a1∩a2R. Put Q = Ann(bR) and denote by AP1

, AP1
, and AQ,

respectively, ideals minimal with respect to P1, P2, and Q, respectively, existing by
the hypothesis. Thus by Lemma 3.9(2) AP1

= AQ = AP1
because R/AQ is right

self-injective. It means that there exists a unique ideal A ∈ W(R) which is minimal
with respect to Ann(m) for each non-zero m ∈ M . Note that R/A is a local right
self-injective ring and M has a structure of a module over R/A since A annihilates
M . Now, Lemma 3.9(1) implies that R/A is embeddable into M . Since R/A is
injective module isomorphic to a submodule of indecomposable R/A-module M ,
which forms a direct summand of M . hence R/A ∼= M . □

Since a semilocal right duo ring is isomorphic to a finite product of local right
self-injective rings by Corollary 2.8 we obtain the following consequence of Theo-
rem 3.10:

Corollary 3.11. Let R be a semilocal right duo ring. Then it is right IIMC ring
if and only if R/P is local right self-injective for each weak prime ideal P .
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We finish the description of IIMC ring by the following observation on commu-
tative ones.

Lemma 3.12. Let R be a commutative ring.

(1) If P is a prime ideal of R and E(R/P ) is cyclic, then P is maximal.
(2) If R is IIMC, then the Krull dimension of R is zero (i.e. all prime ideals

are maximal) and J(R) = N(R), which is a nil ideal.

Proof. (1) Let a, b ∈ R/P be non-zero elements. As P is prime, Ann(aR) = P =
Ann(bR), which implies that aR ∼= R/P ∼= bR and exists f ∈ End(E(R/P )) such
that f(a) = b. Since End(E(R/P )) ∼= R/Ann(E(R/P )) is a commutative ring,
there exists r ∈ R for which ar = b. Thus R/P is a simple module, and so P is
maximal.

(2) Since E(R/P ) is cyclic for every prime ideal P of a IIMC ring R, all prime
ideals of R are maximal by (1). Thus the Krull dimension of R is zero and so
the Jacobson radical and the prime radical coincide. Finally, note that the prime
radical of any commutative ring is nil. □

Proposition 3.13. A Jacobson radical of each factor-ring of a commutative IIMC
ring is nil.

Proof. Let R be a commutative IIMC ring and U be an ideal. Since every prime
ideal of R/U can be lifted to a prime ideal of R, all prime ideals of R/U are maximal
by Lemma 3.12(2), which implies that J(R/U) = N(R/U), which is nil. □

As the second subclass of the class of all hypersimple rings we will consider rings
R whose all indecomposable right R-modules are cyclic. Such rings will be called
right IMC. Clearly, any right IMC ring is a right IIMC ring and it follows imme-
diately from Proposition 3.2 that right IMC rings are hypersimple. Furthermore,
any right Köethe ring is right IMC, nevertheless, the class of all right IMC rings is
larger:

Example 3.14. Every abelian regular ring is IMC. Indeed, R is an abelian regular
ring, M is an indecomposable module and A = Ann(M), then R is simple, since
otherwise there exists a non-trivial idempotent of R/A. Thus M is simple and so
cyclic.

We next give the following observation related to how the defining properties
hypersimple, IIMC and IMC rings behave with respect to products.

Proposition 3.15. Let Ri, i ≤ n and R =
∏

i≤n be rings. Then R is hypersim-

ple (respectively, IIMC and IMC) if and only of each Ri, i ≤ n, is hypersimple
(respectively, IIMC and IMC) for each i ≤ n.

Proof. Let as denote by ei central idempotents for which Ri
∼= eiR for each i ≤ n.

(:⇒) Let i be arbitrary and let Mi be an Ri-module. Define Mj = 0 for all re-
maining j ̸= i and put M =

∏
j≤n Mj

∼=
∏

j≤n Mej . Clearly, M is indecomposable
over R if and only if Mi is indecomposable over Ri. Furthermore, M is injective
(or has a simple essential submodule) over R if and only if each Mi is injective (or
has simple essential submodule) over Ri, which finishes the proof.
(⇐:) Let M be an R-module and put Mi = Mei, where i ≤ n. Clearly, M ∼=∏

i≤n Mi is indecomposable if and only if there exists i such that Mi is indecom-
posable and Mj = 0 for each j ̸= i. Now, by a similar argument as in the proof
of direct implication, it is easy to see that M is indecomposable or injective or a
module with a simple essential socle over R if and only if Mi is so over Ri. □
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Recall that a module is chain if the lattice of its submodules is linearly ordered.
It can be easily verified that a module turns out to be a chain module if its cyclic
submodules form a chain. A ring is right (respectively, left) chain if it is right (left)
chain module over itself. Note that commutative chain rings are usually called
uniserial rings.

Example 3.16. Let R be a right chain right Artinian ring wit the maximal ideal I.
It is easy to see that R is right self-injective. Let M be an indecomposable module
and denote by s the socle length of M , i.e. the minimal s ≥ 0 for which MIs = 0.
If n is the socle length of R, then M has a structure of a module over the right self-
injective ring R/In−s. Since M contains o cyclic submodule of the socle length s,
which is injective, M is isomorphic to R/In−s. Thus any right chain right Artinian
ring, for instance the uniserial ring Z2n , is an example of an IMC ring.

Lemma 3.17. If R is a right IMC ring, then it is right max such that every
submodule of any uniform module, in particular, indecomposable injective one, is
cyclic.

Proof. Since every non-zero submodule of a uniform module is indecomposable, it is
cyclic by the hypothesis, hence it contains a maximal submodule. As any right IMC
ring is hypersimple and indecomposable injective modules are uniform, it remains
to apply Lemma 2.9. □

We are ready to describe the structure of commutative IMC rings.

Theorem 3.18. The following conditions are equivalent for a commutative ring
R:

(1) R is IMC;
(2) R is a max ring and E(R/I) is a chain Artinian module for each maximal

ideal I;
(3) R/J(R) is abelian regular, J(R) is T-nilpotent and, for every maximal ideal

I there exists n < ω such that In = In+1, the ring R/In is uniserial
Frobenius and In contains no subfactor isomorphic to R/I.

Proof. (1)⇒(2) Let I be a maximal ideal. By Lemma 3.17, the ring R is max and
all submodules of E(R/I) are cyclic because E(R/I) is an indecomposable injective

module. Put A := Ann(E(R/I)) and R̃ := R/A. Then R̃ ∼= E(R/I) has a structure

of a self-injective ring, which is local by Lemma 2.5(3). As R̃ is a factor of a max

ring, it is max as well, and then, by Lemma 3.17, R̃ is a local Noetherian perfect
ring with the T-nilpotent cyclic maximal ideal, say Ĩ := I/A. This means that Ĩ

is a nilpotent cyclic ideal, R̃ is a uniserial Artinian ring, and so E(R/I) is a chain
Artinian module.
(2)⇒(3) By [7], R/J(R) is abelian regular and J(R) is T-nilpotent because R is
max. Let I be a maximal ideal and put again A := Ann(E(R/I)). Then A contains
no subfactor isomorphic to R/I by Lemma 2.5(2). Since R/A ∼= E(R/I) is a self-
injective local Artinian ring by Example 3.16, it is Frobenius by [14, Theorem
16.14]. Furthermore, there exists n < ω such that In ⊆ A. Note that R/In is a
local perfect ring as R is max and I is a maximal ideal. Furthermore, if s ∈ R \ In,
then sIn ̸= sR, and so sI ̸= sR, which means that s ∈ R \ A since A contains no
subfactor isomorphic to R/I ∼= sR/sI. This proves that In = A. Now, if we assume
that In+1 = AI ̸= A = In, then A/AI and so A contains a subfactor isomorphic
to R/I ∼= sR/sI, a contradiction. We have proved that A = In = In+1 and it
contains no subfactor isomorphic to R/I.
(3)⇒(1) Let M be a non-zero indecomposable R-module and put A = Ann(M).

Note that R = R/(A + J(R)) ∼= R/A
(J(R)+A)/A is a factor of the abelian regular ring
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R/J(R), hence it is abelian regular. Let e be an idempotent of R. Obviously, it can
be lifted to an idempotent e of the ring R/A modulo the nil ideal (J(R)+A)/A by
[13, Theorem 21.28]. SinceM = Me⊕M(1−e) andM is indecomposable, e is equal
either to 1 or 0, hence R a field. This implies that R/A is local with the maximal
ideal which is isomorphic to I/A for a suitable maximal ideal I of the ring R. Thus
M has a structure of an indecomposable module over R/A. Since R is max, R/A
is local max, hence perfect with the unique maximal ideal I/A. Note that by the
hypothesis, there exists n for which In = In+1 and R/In is a uniserial Frobenius
ring with sI = sR for each s ∈ In. If we assume that there exists s ∈ In \ K,
then sI ̸= sR as R/K is semiartinian, which contradicts to the hypothesis. Thus
In ⊆ K and R/K is a factor of the uniserial Artinian ring R/In, which implies that
M can be seen as a module over the uniserial Artinian ring R/K. It is well known
that any module over a commutative Artinian principal ideal ring decomposes into
a direct sum of cyclic modules, and hence the irreducible module M is cyclic, which
proves that R is IMC. □

Corollary 3.19. Let R be a commutative ring which is either semilocal or noe-
therian. Then R is IMC if and only if it is serial artinian.

Proof. If R is IMC, then it is a finite product of pseudo-Frobenius rings by Corol-
lary 2.8 and Proposition 2.11, which are chain artinian by Theorem 3.18. The
converse follows from Example 3.16 and Proposition 3.15. □

Let us present two examples, the first one shows that not every IIMC ring is
IMC and the second one presents non-trivial example of an IMC ring.

Example 3.20. Any local commutative Frobenius ring which is not uniserial, e.g.
F2[x]/(x

2, y2), is an example of an IIMC ring by Proposition 3.2 which is not IMC
by Theorem 3.18.

Example 3.21. Let F be a field and consider an F -subalgebra R of the F -algebra∏
n<ω F [x]/(xn) generated by the ideal I∞ =

⊕
n F [x]/(xn). If we denote by en

idempotents satisfying Ren ∼= F [x]/(xn), then R is an IIMC ring by Theorem 3.18
with maximal ideals In = R(1−en), n < ω and I∞ =

⊕
n Ren for which Inn = In+1

n

and I∞ = I2∞.

We finish the paper by formulating several open question:

(1) Is any semilocal (semiperfect) right hypersimple ring necessarily right pseudo-
Frobenius? It is true in duo case by Corollary 2.8.

(2) Is any right Noetherian right hypersimple ring necessarily right quasi-
Frobenius? It holds for commutative rings by Theorem 2.11.

(3) Is any semilocal or right Noetherian IMC ring necessarily right serial Ar-
tinian? It holds in commutative case by Corollary 3.19.

(4) More generally, over which ring-theoretical conditions do criteria of Corol-
lary 2.8, Theorem 2.11, Corollary 3.11, and Corollary 3.19 remain to hold?

References

[1] F.W. Anderson, K.R. Fuller: Rings and Categories of Modules, New York, Springer-Verlag,
1974.

[2] G. Azumaya: Some characterizations of regular modules, Publicacions Matemátiques, 34(2)

(1990), 241-248.
[3] W. Caldwell, Hypercyclic rings. Pacific J. Math. 24(1968), 29-44.

[4] I.S.Cohen, I. Kaplansky: Rings for which every module is a direct sum of cyclic modules,
Math.Z. 54(1951),97-101

[5] N.V. Dung and P.F. Smith: On semi-artinian V-modules, J. Pure Appl. Algebra 22 (1992),27-
37.
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