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Abstract. Let V be a countably generated right vector space over a field F and σ ∈
End(VF ) be a shift operator. We show that there exist a unit u and an idempotent e such
that 1− u, σ − u are units in End(VF ) and 1− e, σ − e are idempotents in End(VF ). We
also obtain that if D is a division ring and D ≇ Z2,Z3, then 1 − u, α − u are units in
End(VD) for any α ∈ End(VD).

1. Introduction

Let R be an associative ring with unity. Given a function f : R → R where R is a

noncommutative associative ring with identity, f is said to be unit-additive if f(u + v) =

f(u) + f(v), for all units u, v ∈ R. Moreover, if f(uv) = f(u)f(v) for all units u, v ∈ R,

then the ring R is called unit-homomorphic [7]. In [7], the authors proved that every unit

additive map of a semilocal ring R is additive if and only if either R has no homomorphic

image isomorphic to Z2 orR/J(R) ∼= Z2 where J(R) denotes the Jacobson radical and Zn is

the ring of integers modulo n. The study of rings satisfying the 2-sum property (i.e. rings

such that each of their elements is a sum of two units) was introduced by Wolfson [12] and

Zelinsky [13]. They, independently, proved that the endomorphism ring of a vector space V

over a division ring D satisfies the 2-sum property, except that dim(V ) = 1 and D = F2.

A ring R is said to have unit sum number n, if for any r ∈ R there exist units u1, · · · , un

of R such that r = u1 + · · · + un. According to [8], a ring R is said to satisfy the binary

2-sum property if for any a, b ∈ R there exist units u1, u2, u3 of R such that a = u1 + u2

and b = u1 + u3. Recall that a semilocal ring R has unit sum number 2 if and only if no

factor ring of R is isomorphic to F2 (see [5]). Recently, the author of [8] provides a similar
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characterization of semilocal rings with the binary 2-sum property: a semilocal ring R satisfies

the binary 2-sum property if and only if no factor ring of R is isomorphic to F2, F3, or the

2 × 2 matrix ring M2(F2). They also obtained in [8, Corollary 19] that if R is an exchange

ring with primitive factors Artinian (e.g., a semilocal ring), then R satisfies the binary 2-sum

property if R satisfies the Goodearl–Menal property (Two elements a, b ∈ R are said to satisfy

the Goodearl-Menal condition, in case there exists a unit u in R such that a − u, u−1 is a

unit. A ring R is said to satisfy the Gooodearl-Menal if every elements a, b ∈ R satisfy this

property [6]).

Let V be a countably generated right vector space over a division ring D. In 2010, Chen

[3] generalized a result of Zelinsky [13]; it is proved that for any endomorphism f of V there

exists an automorphism g of V with f+g and f−g−1 both automorphisms of V if D ̸= Z2,Z3.

We also notice that this result is extended to an Artinian right R-module over a semilocal ring

R that contains 1/2 and 1/3. In [10, Theorem], Nicholson and Varadarjan proved that every

countable linear transformation over a division ring is clean (every element of a ring is a sum

of an idempotent and a unit [9]). Let V be a countably generated vector space over a division

ring D such that |D| ̸= 2, 3, and let EndD(V ) denote the ring of linear transformations on V .

Chen [4] obtained two interesting decompositions in EndD(V ): (1) For any f ∈ EndD(V ),

there exists an automorphism g on V such that f − g and f − g−1 are both automorphisms

on V . Thus, EndD(V ) satisfies a special case of the Goodearl-Menal condition. (2) For any

f ∈ EndD(V ), there exists an automorphism g on V such that f2 − g2 is an automorphism

on V . In [2], Camillo and Simon also applied The Nicholson-Varadarajan theorem on clean

linear transformations and they used the tool of Shift operators.
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For a countably infinite dimensional right vector space VD, a linear transformation f ∈

End(VD) is called a shift operator if there exists a basis {v1, v2, · · · , vn, · · · } of V such that

f(vi) = vi+1 for all i. Note that the matrix representation of the shift operator f over basis

{vi}i is oof the form

f =



0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

... . . .


.

The main purpos of this study is to obtain the following two generalizations using a new tool,

namely idempotent additive maps taking idempotents instead of units in a unit additive map:

(1) Let V be a countably generated right vector space over a field F and σ ∈ S = End(VF ) be

a shift operator. Then there exist a unit u ∈ S and an idempotent e ∈ S such that 1−u, σ−u

are units in s and 1− e, σ− e are idempotents in s. (Theorem 2.4); (2) If D is a division ring

and D ≇ Z2,Z3, then there exist a unit u ∈ End(VD) for which 1 − u, α − u ∈ U(End(VD))

for any α ∈ End(VD) (Theorem 2.9).

2. Results

We will denote by U(R) the set of all units and by Id(R) a set of all idempotents of a ring

R.

Definition 2.1. Let R be a ring. A map σ : R → R is called an (a) idempotent (unit)

additive map if σ is additive on idempotents (units) of R, i.e

σ(a+ b) = σ(a) + σ(b),

for all a, b ∈ U(R) (a, b ∈ Id(R).

For convenience, we fix a notation: for a, b ∈ R, we write

a ↭ b (or a
u↭ b, to emphasize the element u) if a− u, b− u ∈ U(R) for some u ∈ U(R),

a ⇌ b (or a
e⇌ b to emphasize the element e) if a− e, b− e ∈ Id(R) for some e ∈ Id(R),

a←→ b (or a
u←→ b to emphasize the unit u), if there exists u ∈ U(R) such that a− u, b−

u−1 ∈ U(R) (Goodearl-Menal condition [6]).
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We list some properties of notations in the following observations.

Lemma 2.2. The followings hold for a ring R and elements a, b ∈ R, u, x, y ∈ U(R).

(1) Let σ be a unit-additive map of R. If −a ↭ u, then σ(a+ u) = σ(a) + σ(u).

(2) If 1 ↭ c for all c ∈ R, then every unit-additive map of R is additive.

(3) Let σ be an automorphism or anti-automorphism of R. Then:

(a) a
u↭ b iff σ(a)

σ(u)↭ σ(b).

(b) a
u↭ b iff xay

xuy↭ xby.

(4) (a) 1
u↭ a iff 1

u−1

←→ a.

(b) 1 ↭ x for all x ∈ R iff v ↭ x for all x ∈ R and all v ∈ U(R).

(c) 1←→ x for all x ∈ R iff v ←→ x for all x ∈ R and all v ∈ U(R).

(d) v ↭ x for all x ∈ R and all v ∈ U(R) iff v ←→ x for all x ∈ R and all

v ∈ U(R).

Proof. (1) and (2) See [7, Lemmas 2.3 and 2.4].

(3) and (4) See [8, Lemmas 2.7 and 2.8]. □

Lemma 2.3. The followings conditions hold for a ring R and r ∈ R.

(1) Let σ be an idempotent-additive map of R. If e ∈ Id(R) with −r ⇌ e, then σ(r+e) =

σ(r) + σ(e).

(2) If 1 ⇌ x for all x ∈ R, then every idempotent-additive map of R is additive.

(3) r ⇌ 1 if and only if there exist e, f ∈ Id(R) such that r = e+ f ,

(4) Let σ be a ring automorphisms of R. Then r ⇌ 1 if and only if σ(r) ⇌ 1

Proof. (1) and (2) The proofs are similar to the proofs of Lemma 2.2 (1) and (2).

(3) If there exists e ∈ Id(R) such that r−e, 1−e ∈ Id(R), then it is enough to put f := r−e.

The converse follow from the fact that 1− e ∈ Id(R) for an arbitrary idempotent e.

(4) This is clear since σ(e) ∈ Id(R) for each e ∈ Id(R). □

Now we are ready to prove our first main theorem.
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Theorem 2.4. Let V be a countably generated right vector space over a field F and σ ∈ S =

End(VF ) be a shift operator. Then

(1) 1 ⇌ σ,

(2) 1 ↭ σ.

Proof. (1) Let E1 =

(
0 0
1 1

)
, E2 =

(
1 0
1 0

)
, 0i×j is a zero matrix of type i × j and (ui)i<ω

be a basis of V . Define an infinite block-diagonal matrices

B =


E1 02×2 02×2 02×2 . . .
02×2 E1 02×2 02×2 . . .
02×2 02×2 E1 02×2 . . .
02×2 02×2 02×2 E1 . . .

...
...

...
... . . .

 and C =


01×1 01×2 01×2 01×2 01×2 . . .
02×1 E2 02×2 02×2 02×2 . . .
02×1 02×2 E2 02×2 02×2 . . .
02×1 02×2 02×2 E2 02×2 . . .

...
...

...
...

... . . .

 ,

and endomorphisms e, f ∈ End(V ) such that B is the matrix of e and C is the matrix of f

with respect to the basis (ui)i<ω, i.e.

e(u2i−1) = e(u2i) = u2i,

f(u2i−1) = 0, f(u2i) = u2i + u2i+1

for each i ≥ 1. Then

A =



0 0 0 0 0 . . .
1 2 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 2 0 . . .
0 0 0 1 0 . . .
...

...
...

... . . .


.

is the matrix of e+ f and it is easy to see that e, f ∈ Id(End(V )) as E2
1 = E1 and E2

2 = E2.

Let us denote g = e + f and we will construct a basis (vi)i<ω which witnesses that g is a

shift operator, i.e. that g(vi) = vi+1.

First, put v1 = u1 and v2 = u2. Then Span(v1, v2) = Span(u1, u2), g(v1) = v2 and g(v2) ∈

Span(v1, v2, u3)∖Span(v1, v2). Let we have constructed v1, . . . , vi such that Span(v1, . . . , vi) =

Span(u1, . . . , ui), g(vi−1) = vi and g(vi) ∈ Span(v1, . . . , vi, ui+1) ∖ Span(v1, . . . , vi). Then

define vi+1 = g(vi). By the induction hypotheses v1, . . . , vi+1 is linearly independent, hence

Span(v1, . . . , vi+1) = Span(u1, . . . , ui+1), and it is clear from the matrix A that g(vi+1) ∈

Span(v1, . . . , vi+1, ui+2)∖ Span(v1, . . . , vi+1)



6 MIRAÇ ÇETIN, M. TAMER KOŞAN AND JAN ŽEMLIČKA

Since (vi)i<ω is a basis satisfying [e + f ](vi) = vi+1 for each i, we have proved that e + f

is a shift operator, hence 1 ⇌ e+ f by Lemma 2.3(3). As there exists an invertible operator,

say a ∈ End(V ), such that e+ f = a−1σa, the assertion follows from Lemma 2.3(4).

(2) Denote by (vi)i<ω a basis of V such that σ(vi) = vi+1. First, suppose that characteristic

of F is not 2. Let U1 :=

(
−1 0
1 −1

)
, U2 :=

(
1 0
1 1

)
and U3 :=

(
2 0
−1 2

)
. Remark that all

these matrices are invertible. We denote by u an operator such that its matrix with respect

to the basis (vi)i<ω is

[u](vi)


U1 0 0 0 . . .
0 U1 0 0 . . .
0 0 U1 0 . . .
...

...
...

... . . .

 .

Now we easily compute matrices

[1− u](vi) =


U3 0 0 0 . . .
0 U3 0 0 . . .
0 0 U3 0 . . .
...

...
...

... . . .

 and [σ − u](vi) =


11×1 0 0 0 . . .
0 U2 0 0 . . .
0 0 U2 0 . . .
...

...
...

... . . .

 .

Since all these matrices are invertible, we can see that u, 1− u, σ − u ∈ U(S).

Now, let 1 + 1 = 0 and consider the matrix

A =


U 0 0 0 . . .
0 U 0 0 . . .
0 0 U 0 . . .
0 0 0 U . . .
...

...
...

... . . .

 ,

where U =

0 1 0
0 1 1
1 0 0

 is an invertible matrix with the inverse U−1 =

0 0 1
1 0 0
1 1 0

. Clearly,

the matrices A and A+ I are invertible with the inverses

A−1 =


U−1 0 0 0 . . .
0 U−1 0 0 . . .
0 0 U−1 0 . . .
0 0 0 U−1 . . .
...

...
...

... . . .


and

(A+ I)−1 =


(U + I3)

−1 0 0 0 . . .
0 (U + I3)

−1 0 0 . . .
0 0 (U + I3)

−1 0 . . .
0 0 0 (U + I3)

−1 . . .
...

...
...

... . . .

 ,



UNIT AND IDEMPOTENT ADDITIVE MAPS OVER COUNTABLE LINEAR TRANSFORMATIONS 7

where (U + I3)
−1 =

0 1 1
1 1 1
0 1 0

 . Let A be the matrix of an operator u with respect to the

basis (vi)i<ω. We have proved that u and 1 + u are invertible operators.

Finally, the operator u+ σ is invertible since it has a matrix with respect to (vi)i<ω
B 0 0 0 . . .
E13 B 0 0 . . .
0 E13 B 0 . . .
0 0 E13 B . . .
...

...
...

... . . .

 ,

with the inverse 
B−1 0 0 0 . . .
C B−1 0 0 . . .
0 C B−1 0 . . .
0 0 C B−1 . . .
...

...
...

... . . .


where B =

0 1 0
1 1 1
1 1 0

, B−1 =

1 0 1
1 0 0
0 0 1

, C =

0 1 1
0 1 1
0 0 0

 and E13 =

0 0 1
0 0 0
0 0 0

. □

GLn(D) denotes the n-dimensional general linear group over a division ring D and Mn(D)

denotes the ring of all n× n matrices over D with an identity In.

Recall that the matrices a and b are equivalent if there exists a regular matrix p such that

a = p−1bp.

Lemma 2.5. Let D be a division ring of characteristic different from 2, n ∈ N and b ∈Mn(D).

Then the following conditions are equivalent.

(1) b ⇌ In

(2) b is equivalent to a block matrix


2Ir a12 a13 0
0 Is a23 0
0 a32 It 0
0 0 0 0

 ∈ Mn(D) where Ir, Is, It are

identity matrices, and ai,j and 0 are matrices.

Proof. Recall that b ⇌ In if and only if there exist e, f ∈ Id(Mn(D)) such that b = e+ f by

Lemma 2.3(3). Since
2Ir a12 a13 0
0 Is a23 0
0 a32 It 0
0 0 0 0

 =


Ir a12 0 0
0 0 0 0
0 a32 It 0
0 0 0 0

+


Ir 0 a13 0
0 Is a23 0
0 0 0 0
0 0 0 0
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where both the matrices on the right side are idempotents, we get that (2)⇒ (1) holds.

Let b = e + f for idempotent matrices e, f and let us identify all matrices with linear

operator on Dn given by the matrix multiplication. Let us denote by B the basis of im(e) ∩

im(f) which could be completed to bases of im(e) and im(f) by E and F , i.e. B ∪ E is a

basis of im(e) and B ∪ F is a basis of im(f). Since e and f are idempotents, we get e(u) = u

for each u ∈ B ∪ E and f(u) = u for each u ∈ B ∪ E. Hence e(v) ∈ Span(B ∪ E) and

f(v) ∈ Span(B ∪ F ) for all v ∈ Dn.

Finally let K be a basis of ker(b) and let k ∈ ker(b). Then 0 = b(k) = e(k) + f(k) and

so e(k) = f(−k) ∈ im(e) ∩ im(f) = Span(B). Hence k = e(k) = f(−k) = −k which implies

that k = 0 and ker(b) ⊆ ker(e) ∩ ker(f). It means that the matrix of operator b = e+ f with

respect to the basis B ∪ E ∪ F ∪K is of the form
Ir a12 0 0
0 0 0 0
0 a32 It 0
0 0 0 0

+


Ir 0 a13 0
0 Is a23 0
0 0 0 0
0 0 0 0

 =


2Ir a12 a13 0
0 Is a23 0
0 a32 It 0
0 0 0 0


which is equivalent to the matrix b. □

Theorem 2.6. Let D be a division ring.

(1) Let the characteristic of D be different from 2 and b ∈ M2(D). Then b ⇌ I2 if and

only if b is equivalent to one of the matrices:(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
1 c
d 1

)
,

(
2 c
0 1

)
,

(
2 0
0 2

)
for some c, d ∈ D.

(2) If D ≇ Z2,Z3 and n ∈ N, then

(i) for any a, b ∈Mn(D), there exists c ∈ GLn(D) such that b c↭ a.

(ii) b
c↭ In.

Proof. (1) This follows from Lemma 2.5.

(2) Assuming D ≇ Z2,Z3 implies that |D| ≥ 4. Let x, y ∈ D. We have the following three

cases.

If x = 0, then we choose a nonzero element u ∈ D such that u ̸= y. Hence y − u ̸= 0.
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If y = 0, then we choose a nonzero element u ∈ D such that u ̸= x. Hence x− u ̸= 0.

If x ̸= and y ̸= 0, then we choose a nonzero element u ∈ D such that u ̸= x and u ̸= y.

As a result we obtain that x
u↭ u.

Let a =

(
a11 a12
a21 a22

)
∈ Mn(D) and b =

(
b11 b12
b21 b22

)
∈ Mn(D), where a11, b11 ∈ D, a12, b12 ∈

M1×(n−1)(D), a21, b21 ∈M(n−1)×1(D) and a22, b22 ∈M(n−1)×(n−1)(D). Note that there exists

0 ̸= x ∈ D such that a11−x = u1 ̸= 0 and b11−x = u2 ̸= 0. Since a22−a21u−1
1 a12 ∈M(n−1)(D)

and b22−b21u−1
1 b12 ∈M(n−1)(D), we can obtain y ∈ GLn−1(D) such that a22−a21u−1

1 a12−y =

v1 ∈ GLn−1(D) and b22 − b21u
−1
1 b12 − y ∈ GLn−1(D). They imply that

a− diag(x, y) =

(
u1 a12
a21 v1 + a21u

−1
1 a12

)
and

b− diag(x, y) =

(
u2 b12
b21 v2 + b21u

−1
1 b12

)
.

Since (
u1 a12
a21 v1 + a21u

−1
1 a12

)
=

(
1 0

a21u
−1
1 1

)(
u1 a12
0 v1

)
and (

u2 b12
b21 v2 + b21u

−1
1 b12

)
=

(
1 0

b21u
−1
2 1

)(
u2 b12
0 v2

)
,

we get
(
u1 a12
a21 v1 + a21u

−1
1 a12

)
,

(
u2 b12
b21 v2 + b21u

−1
1 b12

)
∈ GLn(D) as desired. □

For the last main theorem we need the following a series of lemmas.

Lemma 2.7. Let D be a division ring and α ∈ End(VD) such that VD is spanned by

{y, α(y), α2(y), · · · } for some y ∈ V . If D ≇ Z2,Z3, then

(1) 1 ↭ α.

(2) If VD is infinitely generated, then 1 ⇌ α.

Proof. (1) We may assume that VD ̸= 0. If αn(y) /∈ yD + α(y)D + · · · + αn−1(y)D for all

n ≥ 1, then {y, α(y), α2(y), · · · } is a basis of VD. Since α is a shift operator with respect to

the basis {y, α(y), α2(y), · · · }, we get 1 ↭ α by Theorem 2.4(2). Now suppose that there

exists n ∈ N such that αn(y) /∈ yD + α(y)D + · · · + αn−1(y)D. If n is minimal with respect

to this property, then {y, α(y), α2(y), · · · } forms a basis for VD. Hence EndD(VD) ∼= Mn(D).
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By Lemma 2.3(2), we obtain that 1 ↭ α.

(2) This follows from Theorem 2.4(1) using the arguments of (1) □

Lemma 2.8. Let D be a division ring such that D ≇ Z2,Z3, α ∈ End(VD) and U be

an α-invariant subspace of VD. Assume that there exists a vector y ∈ U ∖ V such that

V = U +
∑

i≥0 α
i(y)D. If the restriction α|U satisfies 1 ↭ α|U , then 1 ↭ α

Proof. Let V = M ⊕ U where M is a subspace which contains y. Define

α̃ : V/U → V/U

v → α(v)

(see [10, Lemma 4]). Clearly,

αn(y) = α̃n(v)

and there exists a D-subisomorphism θ0 : V/U →M given by θ0(v) = θ(v) by [10, Lemma 4]

where θ is an idempotent in EndD(V ) satisfying θ(V ) = M and Ker(θ) = U . By [10, Lemma

4], we have the endomorphism ring of M as:

β := θ0α̃θ
−1
0 : M → V/U → V/U →M.

By the hypothesis, {y, α(Y ), · · · } spans V/U . Hence {y, α̃(y), · · · } spans V/U since αn(y) =

α̃n(v). Now it is easy to see that {θ0[y], θ0[α̃(y)], · · · } spans M . By Lemma 2.7, we get

β ↭ 1. Then β − v1 = a1 and 1 − v1 = b1 for some units v1, a1, b1 of End(M). By

hypothesis, 1 ↭ α|U , we have α|U − v2 = a2 and 1 − v2 = b2 for some units v2, a2, b2 of

End(M). Since V = M ⊕ U , we can define

v∗(v) = v∗(m+ u) = v1(m) + [α(m)− β(m) + v2(u)].

v∗ is an automorphism of V : Since v∗(m + u) = 0 implies v1(m) = 0 and [α(m) − β(m)] +

v2(u) = 0, whence m = u = 0, we get v∗ is monic. As u = v2(u0) = v∗(0 + u0) for some

u0 ∈ U , we obtain U ⊆ Im(v∗). If m ∈ M , we write m = v1(m1) for m1 ∈ M , then

α(m1) − β(m1) = −v2(u0). Then v∗(m1 + u0) = v1(m1) + [α(m1) − β(m1) + v2(u0)] which
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implies that M ⊆ Im(v∗). Hence v∗ is epic.

α− v∗ is an automorphism: Firstly,
(α− v∗)(m+ u) = α(m+ u)− v∗(m+ u)

= α(m) + α(u)− v1(m)− [α(m)− β(m)− v2(u)]
= α|u(u)− v2(u)− v1(m) + β(m)
= b2(u) + b1(m).

Now, by a similar technic of previous proof, we can obtain that α− v∗ is monic and epic.

1− v∗ is an automorphism: Firstly,
(1− v∗)(m+ u) = 1(m+ u)− v∗(m+ u)

= α(m) + α(u)− v1(m)− [α(m)− β(m)− v2(u)]
= 1(m) + 1(u)− v1(m)− [α(m)− β(m) + v2(u)]
= 1(m)− v1(m) + 1(u)− v2(u) + β(m)− α(m)
= b1(m) + [b2(u) + β(m)− α(m)].

Finally, the same argument as for α− v∗ shows that 1− v∗ is monic and epic. □

Theorem 2.9. Let D be a division ring and D ≇ Z2,Z3. Then 1 ↭ α for any α ∈ End(VD).

Proof. Fix α ∈ End(VD). Define

χ = {(U, v) : UD ⊆ V is a α− invariant and α|u
v↭ 1}.

Note that (0, 0) ∈ χ. Now we define (U, v) ≤ (U ′, v′) by U ⊆ U ′ and v′|u = v is a partial order

of χ. By Zorn’s Lemma, there exists a maximal element, say (U, v) in χ.

Assume U ̸= V . Then, take y ∈ V ∖U and let K :=
∑

i≥0 α
i(y)D, and write V0 = U +K.

Clearly, V0 and K are α-invariant subspaces, and α ∈ End(V0) and α|U
v↭ 1 because (U, v) ∈

χ. By Lemma 2.8, we get α ↭ 1 which contradicts the maximality of (U, v) ∈ χ.

□
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