# UNIT AND IDEMPOTENT ADDITIVE MAPS OVER COUNTABLE LINEAR TRANSFORMATIONS 

MIRAÇ ÇETIN, M. TAMER KOŞAN AND JAN ŽEMLIČKA


#### Abstract

Let $V$ be a countably generated right vector space over a field $F$ and $\sigma \in$ $\operatorname{End}\left(V_{F}\right)$ be a shift operator. We show that there exist a unit $u$ and an idempotent $e$ such that $1-u, \sigma-u$ are units in $\operatorname{End}\left(V_{F}\right)$ and $1-e, \sigma-e$ are idempotents in $\operatorname{End}\left(V_{F}\right)$. We also obtain that if $D$ is a division ring and $D \nsubseteq \mathbb{Z}_{2}, \mathbb{Z}_{3}$, then $1-u, \alpha-u$ are units in $\operatorname{End}\left(V_{D}\right)$ for any $\alpha \in \operatorname{End}\left(V_{D}\right)$.


## 1. Introduction

Let $R$ be an associative ring with unity. Given a function $f: R \rightarrow R$ where $R$ is a noncommutative associative ring with identity, $f$ is said to be unit-additive if $f(u+v)=$ $f(u)+f(v)$, for all units $u, v \in R$. Moreover, if $f(u v)=f(u) f(v)$ for all units $u, v \in R$, then the ring $R$ is called unit-homomorphic [7]. In [7], the authors proved that every unit additive map of a semilocal ring $R$ is additive if and only if either $R$ has no homomorphic image isomorphic to $\mathbb{Z}_{2}$ or $R / J(R) \cong \mathbb{Z}_{2}$ where $J(R)$ denotes the Jacobson radical and $\mathbb{Z}_{n}$ is the ring of integers modulo $n$. The study of rings satisfying the 2 -sum property (i.e. rings such that each of their elements is a sum of two units) was introduced by Wolfson [12] and Zelinsky [13]. They, independently, proved that the endomorphism ring of a vector space $V$ over a division ring $D$ satisfies the 2-sum property, except that $\operatorname{dim}(V)=1$ and $D=\mathbb{F}_{2}$. A ring $R$ is said to have unit sum number $n$, if for any $r \in R$ there exist units $u_{1}, \cdots, u_{n}$ of $R$ such that $r=u_{1}+\cdots+u_{n}$. According to [8], a ring $R$ is said to satisfy the binary 2-sum property if for any $a, b \in R$ there exist units $u_{1}, u_{2}, u_{3}$ of $R$ such that $a=u_{1}+u_{2}$ and $b=u_{1}+u_{3}$. Recall that a semilocal ring $R$ has unit sum number 2 if and only if no factor ring of $R$ is isomorphic to $\mathbb{F}_{2}$ (see [5]). Recently, the author of [8] provides a similar

[^0]characterization of semilocal rings with the binary 2-sum property: a semilocal ring $R$ satisfies the binary 2 -sum property if and only if no factor ring of $R$ is isomorphic to $\mathbb{F}_{2}, \mathbb{F}_{3}$, or the $2 \times 2$ matrix ring $\mathbb{M}_{2}\left(\mathbb{F}_{2}\right)$. They also obtained in [8, Corollary 19] that if $R$ is an exchange ring with primitive factors Artinian (e.g., a semilocal ring), then $R$ satisfies the binary 2 -sum property if $R$ satisfies the Goodearl-Menal property (Two elements $a, b \in R$ are said to satisfy the Goodearl-Menal condition, in case there exists a unit $u$ in $R$ such that $a-u, u^{-1}$ is a unit. A ring R is said to satisfy the Gooodearl-Menal if every elements $a, b \in R$ satisfy this property [6]).

Let $V$ be a countably generated right vector space over a division ring $D$. In 2010, Chen [3] generalized a result of Zelinsky [13]; it is proved that for any endomorphism $f$ of $V$ there exists an automorphism $g$ of $V$ with $f+g$ and $f-g^{-1}$ both automorphisms of $V$ if $D \neq \mathbb{Z}_{2}, \mathbb{Z}_{3}$. We also notice that this result is extended to an Artinian right R-module over a semilocal ring $R$ that contains $1 / 2$ and $1 / 3$. In [10, Theorem], Nicholson and Varadarjan proved that every countable linear transformation over a division ring is clean (every element of a ring is a sum of an idempotent and a unit [9]). Let $V$ be a countably generated vector space over a division ring $D$ such that $|D| \neq 2,3$, and let $\operatorname{End}_{D}(V)$ denote the ring of linear transformations on $V$. Chen [4] obtained two interesting decompositions in $\operatorname{End}_{D}(V)$ : (1) For any $f \in \operatorname{End}_{D}(V)$, there exists an automorphism $g$ on $V$ such that $f-g$ and $f-g^{-1}$ are both automorphisms on $V$. Thus, $E n d_{D}(V)$ satisfies a special case of the Goodearl-Menal condition. (2) For any $f \in \operatorname{End}_{D}(V)$, there exists an automorphism $g$ on $V$ such that $f^{2}-g^{2}$ is an automorphism on $V$. In [2], Camillo and Simon also applied The Nicholson-Varadarajan theorem on clean linear transformations and they used the tool of Shift operators.

For a countably infinite dimensional right vector space $V_{D}$, a linear transformation $f \in$ $\operatorname{End}\left(V_{D}\right)$ is called a shift operator if there exists a basis $\left\{v_{1}, v_{2}, \cdots, v_{n}, \cdots\right\}$ of $V$ such that $f\left(v_{i}\right)=v_{i+1}$ for all $i$. Note that the matrix representation of the shift operator $f$ over basis $\left\{v_{i}\right\}_{i}$ is oof the form

$$
f=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \ldots \\
1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right)
$$

The main purpos of this study is to obtain the following two generalizations using a new tool, namely idempotent additive maps taking idempotents instead of units in a unit additive map:
(1) Let $V$ be a countably generated right vector space over a field $F$ and $\sigma \in S=\operatorname{End}\left(V_{F}\right)$ be a shift operator. Then there exist a unit $u \in S$ and an idempotent $e \in S$ such that $1-u, \sigma-u$ are units in $s$ and $1-e, \sigma-e$ are idempotents in $s$. (Theorem 2.4); (2) If $D$ is a division ring and $D \nsubseteq \mathbb{Z}_{2}, \mathbb{Z}_{3}$, then there exist a unit $u \in \operatorname{End}\left(V_{D}\right)$ for which $1-u, \alpha-u \in U\left(\operatorname{End}\left(V_{D}\right)\right)$ for any $\alpha \in \operatorname{End}\left(V_{D}\right)$ (Theorem 2.9).

## 2. Results

We will denote by $U(R)$ the set of all units and by $I d(R)$ a set of all idempotents of a ring $R$.

Definition 2.1. Let $R$ be a ring. A map $\sigma: R \rightarrow R$ is called an (a) idempotent (unit) additive map if $\sigma$ is additive on idempotents (units) of $R$, i.e

$$
\sigma(a+b)=\sigma(a)+\sigma(b)
$$

for all $a, b \in U(R)(a, b \in I d(R)$.

For convenience, we fix a notation: for $a, b \in R$, we write
$a \longleftrightarrow b$ (or $a \stackrel{u}{\leadsto} b$, to emphasize the element $u$ ) if $a-u, b-u \in U(R)$ for some $u \in U(R)$,
$a \rightleftharpoons b$ (or $a \stackrel{e}{\rightleftharpoons} b$ to emphasize the element $e$ ) if $a-e, b-e \in \operatorname{Id}(R)$ for some $e \in \operatorname{Id}(R)$,
$a \longleftrightarrow b$ (or $a \stackrel{u}{\longleftrightarrow} b$ to emphasize the unit $u$ ), if there exists $u \in U(R)$ such that $a-u, b-$ $u^{-1} \in U(R)$ (Goodearl-Menal condition [6]).

We list some properties of notations in the following observations.

Lemma 2.2. The followings hold for $a$ ring $R$ and elements $a, b \in R, u, x, y \in U(R)$.
(1) Let $\sigma$ be a unit-additive map of $R$. If $-a \nVdash u$, then $\sigma(a+u)=\sigma(a)+\sigma(u)$.
(2) If $1 \nLeftarrow c$ for all $c \in R$, then every unit-additive map of $R$ is additive.
(3) Let $\sigma$ be an automorphism or anti-automorphism of $R$. Then:
(a) $a \stackrel{u}{\leadsto} b$ iff $\sigma(a) \stackrel{\sigma(u)}{\leftrightarrow} \sigma(b)$.
(b) $a \stackrel{u}{\sim} b$ iff $x a y \stackrel{x u y}{\nVdash} x b y$.
(4) (a) $1 \stackrel{u}{\longleftrightarrow} a$ iff $1 \stackrel{u^{-1}}{\longleftrightarrow} a$.
(b) 1 ↔ for all $x \in R$ iff $v \leftrightarrow x$ for all $x \in R$ and all $v \in U(R)$.
(c) $1 \longleftrightarrow x$ for all $x \in R$ iff $v \longleftrightarrow x$ for all $x \in R$ and all $v \in U(R)$.
(d) $v$ «九 $x$ for all $x \in R$ and all $v \in U(R)$ iff $v \longleftrightarrow x$ for all $x \in R$ and all $v \in U(R)$.

Proof. (1) and (2) See [7, Lemmas 2.3 and 2.4].
(3) and (4) See [8, Lemmas 2.7 and 2.8].

Lemma 2.3. The followings conditions hold for a ring $R$ and $r \in R$.
(1) Let $\sigma$ be an idempotent-additive map of $R$. If $e \in I d(R)$ with $-r \rightleftharpoons e$, then $\sigma(r+e)=$ $\sigma(r)+\sigma(e)$.
(2) If $1 \rightleftharpoons x$ for all $x \in R$, then every idempotent-additive map of $R$ is additive.
(3) $r \rightleftharpoons 1$ if and only if there exist $e, f \in I d(R)$ such that $r=e+f$,
(4) Let $\sigma$ be a ring automorphisms of $R$. Then $r \rightleftharpoons 1$ if and only if $\sigma(r) \rightleftharpoons 1$

Proof. (1) and (2) The proofs are similar to the proofs of Lemma 2.2 (1) and (2).
(3) If there exists $e \in I d(R)$ such that $r-e, 1-e \in I d(R)$, then it is enough to put $f:=r-e$. The converse follow from the fact that $1-e \in I d(R)$ for an arbitrary idempotent $e$.
(4) This is clear since $\sigma(e) \in I d(R)$ for each $e \in I d(R)$.

Now we are ready to prove our first main theorem.

Theorem 2.4. Let $V$ be a countably generated right vector space over a field $F$ and $\sigma \in S=$ $\operatorname{End}\left(V_{F}\right)$ be a shift operator. Then
(1) $1 \rightleftharpoons \sigma$,
(2) $1 \longleftrightarrow \wp$.

Proof. (1) Let $E_{1}=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right), E_{2}=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right), 0_{i \times j}$ is a zero matrix of type $i \times j$ and $\left(u_{i}\right)_{i<\omega}$ be a basis of $V$. Define an infinite block-diagonal matrices

$$
B=\left(\begin{array}{ccccc}
E_{1} & 0_{2 \times 2} & 0_{2 \times 2} & 0_{2 \times 2} & \ldots \\
0_{2 \times 2} & E_{1} & 0_{2 \times 2} & 0_{2 \times 2} & \ldots \\
0_{2 \times 2} & 0_{2 \times 2} & E_{1} & 0_{2 \times 2} & \ldots \\
0_{2 \times 2} & 0_{2 \times 2} & 0_{2 \times 2} & E_{1} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right) \text { and } C=\left(\begin{array}{cccccc}
0_{1 \times 1} & 0_{1 \times 2} & 0_{1 \times 2} & 0_{1 \times 2} & 0_{1 \times 2} & \ldots \\
0_{2 \times 1} & E_{2} & 0_{2 \times 2} & 0_{2 \times 2} & 0_{2 \times 2} & \ldots \\
0_{2 \times 1} & 0_{2 \times 2} & E_{2} & 0_{2 \times 2} & 0_{2 \times 2} & \ldots \\
0_{2 \times 1} & 0_{2 \times 2} & 0_{2 \times 2} & E_{2} & 0_{2 \times 2} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right),
$$

and endomorphisms $e, f \in \operatorname{End}(V)$ such that $B$ is the matrix of $e$ and $C$ is the matrix of $f$ with respect to the basis $\left(u_{i}\right)_{i<\omega}$, i.e.

$$
\begin{gathered}
e\left(u_{2 i-1}\right)=e\left(u_{2 i}\right)=u_{2 i} \\
f\left(u_{2 i-1}\right)=0, f\left(u_{2 i}\right)=u_{2 i}+u_{2 i+1}
\end{gathered}
$$

for each $i \geq 1$. Then

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 2 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 2 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots &
\end{array}\right)
$$

is the matrix of $e+f$ and it is easy to see that $e, f \in \operatorname{Id}(\operatorname{End}(V))$ as $E_{1}^{2}=E_{1}$ and $E_{2}^{2}=E_{2}$.
Let us denote $g=e+f$ and we will construct a basis $\left(v_{i}\right)_{i<\omega}$ which witnesses that $g$ is a shift operator, i.e. that $g\left(v_{i}\right)=v_{i+1}$.

First, put $v_{1}=u_{1}$ and $v_{2}=u_{2}$. Then $\operatorname{Span}\left(v_{1}, v_{2}\right)=\operatorname{Span}\left(u_{1}, u_{2}\right), g\left(v_{1}\right)=v_{2}$ and $g\left(v_{2}\right) \in$ $\operatorname{Span}\left(v_{1}, v_{2}, u_{3}\right) \backslash \operatorname{Span}\left(v_{1}, v_{2}\right)$. Let we have constructed $v_{1}, \ldots, v_{i} \operatorname{such}$ that $\operatorname{Span}\left(v_{1}, \ldots, v_{i}\right)=$ $\operatorname{Span}\left(u_{1}, \ldots, u_{i}\right), g\left(v_{i-1}\right)=v_{i}$ and $g\left(v_{i}\right) \in \operatorname{Span}\left(v_{1}, \ldots, v_{i}, u_{i+1}\right) \backslash \operatorname{Span}\left(v_{1}, \ldots, v_{i}\right)$. Then define $v_{i+1}=g\left(v_{i}\right)$. By the induction hypotheses $v_{1}, \ldots, v_{i+1}$ is linearly independent, hence $\operatorname{Span}\left(v_{1}, \ldots, v_{i+1}\right)=\operatorname{Span}\left(u_{1}, \ldots, u_{i+1}\right)$, and it is clear from the matrix $A$ that $g\left(v_{i+1}\right) \in$ $\operatorname{Span}\left(v_{1}, \ldots, v_{i+1}, u_{i+2}\right) \backslash \operatorname{Span}\left(v_{1}, \ldots, v_{i+1}\right)$

Since $\left(v_{i}\right)_{i<\omega}$ is a basis satisfying $[e+f]\left(v_{i}\right)=v_{i+1}$ for each $i$, we have proved that $e+f$ is a shift operator, hence $1 \rightleftharpoons e+f$ by Lemma 2.3(3). As there exists an invertible operator, say $a \in \operatorname{End}(V)$, such that $e+f=a^{-1} \sigma a$, the assertion follows from Lemma 2.3(4).
(2) Denote by $\left(v_{i}\right)_{i<\omega}$ a basis of $V$ such that $\sigma\left(v_{i}\right)=v_{i+1}$. First, suppose that characteristic of $F$ is not 2. Let $U_{1}:=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right), U_{2}:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $U_{3}:=\left(\begin{array}{cc}2 & 0 \\ -1 & 2\end{array}\right)$. Remark that all these matrices are invertible. We denote by $u$ an operator such that its matrix with respect to the basis $\left(v_{i}\right)_{i<\omega}$ is

$$
[u]_{\left(v_{i}\right)}\left(\begin{array}{ccccc}
U_{1} & 0 & 0 & 0 & \ldots \\
0 & U_{1} & 0 & 0 & \ldots \\
0 & 0 & U_{1} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right)
$$

Now we easily compute matrices

$$
[1-u]_{\left(v_{i}\right)}=\left(\begin{array}{ccccc}
U_{3} & 0 & 0 & 0 & \ldots \\
0 & U_{3} & 0 & 0 & \ldots \\
0 & 0 & U_{3} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right) \text { and }[\sigma-u]_{\left(v_{i}\right)}=\left(\begin{array}{ccccc}
1_{1 \times 1} & 0 & 0 & 0 & \ldots \\
0 & U_{2} & 0 & 0 & \ldots \\
0 & 0 & U_{2} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right)
$$

Since all these matrices are invertible, we can see that $u, 1-u, \sigma-u \in U(S)$.
Now, let $1+1=0$ and consider the matrix

$$
A=\left(\begin{array}{ccccc}
U & 0 & 0 & 0 & \ldots \\
0 & U & 0 & 0 & \ldots \\
0 & 0 & U & 0 & \ldots \\
0 & 0 & 0 & U & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right)
$$

where $U=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)$ is an invertible matrix with the inverse $U^{-1}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$. Clearly, the matrices $A$ and $A+I$ are invertible with the inverses

$$
A^{-1}=\left(\begin{array}{ccccc}
U^{-1} & 0 & 0 & 0 & \ldots \\
0 & U^{-1} & 0 & 0 & \ldots \\
0 & 0 & U^{-1} & 0 & \ldots \\
0 & 0 & 0 & U^{-1} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right)
$$

and

$$
(A+I)^{-1}=\left(\begin{array}{ccccc}
\left(U+I_{3}\right)^{-1} & 0 & 0 & 0 & \ldots \\
0 & \left(U+I_{3}\right)^{-1} & 0 & 0 & \ldots \\
0 & 0 & \left(U+I_{3}\right)^{-1} & 0 & \cdots \\
0 & 0 & 0 & \left(U+I_{3}\right)^{-1} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right)
$$

where $\left(U+I_{3}\right)^{-1}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$. Let $A$ be the matrix of an operator $u$ with respect to the basis $\left(v_{i}\right)_{i<\omega}$. We have proved that $u$ and $1+u$ are invertible operators.

Finally, the operator $u+\sigma$ is invertible since it has a matrix with respect to $\left(v_{i}\right)_{i<\omega}$

$$
\left(\begin{array}{ccccc}
B & 0 & 0 & 0 & \ldots \\
E_{13} & B & 0 & 0 & \ldots \\
0 & E_{13} & B & 0 & \ldots \\
0 & 0 & E_{13} & B & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right)
$$

with the inverse

$$
\left(\begin{array}{ccccc}
B^{-1} & 0 & 0 & 0 & \ldots \\
C & B^{-1} & 0 & 0 & \ldots \\
0 & C & B^{-1} & 0 & \ldots \\
0 & 0 & C & B^{-1} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right)
$$

where $B=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right), B^{-1}=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right), C=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $E_{13}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
$G L_{n}(D)$ denotes the $n$-dimensional general linear group over a division ring $D$ and $\mathbb{M}_{n}(D)$ denotes the ring of all $n \times n$ matrices over $D$ with an identity $I_{n}$.

Recall that the matrices $a$ and $b$ are equivalent if there exists a regular matrix $p$ such that $a=p^{-1} b p$.

Lemma 2.5. Let $D$ be a division ring of characteristic different from 2, $n \in \mathbb{N}$ and $b \in \mathbb{M}_{n}(D)$.
Then the following conditions are equivalent.
(1) $b \rightleftharpoons I_{n}$
(2) $b$ is equivalent to a block matrix $\left(\begin{array}{cccc}2 I_{r} & a_{12} & a_{13} & 0 \\ 0 & I_{s} & a_{23} & 0 \\ 0 & a_{32} & I_{t} & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \in \mathbb{M}_{n}(D)$ where $I_{r}, I_{s}, I_{t}$ are identity matrices, and $a_{i, j}$ and 0 are matrices.

Proof. Recall that $b \rightleftharpoons I_{n}$ if and only if there exist $e, f \in I d\left(\mathbb{M}_{n}(D)\right)$ such that $b=e+f$ by Lemma 2.3(3). Since

$$
\left(\begin{array}{cccc}
2 I_{r} & a_{12} & a_{13} & 0 \\
0 & I_{s} & a_{23} & 0 \\
0 & a_{32} & I_{t} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
I_{r} & a_{12} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & a_{32} & I_{t} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
I_{r} & 0 & a_{13} & 0 \\
0 & I_{s} & a_{23} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where both the matrices on the right side are idempotents, we get that $(2) \Rightarrow(1)$ holds.
Let $b=e+f$ for idempotent matrices $e, f$ and let us identify all matrices with linear operator on $D^{n}$ given by the matrix multiplication. Let us denote by $B$ the basis of $\operatorname{im}(e) \cap$ $\operatorname{im}(f)$ which could be completed to bases of $\operatorname{im}(e)$ and $\operatorname{im}(f)$ by $E$ and $F$, i.e. $B \cup E$ is a basis of $\operatorname{im}(e)$ and $B \cup F$ is a basis of $\operatorname{im}(f)$. Since $e$ and $f$ are idempotents, we get $e(u)=u$ for each $u \in B \cup E$ and $f(u)=u$ for each $u \in B \cup E$. Hence $e(v) \in \operatorname{Span}(B \cup E)$ and $f(v) \in \operatorname{Span}(B \cup F)$ for all $v \in D^{n}$.

Finally let $K$ be a basis of $\operatorname{ker}(b)$ and let $k \in \operatorname{ker}(b)$. Then $0=b(k)=e(k)+f(k)$ and so $e(k)=f(-k) \in \operatorname{im}(e) \cap \operatorname{im}(f)=\operatorname{Span}(B)$. Hence $k=e(k)=f(-k)=-k$ which implies that $k=0$ and $\operatorname{ker}(b) \subseteq \operatorname{ker}(e) \cap \operatorname{ker}(f)$. It means that the matrix of operator $b=e+f$ with respect to the basis $B \cup E \cup F \cup K$ is of the form

$$
\left(\begin{array}{cccc}
I_{r} & a_{12} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & a_{32} & I_{t} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
I_{r} & 0 & a_{13} & 0 \\
0 & I_{s} & a_{23} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
2 I_{r} & a_{12} & a_{13} & 0 \\
0 & I_{s} & a_{23} & 0 \\
0 & a_{32} & I_{t} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

which is equivalent to the matrix $b$.

Theorem 2.6. Let $D$ be a division ring.
(1) Let the characteristic of $D$ be different from 2 and $b \in \mathbb{M}_{2}(D)$. Then $b \rightleftharpoons I_{2}$ if and only if $b$ is equivalent to one of the matrices:

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & c \\
d & 1
\end{array}\right),\left(\begin{array}{ll}
2 & c \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

for some $c, d \in D$.
(2) If $D \nsubseteq \mathbb{Z}_{2}, \mathbb{Z}_{3}$ and $n \in \mathbb{N}$, then
(i) for any $a, b \in \mathbb{M}_{n}(D)$, there exists $c \in G L_{n}(D)$ such that $b \stackrel{c}{\leadsto} a$.
(ii) $b \stackrel{c}{\sim} I_{n}$.

Proof. (1) This follows from Lemma 2.5.
(2) Assuming $D \nsubseteq \mathbb{Z}_{2}, \mathbb{Z}_{3}$ implies that $|D| \geq 4$. Let $x, y \in D$. We have the following three cases.

If $x=0$, then we choose a nonzero element $u \in D$ such that $u \neq y$. Hence $y-u \neq 0$.

If $y=0$, then we choose a nonzero element $u \in D$ such that $u \neq x$. Hence $x-u \neq 0$.
If $x \neq$ and $y \neq 0$, then we choose a nonzero element $u \in D$ such that $u \neq x$ and $u \neq y$.
As a result we obtain that $x \stackrel{u}{\leadsto} u$.
Let $a=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in \mathbb{M}_{n}(D)$ and $b=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \in \mathbb{M}_{n}(D)$, where $a_{11}, b_{11} \in D, a_{12}, b_{12} \in$ $\mathbb{M}_{1 \times(n-1)}(D), a_{21}, b_{21} \in \mathbb{M}_{(n-1) \times 1}(D)$ and $a_{22}, b_{22} \in \mathbb{M}_{(n-1) \times(n-1)}(D)$. Note that there exists $0 \neq x \in D$ such that $a_{11}-x=u_{1} \neq 0$ and $b_{11}-x=u_{2} \neq 0$. Since $a_{22}-a_{21} u_{1}^{-1} a_{12} \in \mathbb{M}_{(n-1)}(D)$ and $b_{22}-b_{21} u_{1}^{-1} b_{12} \in \mathbb{M}_{(n-1)}(D)$, we can obtain $y \in G L_{n-1}(D)$ such that $a_{22}-a_{21} u_{1}^{-1} a_{12}-y=$ $v_{1} \in G L_{n-1}(D)$ and $b_{22}-b_{21} u_{1}^{-1} b_{12}-y \in G L_{n-1}(D)$. They imply that

$$
a-\operatorname{diag}(x, y)=\left(\begin{array}{cc}
u_{1} & a_{12} \\
a_{21} & v_{1}+a_{21} u_{1}^{-1} a_{12}
\end{array}\right)
$$

and

$$
b-\operatorname{diag}(x, y)=\left(\begin{array}{cc}
u_{2} & b_{12} \\
b_{21} & v_{2}+b_{21} u_{1}^{-1} b_{12}
\end{array}\right)
$$

Since

$$
\left(\begin{array}{cc}
u_{1} & a_{12} \\
a_{21} & v_{1}+a_{21} u_{1}^{-1} a_{12}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
a_{21} u_{1}^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
u_{1} & a_{12} \\
0 & v_{1}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
u_{2} & b_{12} \\
b_{21} & v_{2}+b_{21} u_{1}^{-1} b_{12}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
b_{21} u_{2}^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
u_{2} & b_{12} \\
0 & v_{2}
\end{array}\right)
$$

we get $\left(\begin{array}{cc}u_{1} & a_{12} \\ a_{21} & v_{1}+a_{21} u_{1}^{-1} a_{12}\end{array}\right),\left(\begin{array}{cc}u_{2} & b_{12} \\ b_{21} & v_{2}+b_{21} u_{1}^{-1} b_{12}\end{array}\right) \in G L_{n}(D)$ as desired.

For the last main theorem we need the following a series of lemmas.

Lemma 2.7. Let $D$ be a division ring and $\alpha \in \operatorname{End}\left(V_{D}\right)$ such that $V_{D}$ is spanned by $\left\{y, \alpha(y), \alpha^{2}(y), \cdots\right\}$ for some $y \in V$. If $D \nexists \mathbb{Z}_{2}, \mathbb{Z}_{3}$, then
(1) $1 \leftrightarrow \alpha$.
(2) If $V_{D}$ is infinitely generated, then $1 \rightleftharpoons \alpha$.

Proof. (1) We may assume that $V_{D} \neq 0$. If $\alpha^{n}(y) \notin y D+\alpha(y) D+\cdots+\alpha^{n-1}(y) D$ for all $n \geq 1$, then $\left\{y, \alpha(y), \alpha^{2}(y), \cdots\right\}$ is a basis of $V_{D}$. Since $\alpha$ is a shift operator with respect to the basis $\left\{y, \alpha(y), \alpha^{2}(y), \cdots\right\}$, we get $1 \leadsto \alpha$ by Theorem 2.4(2). Now suppose that there exists $n \in \mathbb{N}$ such that $\alpha^{n}(y) \notin y D+\alpha(y) D+\cdots+\alpha^{n-1}(y) D$. If $n$ is minimal with respect to this property, then $\left\{y, \alpha(y), \alpha^{2}(y), \cdots\right\}$ forms a basis for $V_{D}$. Hence $E n d_{D}\left(V_{D}\right) \cong \mathbb{M}_{n}(D)$.

By Lemma 2.3(2), we obtain that $1 \rightarrow \alpha$.
(2) This follows from Theorem 2.4(1) using the arguments of (1)

Lemma 2.8. Let $D$ be a division ring such that $D \not \not \mathbb{Z}_{2}, \mathbb{Z}_{3}, \alpha \in \operatorname{End}\left(V_{D}\right)$ and $U$ be an $\alpha$-invariant subspace of $V_{D}$. Assume that there exists a vector $y \in U \backslash V$ such that $V=U+\sum_{i \geq 0} \alpha^{i}(y) D$. If the restriction $\left.\alpha\right|_{U}$ satisfies $\left.1 \leftrightarrow \alpha \rightarrow \alpha\right|_{U}$, then $1 \leftrightarrow \alpha$

Proof. Let $V=M \oplus U$ where $M$ is a subspace which contains $y$. Define

$$
\begin{gathered}
\widetilde{\alpha}: V / U \rightarrow V / U \\
\bar{v} \rightarrow \overline{\alpha(v)}
\end{gathered}
$$

(see [10, Lemma 4]). Clearly,

$$
\overline{\alpha^{n}(y)}=\widetilde{\alpha^{n}}(\bar{v})
$$

and there exists a $D$-subisomorphism $\theta_{0}: V / U \rightarrow M$ given by $\theta_{0}(\bar{v})=\theta(v)$ by [10, Lemma 4] where $\theta$ is an idempotent in $E n d_{D}(V)$ satisfying $\theta(V)=M$ and $\operatorname{Ker}(\theta)=U$. By [10, Lemma 4], we have the endomorphism ring of $M$ as:

$$
\beta:=\theta_{0} \widetilde{\alpha} \theta_{0}^{-1}: M \rightarrow V / U \rightarrow V / U \rightarrow M .
$$

By the hypothesis, $\{\bar{y}, \overline{\alpha(Y)}, \cdots\}$ spans $V / U$. Hence $\{\bar{y}, \widetilde{\alpha}(\bar{y}), \cdots\}$ spans $V / U$ since $\overline{\alpha^{n}(y)}=$ $\widetilde{\alpha^{n}}(\bar{v})$. Now it is easy to see that $\left\{\theta_{0}[\bar{y}], \theta_{0}[\widetilde{\alpha}(\bar{y})], \cdots\right\}$ spans $M$. By Lemma 2.7, we get $\beta$ ans 1. Then $\beta-v_{1}=a_{1}$ and $1-v_{1}=b_{1}$ for some units $v_{1}, a_{1}, b_{1}$ of $\operatorname{End}(M)$. By hypothesis, $\left.1 \leadsto \alpha\right|_{U}$, we have $\left.\alpha\right|_{U}-v_{2}=a_{2}$ and $1-v_{2}=b_{2}$ for some units $v_{2}, a_{2}, b_{2}$ of $\operatorname{End}(M)$. Since $V=M \oplus U$, we can define

$$
v^{*}(v)=v^{*}(m+u)=v_{1}(m)+\left[\alpha(m)-\beta(m)+v_{2}(u)\right] .
$$

$v^{*}$ is an automorphism of $V$ : Since $v^{*}(m+u)=0$ implies $v_{1}(m)=0$ and $[\alpha(m)-\beta(m)]+$ $v_{2}(u)=0$, whence $m=u=0$, we get $v^{*}$ is monic. As $u=v_{2}\left(u_{0}\right)=v^{*}\left(0+u_{0}\right)$ for some $u_{0} \in U$, we obtain $U \subseteq \operatorname{Im}\left(v^{*}\right)$. If $m \in M$, we write $m=v_{1}\left(m_{1}\right)$ for $m_{1} \in M$, then $\alpha\left(m_{1}\right)-\beta\left(m_{1}\right)=-v_{2}\left(u_{0}\right)$. Then $v^{*}\left(m_{1}+u_{0}\right)=v_{1}\left(m_{1}\right)+\left[\alpha\left(m_{1}\right)-\beta\left(m_{1}\right)+v_{2}\left(u_{0}\right)\right]$ which
implies that $M \subseteq \operatorname{Im}\left(v^{*}\right)$. Hence $v^{*}$ is epic.
$\alpha-v^{*}$ is an automorphism: Firstly,

$$
\begin{aligned}
\left(\alpha-v^{*}\right)(m+u) & =\alpha(m+u)-v^{*}(m+u) \\
& =\alpha(m)+\alpha(u)-v_{1}(m)-\left[\alpha(m)-\beta(m)-v_{2}(u)\right] \\
& =\alpha_{\mid u}(u)-v_{2}(u)-v_{1}(m)+\beta(m) \\
& =b_{2}(u)+b_{1}(m)
\end{aligned}
$$

Now, by a similar technic of previous proof, we can obtain that $\alpha-v^{*}$ is monic and epic.
$1-v^{*}$ is an automorphism: Firstly,

$$
\begin{aligned}
\left(1-v^{*}\right)(m+u) & =1(m+u)-v^{*}(m+u) \\
& =\alpha(m)+\alpha(u)-v_{1}(m)-\left[\alpha(m)-\beta(m)-v_{2}(u)\right] \\
& =1(m)+1(u)-v_{1}(m)-\left[\alpha(m)-\beta(m)+v_{2}(u)\right] \\
& =1(m)-v_{1}(m)+1(u)-v_{2}(u)+\beta(m)-\alpha(m) \\
& =b_{1}(m)+\left[b_{2}(u)+\beta(m)-\alpha(m)\right] .
\end{aligned}
$$

Finally, the same argument as for $\alpha-v^{*}$ shows that $1-v^{*}$ is monic and epic.

Theorem 2.9. Let $D$ be a division ring and $D \nsubseteq \mathbb{Z}_{2}, \mathbb{Z}_{3}$. Then $1 \leadsto \alpha$ for any $\alpha \in \operatorname{End}\left(V_{D}\right)$.

Proof. Fix $\alpha \in \operatorname{End}\left(V_{D}\right)$. Define

$$
\chi=\left\{(U, v): U_{D} \subseteq V \text { is a } \alpha-\text { invariant and } \alpha_{\left.\right|_{u}} \stackrel{v}{\rightsquigarrow} 1\right\} .
$$

Note that $(0,0) \in \chi$. Now we define $(U, v) \leq\left(U^{\prime}, v^{\prime}\right)$ by $U \subseteq U^{\prime}$ and $v_{\left.\right|_{u}}^{\prime}=v$ is a partial order of $\chi$. By Zorn's Lemma, there exists a maximal element, say $(U, v)$ in $\chi$.

Assume $U \neq V$. Then, take $y \in V \backslash U$ and let $K:=\sum_{i \geq 0} \alpha^{i}(y) D$, and write $V_{0}=U+K$. Clearly, $V_{0}$ and $K$ are $\alpha$-invariant subspaces, and $\alpha \in \operatorname{End}\left(V_{0}\right)$ and $\alpha_{U} \stackrel{v}{\rightsquigarrow} 1$ because $(U, v) \in$ $\chi$. By Lemma 2.8, we get $\alpha \rightsquigarrow 1$ which contradicts the maximality of $(U, v) \in \chi$.

## References

[1] S. Breaz and G. C. Modoi: Nil-clean companion matrices, Linear Algebra and its Applications, 489(15) (2016), 50-60.
[2] V.P. Camillo and J. J. Simon: The Nicholson-Varadarajan Theorem on clean linear transformations, Glasgow Math. J. 44 (2002), 365-369.
[3] H. Chen: Decompositions of countable linear transformations, Glasgow Math. J. 52(3) (2010), 427-433.
[4] H. Chen: Decompositions of Linear Transformations over Division Rings, Algebra Colloquium 19(3) (2012), 459-464.
[5] B. Goldsmith, S. Pabst and A. Scot: Unit sum numbers of rings and modules, Quart. J. Math. Oxford Ser. 49(3) (1998), 331-344.
[6] K.R. Goodearl and P. Menal: Stable range one for rings with many units, J. Pure Appl. Alg. 54 (1998), 261-287.
[7] M. T. Koşan, S. Sahinkaya and Y. Zhou: Additive maps on units of rings, Canad. Math. Bull. 61(1) (2018), 130-141.
[8] M. T. Koşan and Y. Zhou, A class of rings with the 2-sum property, Appl. Algebra Engrg. Comm. Comput. 32(3) (2021), 399-408.
[9] W. K. Nicholson: Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., (229)(1977), 269-278.
[10] W. K. Nicholson, K. and Varadarajan: Countable linear transformations are clean, Proc. Amer. Math. Soc. 126(1) (1998), 61-64.
[11] L. Wang and Y. Zhou: Decomposing linear transformations, Bull. Aust. Math. Soc. 83 (2011), 256-261.
[12] K.G. Wolfson: An ideal-theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75 (1953), 358-386.
[13] D. Zelinsky: Every linear transformation is sum of nonsingular ones, Proc. Amer. Math. Soc. 5 (1954), 627-630.

Department of Mathematics, Faculty of Sciences, Gazi University, Ankara, Turkey
E-mail address: mtamerkosan@gazi.edu.tr , tkosan@gmail.com
Department of Algebra, Charles University in Prague, Faculty of Mathematics and Physics Sokolovská 83, 18675 Praha 8, Czech Republic

E-mail address: zemlicka@karlin.mff.cuni.cz


[^0]:    Date: September 6, 2022.
    2000 Mathematics Subject Classification. Primary 15A57, 15A27.
    Key words and phrases. unit, shift operator, involutory matrix, idempotent matrix, tripotent matrix, semilocal ring, division ring.

