UNIT AND IDEMPOTENT ADDITIVE MAPS OVER COUNTABLE LINEAR TRANSFORMATIONS

MIRAÇ ÇETIN, M. TAMER KOŞAN AND JAN ŽEMLIČKA

ABSTRACT. Let V be a countably generated right vector space over a field F and $\sigma \in End(V_F)$ be a shift operator. We show that there exist a unit u and an idempotent e such that $1 - u, \sigma - u$ are units in $End(V_F)$ and $1 - e, \sigma - e$ are idempotents in $End(V_F)$. We also obtain that if D is a division ring and $D \ncong \mathbb{Z}_2, \mathbb{Z}_3$, then $1 - u, \alpha - u$ are units in $End(V_D)$ for any $\alpha \in End(V_D)$.

1. INTRODUCTION

Let R be an associative ring with unity. Given a function $f: R \to R$ where R is a noncommutative associative ring with identity, f is said to be *unit-additive* if f(u + v) =f(u) + f(v), for all units $u, v \in R$. Moreover, if f(uv) = f(u)f(v) for all units $u, v \in R$, then the ring R is called *unit-homomorphic* [7]. In [7], the authors proved that every unit additive map of a semilocal ring R is additive if and only if either R has no homomorphic image isomorphic to \mathbb{Z}_2 or $R/J(R) \cong \mathbb{Z}_2$ where J(R) denotes the Jacobson radical and \mathbb{Z}_n is the ring of integers modulo n. The study of rings satisfying the 2-sum property (i.e. rings such that each of their elements is a sum of two units) was introduced by Wolfson [12] and Zelinsky [13]. They, independently, proved that the endomorphism ring of a vector space Vover a division ring D satisfies the 2-sum property, except that dim(V) = 1 and $D = \mathbb{F}_2$. A ring R is said to have *unit sum number* n, if for any $r \in R$ there exist units u_1, \dots, u_n of R such that $r = u_1 + \dots + u_n$. According to [8], a ring R is said to satisfy the *binary* 2-sum property if for any $a, b \in R$ there exist units u_1, u_2, u_3 of R such that $a = u_1 + u_2$ and $b = u_1 + u_3$. Recall that a semilocal ring R has unit sum number 2 if and only if no factor ring of R is isomorphic to \mathbb{F}_2 (see [5]). Recently, the author of [8] provides a similar

Date: September 6, 2022.

²⁰⁰⁰ Mathematics Subject Classification. Primary 15A57, 15A27.

Key words and phrases. unit, shift operator, involutory matrix, idempotent matrix, tripotent matrix, semilocal ring, division ring.

characterization of semilocal rings with the binary 2-sum property: a semilocal ring R satisfies the binary 2-sum property if and only if no factor ring of R is isomorphic to \mathbb{F}_2 , \mathbb{F}_3 , or the 2×2 matrix ring $\mathbb{M}_2(\mathbb{F}_2)$. They also obtained in [8, Corollary 19] that if R is an exchange ring with primitive factors Artinian (e.g., a semilocal ring), then R satisfies the binary 2-sum property if R satisfies the Goodearl–Menal property (Two elements $a, b \in R$ are said to satisfy the Goodearl-Menal condition, in case there exists a unit u in R such that $a - u, u^{-1}$ is a unit. A ring R is said to satisfy the *Gooodearl-Menal* if every elements $a, b \in R$ satisfy this property [6]).

Let V be a countably generated right vector space over a division ring D. In 2010, Chen [3] generalized a result of Zelinsky [13]; it is proved that for any endomorphism f of V there exists an automorphism g of V with f+g and $f-g^{-1}$ both automorphisms of V if $D \neq \mathbb{Z}_2, \mathbb{Z}_3$. We also notice that this result is extended to an Artinian right R-module over a semilocal ring R that contains 1/2 and 1/3. In [10, Theorem], Nicholson and Varadarjan proved that every countable linear transformation over a division ring is clean (every element of a ring is a sum of an idempotent and a unit [9]). Let V be a countably generated vector space over a division ring D such that $|D| \neq 2, 3$, and let $End_D(V)$ denote the ring of linear transformations on V. Chen [4] obtained two interesting decompositions in $End_D(V)$: (1) For any $f \in End_D(V)$, there exists an automorphism g on V such that f - g and $f - g^{-1}$ are both automorphisms on V. Thus, $End_D(V)$ satisfies a special case of the Goodearl-Menal condition. (2) For any $f \in End_D(V)$, there exists an automorphism g on V such that $f^2 - g^2$ is an automorphism on V. In [2], Camillo and Simon also applied The Nicholson-Varadarajan theorem on clean linear transformations and they used the tool of Shift operators. For a countably infinite dimensional right vector space V_D , a linear transformation $f \in End(V_D)$ is called a *shift operator* if there exists a basis $\{v_1, v_2, \dots, v_n, \dots\}$ of V such that $f(v_i) = v_{i+1}$ for all i. Note that the matrix representation of the shift operator f over basis $\{v_i\}_i$ is off the form

$$f = \begin{pmatrix} 0 & 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix}.$$

The main purpos of this study is to obtain the following two generalizations using a new tool, namely *idempotent additive* maps taking idempotents instead of units in a unit additive map: (1) Let V be a countably generated right vector space over a field F and $\sigma \in S = End(V_F)$ be a shift operator. Then there exist a unit $u \in S$ and an idempotent $e \in S$ such that $1 - u, \sigma - u$ are units in s and $1 - e, \sigma - e$ are idempotents in s. (Theorem 2.4); (2) If D is a division ring and $D \ncong \mathbb{Z}_2, \mathbb{Z}_3$, then there exist a unit $u \in End(V_D)$ for which $1 - u, \alpha - u \in U(End(V_D))$ for any $\alpha \in End(V_D)$ (Theorem 2.9).

2. Results

We will denote by U(R) the set of all units and by Id(R) a set of all idempotents of a ring R.

Definition 2.1. Let R be a ring. A map $\sigma : R \to R$ is called an (a) *idempotent (unit)* additive map if σ is additive on idempotents (units) of R, i.e

$$\sigma(a+b) = \sigma(a) + \sigma(b),$$

for all $a, b \in U(R)$ $(a, b \in Id(R)$.

For convenience, we fix a notation: for $a, b \in R$, we write

 $a \iff b$ (or $a \iff b$, to emphasize the element u) if $a - u, b - u \in U(R)$ for some $u \in U(R)$, $a \rightleftharpoons b$ (or $a \rightleftharpoons b$ to emphasize the element e) if $a - e, b - e \in Id(R)$ for some $e \in Id(R)$,

 $a \longleftrightarrow b$ (or $a \xleftarrow{u} b$ to emphasize the unit u), if there exists $u \in U(R)$ such that $a - u, b - u^{-1} \in U(R)$ (Goodearl-Menal condition [6]).

We list some properties of notations in the following observations.

Lemma 2.2. The followings hold for a ring R and elements $a, b \in R, u, x, y \in U(R)$.

- (1) Let σ be a unit-additive map of R. If $-a \leftrightarrow u$, then $\sigma(a+u) = \sigma(a) + \sigma(u)$.
- (2) If $1 \leftrightarrow c$ for all $c \in R$, then every unit-additive map of R is additive.
- (3) Let σ be an automorphism or anti-automorphism of R. Then: (a) $a \stackrel{u}{\longleftrightarrow} b iff \sigma(a) \stackrel{\sigma(u)}{\longleftrightarrow} \sigma(b).$
 - (b) $a \stackrel{u}{\longleftrightarrow} b iff xay \stackrel{xuy}{\longleftrightarrow} xby$.
- (4) (a) $1 \stackrel{u}{\longleftrightarrow} a \quad iff \ 1 \stackrel{u^{-1}}{\longleftrightarrow} a.$
 - (b) $1 \leftrightarrow x$ for all $x \in R$ iff $v \leftrightarrow x$ for all $x \in R$ and all $v \in U(R)$.
 - (c) $1 \leftrightarrow x$ for all $x \in R$ iff $v \leftrightarrow x$ for all $x \in R$ and all $v \in U(R)$.
 - (d) $v \leftrightarrow x$ for all $x \in R$ and all $v \in U(R)$ iff $v \leftrightarrow x$ for all $x \in R$ and all $v \in U(R).$

Proof. (1) and (2) See [7, Lemmas 2.3 and 2.4].

(3) and (4) See [8, Lemmas 2.7 and 2.8].

Lemma 2.3. The followings conditions hold for a ring R and $r \in R$.

- (1) Let σ be an idempotent-additive map of R. If $e \in Id(R)$ with $-r \rightleftharpoons e$, then $\sigma(r+e) =$ $\sigma(r) + \sigma(e).$
- (2) If $1 \rightleftharpoons x$ for all $x \in R$, then every idempotent-additive map of R is additive.
- (3) $r \rightleftharpoons 1$ if and only if there exist $e, f \in Id(R)$ such that r = e + f,
- (4) Let σ be a ring automorphisms of R. Then $r \rightleftharpoons 1$ if and only if $\sigma(r) \rightleftharpoons 1$

Proof. (1) and (2) The proofs are similar to the proofs of Lemma 2.2 (1) and (2).

(3) If there exists $e \in Id(R)$ such that $r-e, 1-e \in Id(R)$, then it is enough to put f := r-e. The converse follow from the fact that $1 - e \in Id(R)$ for an arbitrary idempotent e.

(4) This is clear since $\sigma(e) \in Id(R)$ for each $e \in Id(R)$.

Now we are ready to prove our first main theorem.

Theorem 2.4. Let V be a countably generated right vector space over a field F and $\sigma \in S = End(V_F)$ be a shift operator. Then

- (1) $1 \rightleftharpoons \sigma$,
- (2) $1 \nleftrightarrow \sigma$.

Proof. (1) Let $E_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $E_2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $0_{i \times j}$ is a zero matrix of type $i \times j$ and $(u_i)_{i < \omega}$ be a basis of V. Define an infinite block-diagonal matrices

$$B = \begin{pmatrix} E_1 & 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & \dots \\ 0_{2\times2} & E_1 & 0_{2\times2} & 0_{2\times2} & \dots \\ 0_{2\times2} & 0_{2\times2} & E_1 & 0_{2\times2} & \dots \\ 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & E_1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix} \text{ and } C = \begin{pmatrix} 0_{1\times1} & 0_{1\times2} & 0_{1\times2} & 0_{1\times2} & 0_{1\times2} & \dots \\ 0_{2\times1} & E_2 & 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & \dots \\ 0_{2\times1} & 0_{2\times2} & E_2 & 0_{2\times2} & 0_{2\times2} & \dots \\ 0_{2\times1} & 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & \dots \\ 0_{2\times1} & 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & \dots \\ 0_{2\times1} & 0_{2\times2} & 0_{2\times2} & E_2 & 0_{2\times2} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix},$$

and endomorphisms $e, f \in End(V)$ such that B is the matrix of e and C is the matrix of f with respect to the basis $(u_i)_{i < \omega}$, i.e.

$$e(u_{2i-1}) = e(u_{2i}) = u_{2i},$$

$$f(u_{2i-1}) = 0, \ f(u_{2i}) = u_{2i} + u_{2i+1}$$

for each $i \geq 1$. Then

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 2 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 2 & 0 & \cdots \\ 0 & 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \end{pmatrix}$$

is the matrix of e + f and it is easy to see that $e, f \in Id(End(V))$ as $E_1^2 = E_1$ and $E_2^2 = E_2$.

Let us denote g = e + f and we will construct a basis $(v_i)_{i < \omega}$ which witnesses that g is a shift operator, i.e. that $g(v_i) = v_{i+1}$.

First, put $v_1 = u_1$ and $v_2 = u_2$. Then $\operatorname{Span}(v_1, v_2) = \operatorname{Span}(u_1, u_2)$, $g(v_1) = v_2$ and $g(v_2) \in \operatorname{Span}(v_1, v_2, u_3) \setminus \operatorname{Span}(v_1, v_2)$. Let we have constructed v_1, \ldots, v_i such that $\operatorname{Span}(v_1, \ldots, v_i) = \operatorname{Span}(u_1, \ldots, u_i)$, $g(v_{i-1}) = v_i$ and $g(v_i) \in \operatorname{Span}(v_1, \ldots, v_i, u_{i+1}) \setminus \operatorname{Span}(v_1, \ldots, v_i)$. Then define $v_{i+1} = g(v_i)$. By the induction hypotheses v_1, \ldots, v_{i+1} is linearly independent, hence $\operatorname{Span}(v_1, \ldots, v_{i+1}) = \operatorname{Span}(u_1, \ldots, u_{i+1})$, and it is clear from the matrix A that $g(v_{i+1}) \in \operatorname{Span}(v_1, \ldots, v_{i+1}, u_{i+2}) \setminus \operatorname{Span}(v_1, \ldots, v_{i+1})$

Since $(v_i)_{i < \omega}$ is a basis satisfying $[e + f](v_i) = v_{i+1}$ for each *i*, we have proved that e + f is a shift operator, hence $1 \rightleftharpoons e + f$ by Lemma 2.3(3). As there exists an invertible operator, say $a \in End(V)$, such that $e + f = a^{-1}\sigma a$, the assertion follows from Lemma 2.3(4).

(2) Denote by $(v_i)_{i<\omega}$ a basis of V such that $\sigma(v_i) = v_{i+1}$. First, suppose that characteristic of F is not 2. Let $U_1 := \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$, $U_2 := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $U_3 := \begin{pmatrix} 2 & 0 \\ -1 & 2 \end{pmatrix}$. Remark that all these matrices are invertible. We denote by u an operator such that its matrix with respect to the basis $(v_i)_{i<\omega}$ is

$$[u]_{(v_i)} \begin{pmatrix} U_1 & 0 & 0 & 0 & \dots \\ 0 & U_1 & 0 & 0 & \dots \\ 0 & 0 & U_1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix}.$$

Now we easily compute matrices

$$[1-u]_{(v_i)} = \begin{pmatrix} U_3 & 0 & 0 & 0 & \dots \\ 0 & U_3 & 0 & 0 & \dots \\ 0 & 0 & U_3 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix} \quad \text{and} \quad [\sigma-u]_{(v_i)} = \begin{pmatrix} 1_{1\times 1} & 0 & 0 & 0 & \dots \\ 0 & U_2 & 0 & 0 & \dots \\ 0 & 0 & U_2 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix}.$$

Since all these matrices are invertible, we can see that $u, 1 - u, \sigma - u \in U(S)$.

Now, let 1 + 1 = 0 and consider the matrix

$$A = \begin{pmatrix} U & 0 & 0 & 0 & \dots \\ 0 & U & 0 & 0 & \dots \\ 0 & 0 & U & 0 & \dots \\ 0 & 0 & 0 & U & \dots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix}$$

where $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ is an invertible matrix with the inverse $U^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$. Clearly, the matrices A and A + I are invertible with the inverses

$$A^{-1} = \begin{pmatrix} U^{-1} & 0 & 0 & 0 & \dots \\ 0 & U^{-1} & 0 & 0 & \dots \\ 0 & 0 & U^{-1} & 0 & \dots \\ 0 & 0 & 0 & U^{-1} & \dots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix}$$

and

$$(A+I)^{-1} = \begin{pmatrix} (U+I_3)^{-1} & 0 & 0 & 0 & \dots \\ 0 & (U+I_3)^{-1} & 0 & 0 & \dots \\ 0 & 0 & (U+I_3)^{-1} & 0 & \dots \\ 0 & 0 & 0 & (U+I_3)^{-1} & \dots \\ \vdots & \vdots & \vdots & \vdots & \dots \end{pmatrix},$$

where $(U + I_3)^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Let *A* be the matrix of an operator *u* with respect to the basis $(v_i)_{i < \omega}$. We have proved that *u* and 1 + u are invertible operators.

Finally, the operator $u + \sigma$ is invertible since it has a matrix with respect to $(v_i)_{i < \omega}$

where
$$B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, $B^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ and $E_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. \Box

 $GL_n(D)$ denotes the *n*-dimensional general linear group over a division ring D and $\mathbb{M}_n(D)$ denotes the ring of all $n \times n$ matrices over D with an identity I_n .

Recall that the matrices a and b are *equivalent* if there exists a regular matrix p such that $a = p^{-1}bp$.

Lemma 2.5. Let D be a division ring of characteristic different from 2, $n \in \mathbb{N}$ and $b \in \mathbb{M}_n(D)$. Then the following conditions are equivalent.

(1) $b \rightleftharpoons I_n$ (2) b is equivalent to a block matrix $\begin{pmatrix} 2I_r & a_{12} & a_{13} & 0\\ 0 & I_s & a_{23} & 0\\ 0 & a_{32} & I_t & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathbb{M}_n(D)$ where I_r, I_s, I_t are identity matrices, and $a_{i,j}$ and 0 are matrices.

Proof. Recall that $b \rightleftharpoons I_n$ if and only if there exist $e, f \in Id(\mathbb{M}_n(D))$ such that b = e + f by Lemma 2.3(3). Since

$$\begin{pmatrix} 2I_r & a_{12} & a_{13} & 0\\ 0 & I_s & a_{23} & 0\\ 0 & a_{32} & I_t & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} I_r & a_{12} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & a_{32} & I_t & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} I_r & 0 & a_{13} & 0\\ 0 & I_s & a_{23} & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

where both the matrices on the right side are idempotents, we get that $(2) \Rightarrow (1)$ holds.

Let b = e + f for idempotent matrices e, f and let us identify all matrices with linear operator on D^n given by the matrix multiplication. Let us denote by B the basis of $im(e) \cap$ im(f) which could be completed to bases of im(e) and im(f) by E and F, i.e. $B \cup E$ is a basis of im(e) and $B \cup F$ is a basis of im(f). Since e and f are idempotents, we get e(u) = ufor each $u \in B \cup E$ and f(u) = u for each $u \in B \cup E$. Hence $e(v) \in \text{Span}(B \cup E)$ and $f(v) \in \text{Span}(B \cup F)$ for all $v \in D^n$.

Finally let K be a basis of ker(b) and let $k \in \text{ker}(b)$. Then 0 = b(k) = e(k) + f(k) and so $e(k) = f(-k) \in \text{im}(e) \cap \text{im}(f) = \text{Span}(B)$. Hence k = e(k) = f(-k) = -k which implies that k = 0 and ker(b) $\subseteq \text{ker}(e) \cap \text{ker}(f)$. It means that the matrix of operator b = e + f with respect to the basis $B \cup E \cup F \cup K$ is of the form

$$\begin{pmatrix} I_r & a_{12} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & a_{32} & I_t & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} I_r & 0 & a_{13} & 0 \\ 0 & I_s & a_{23} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2I_r & a_{12} & a_{13} & 0 \\ 0 & I_s & a_{23} & 0 \\ 0 & a_{32} & I_t & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

which is equivalent to the matrix b.

Theorem 2.6. Let D be a division ring.

Let the characteristic of D be different from 2 and b ∈ M₂(D). Then b ≓ I₂ if and only if b is equivalent to one of the matrices:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & c \\ d & 1 \end{pmatrix}, \begin{pmatrix} 2 & c \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

for some $c, d \in D$.

- (2) If $D \cong \mathbb{Z}_2, \mathbb{Z}_3$ and $n \in \mathbb{N}$, then
 - (i) for any $a, b \in \mathbb{M}_n(D)$, there exists $c \in GL_n(D)$ such that $b \xleftarrow{c} a$. (ii) $b \xleftarrow{c} I_n$.

Proof. (1) This follows from Lemma 2.5.

(2) Assuming $D \ncong \mathbb{Z}_2, \mathbb{Z}_3$ implies that $|D| \ge 4$. Let $x, y \in D$. We have the following three cases.

If x = 0, then we choose a nonzero element $u \in D$ such that $u \neq y$. Hence $y - u \neq 0$.

If y = 0, then we choose a nonzero element $u \in D$ such that $u \neq x$. Hence $x - u \neq 0$.

If $x \neq \text{and } y \neq 0$, then we choose a nonzero element $u \in D$ such that $u \neq x$ and $u \neq y$. As a result we obtain that $x \stackrel{u}{\longleftrightarrow} u$.

Let $a = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{M}_n(D)$ and $b = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in \mathbb{M}_n(D)$, where $a_{11}, b_{11} \in D$, $a_{12}, b_{12} \in \mathbb{M}_{1 \times (n-1)}(D)$, $a_{21}, b_{21} \in \mathbb{M}_{(n-1) \times 1}(D)$ and $a_{22}, b_{22} \in \mathbb{M}_{(n-1) \times (n-1)}(D)$. Note that there exists $0 \neq x \in D$ such that $a_{11} - x = u_1 \neq 0$ and $b_{11} - x = u_2 \neq 0$. Since $a_{22} - a_{21}u_1^{-1}a_{12} \in \mathbb{M}_{(n-1)}(D)$ and $b_{22} - b_{21}u_1^{-1}b_{12} \in \mathbb{M}_{(n-1)}(D)$, we can obtain $y \in GL_{n-1}(D)$ such that $a_{22} - a_{21}u_1^{-1}a_{12} - y = v_1 \in GL_{n-1}(D)$ and $b_{22} - b_{21}u_1^{-1}b_{12} - y \in GL_{n-1}(D)$. They imply that

$$a - diag(x, y) = \begin{pmatrix} u_1 & a_{12} \\ a_{21} & v_1 + a_{21}u_1^{-1}a_{12} \end{pmatrix}$$

and

$$b - diag(x, y) = \begin{pmatrix} u_2 & b_{12} \\ b_{21} & v_2 + b_{21}u_1^{-1}b_{12} \end{pmatrix}$$

Since

$$\begin{pmatrix} u_1 & a_{12} \\ a_{21} & v_1 + a_{21}u_1^{-1}a_{12} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a_{21}u_1^{-1} & 1 \end{pmatrix} \begin{pmatrix} u_1 & a_{12} \\ 0 & v_1 \end{pmatrix}$$

and

$$\begin{pmatrix} u_2 & b_{12} \\ b_{21} & v_2 + b_{21}u_1^{-1}b_{12} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ b_{21}u_2^{-1} & 1 \end{pmatrix} \begin{pmatrix} u_2 & b_{12} \\ 0 & v_2 \end{pmatrix},$$

we get $\begin{pmatrix} u_1 & a_{12} \\ a_{21} & v_1 + a_{21}u_1^{-1}a_{12} \end{pmatrix}, \begin{pmatrix} u_2 & b_{12} \\ b_{21} & v_2 + b_{21}u_1^{-1}b_{12} \end{pmatrix} \in GL_n(D)$ as desired. \Box

For the last main theorem we need the following a series of lemmas.

Lemma 2.7. Let D be a division ring and $\alpha \in End(V_D)$ such that V_D is spanned by $\{y, \alpha(y), \alpha^2(y), \cdots\}$ for some $y \in V$. If $D \ncong \mathbb{Z}_2, \mathbb{Z}_3$, then

- (1) $1 \leftrightarrow \alpha$.
- (2) If V_D is infinitely generated, then $1 \rightleftharpoons \alpha$.

Proof. (1) We may assume that $V_D \neq 0$. If $\alpha^n(y) \notin yD + \alpha(y)D + \cdots + \alpha^{n-1}(y)D$ for all $n \geq 1$, then $\{y, \alpha(y), \alpha^2(y), \cdots\}$ is a basis of V_D . Since α is a shift operator with respect to the basis $\{y, \alpha(y), \alpha^2(y), \cdots\}$, we get $1 \leftrightarrow \alpha$ by Theorem 2.4(2). Now suppose that there exists $n \in \mathbb{N}$ such that $\alpha^n(y) \notin yD + \alpha(y)D + \cdots + \alpha^{n-1}(y)D$. If n is minimal with respect to this property, then $\{y, \alpha(y), \alpha^2(y), \cdots\}$ forms a basis for V_D . Hence $End_D(V_D) \cong \mathbb{M}_n(D)$.

By Lemma 2.3(2), we obtain that $1 \leftrightarrow \alpha$.

(2) This follows from Theorem 2.4(1) using the arguments of (1)

Lemma 2.8. Let D be a division ring such that $D \ncong \mathbb{Z}_2, \mathbb{Z}_3, \alpha \in End(V_D)$ and U be an α -invariant subspace of V_D . Assume that there exists a vector $y \in U \setminus V$ such that $V = U + \sum_{i \ge 0} \alpha^i(y)D$. If the restriction $\alpha|_U$ satisfies $1 \nleftrightarrow \alpha|_U$, then $1 \nleftrightarrow \alpha$

Proof. Let $V = M \oplus U$ where M is a subspace which contains y. Define

$$\widetilde{\alpha}: V/U \to V/U$$
$$\overline{v} \to \overline{\alpha(v)}$$

(see [10, Lemma 4]). Clearly,

$$\overline{\alpha^n(y)} = \widetilde{\alpha^n}(\overline{v})$$

and there exists a *D*-subisomorphism $\theta_0 : V/U \to M$ given by $\theta_0(\overline{v}) = \theta(v)$ by [10, Lemma 4] where θ is an idempotent in $End_D(V)$ satisfying $\theta(V) = M$ and $Ker(\theta) = U$. By [10, Lemma 4], we have the endomorphism ring of M as:

$$\beta := \theta_0 \widetilde{\alpha} \theta_0^{-1} : M \to V/U \to V/U \to M.$$

By the hypothesis, $\{\overline{y}, \overline{\alpha(Y)}, \cdots\}$ spans V/U. Hence $\{\overline{y}, \widetilde{\alpha}(\overline{y}), \cdots\}$ spans V/U since $\overline{\alpha^n(y)} = \widetilde{\alpha^n}(\overline{v})$. Now it is easy to see that $\{\theta_0[\overline{y}], \theta_0[\widetilde{\alpha}(\overline{y})], \cdots\}$ spans M. By Lemma 2.7, we get $\beta \iff 1$. Then $\beta - v_1 = a_1$ and $1 - v_1 = b_1$ for some units v_1, a_1, b_1 of End(M). By hypothesis, $1 \iff \alpha|_U$, we have $\alpha|_U - v_2 = a_2$ and $1 - v_2 = b_2$ for some units v_2, a_2, b_2 of End(M). Since $V = M \oplus U$, we can define

$$v^*(v) = v^*(m+u) = v_1(m) + [\alpha(m) - \beta(m) + v_2(u)].$$

 v^* is an automorphism of V: Since $v^*(m+u) = 0$ implies $v_1(m) = 0$ and $[\alpha(m) - \beta(m)] + v_2(u) = 0$, whence m = u = 0, we get v^* is monic. As $u = v_2(u_0) = v^*(0+u_0)$ for some $u_0 \in U$, we obtain $U \subseteq Im(v^*)$. If $m \in M$, we write $m = v_1(m_1)$ for $m_1 \in M$, then $\alpha(m_1) - \beta(m_1) = -v_2(u_0)$. Then $v^*(m_1 + u_0) = v_1(m_1) + [\alpha(m_1) - \beta(m_1) + v_2(u_0)]$ which

implies that $M \subseteq Im(v^*)$. Hence v^* is epic.

 $\alpha - v^*$ is an automorphism: Firstly,

$$\begin{aligned} (\alpha - v^*)(m+u) &= \alpha(m+u) - v^*(m+u) \\ &= \alpha(m) + \alpha(u) - v_1(m) - [\alpha(m) - \beta(m) - v_2(u)] \\ &= \alpha_{|_u}(u) - v_2(u) - v_1(m) + \beta(m) \\ &= b_2(u) + b_1(m). \end{aligned}$$

Now, by a similar technic of previous proof, we can obtain that $\alpha - v^*$ is monic and epic. $1 - v^*$ is an automorphism: Firstly,

$$\begin{aligned} (1-v^*)(m+u) &= 1(m+u) - v^*(m+u) \\ &= \alpha(m) + \alpha(u) - v_1(m) - [\alpha(m) - \beta(m) - v_2(u)] \\ &= 1(m) + 1(u) - v_1(m) - [\alpha(m) - \beta(m) + v_2(u)] \\ &= 1(m) - v_1(m) + 1(u) - v_2(u) + \beta(m) - \alpha(m) \\ &= b_1(m) + [b_2(u) + \beta(m) - \alpha(m)]. \end{aligned}$$

Finally, the same argument as for $\alpha - v^*$ shows that $1 - v^*$ is monic and epic.

Theorem 2.9. Let D be a division ring and $D \cong \mathbb{Z}_2, \mathbb{Z}_3$. Then $1 \leftrightarrow \alpha$ for any $\alpha \in End(V_D)$.

Proof. Fix $\alpha \in End(V_D)$. Define

$$\chi = \{ (U, v) : U_D \subseteq V \text{ is a } \alpha - \text{invariant and } \alpha_{|_u} \stackrel{v}{\longleftrightarrow} 1 \}.$$

Note that $(0,0) \in \chi$. Now we define $(U,v) \leq (U',v')$ by $U \subseteq U'$ and $v'_{|_u} = v$ is a partial order of χ . By Zorn's Lemma, there exists a maximal element, say (U,v) in χ .

Assume $U \neq V$. Then, take $y \in V \setminus U$ and let $K := \sum_{i \geq 0} \alpha^i(y)D$, and write $V_0 = U + K$. Clearly, V_0 and K are α -invariant subspaces, and $\alpha \in End(V_0)$ and $\alpha_{|_U} \stackrel{v}{\leadsto} 1$ because $(U, v) \in \chi$. χ . By Lemma 2.8, we get $\alpha \iff 1$ which contradicts the maximality of $(U, v) \in \chi$.

References

- S. Breaz and G. C. Modoi: Nil-clean companion matrices, Linear Algebra and its Applications, 489(15) (2016), 50-60.
- [2] V.P. Camillo and J. J. Simon: The Nicholson-Varadarajan Theorem on clean linear transformations, Glasgow Math. J. 44 (2002), 365–369.
- [3] H. Chen: Decompositions of countable linear transformations, Glasgow Math. J. 52(3) (2010), 427–433.
- [4] H. Chen: Decompositions of Linear Transformations over Division Rings, Algebra Colloquium 19(3) (2012), 459-464.
- [5] B. Goldsmith, S. Pabst and A. Scot: Unit sum numbers of rings and modules, Quart. J. Math. Oxford Ser. 49(3) (1998), 331-344.
- [6] K.R. Goodearl and P. Menal: Stable range one for rings with many units, J. Pure Appl. Alg. 54 (1998), 261-287.
- [7] M. T. Koşan, S. Sahinkaya and Y. Zhou: Additive maps on units of rings, Canad. Math. Bull. 61(1) (2018), 130-141.

- [8] M. T. Koşan and Y. Zhou, A class of rings with the 2-sum property, Appl. Algebra Engrg. Comm. Comput. 32(3) (2021), 399-408.
- [9] W. K. Nicholson: Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., (229)(1977), 269-278.
- [10] W. K. Nicholson, K. and Varadarajan: Countable linear transformations are clean, Proc. Amer. Math. Soc. 126(1) (1998), 61–64.
- [11] L. Wang and Y. Zhou: Decomposing linear transformations, Bull. Aust. Math. Soc. 83 (2011), 256–261.
- [12] K.G. Wolfson: An ideal-theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75 (1953), 358-386.
- [13] D. Zelinsky: Every linear transformation is sum of nonsingular ones, Proc. Amer. Math. Soc. 5 (1954), 627-630.

 $\label{eq:constraint} Department of Mathematics, Faculty of Sciences, Gazi University, Ankara, Turkey $$E-mail address: mtamerkosan@gazi.edu.tr , tkosan@gmail.com $$$

DEPARTMENT OF ALGEBRA, CHARLES UNIVERSITY IN PRAGUE, FACULTY OF MATHEMATICS AND PHYSICS SOKOLOVSKÁ 83, 186 75 PRAHA 8, CZECH REPUBLIC

E-mail address: zemlicka@karlin.mff.cuni.cz