ON THE SCHRÖDER-BERNSTEIN PROPERTY FOR ABELIAN GROUPS

M. TAMER KOŞAN AND JAN ŽEMLIČKA

Abstract

A right R-module M satisfies the Schröder-Bernstein property, if whenever direct summands, say N and K, of M are d-subisomorphic to each other (i.e. if N is isomorphic to a direct summand of K and K is isomorphic to a direct summand of N), then $N \cong K$. The module M is said to be ADS (Absolute Direct Summand) if for every decomposition $M=S \oplus T$ and every complement A of S, we have $M=S \oplus A$. We primarily show that the question, whether ADS abelian groups satisfying the Schröder-Bernstein property, has a positive answer. Then we consider a related problem on the property C2 (a group G is C 2 if whenever A is a summand of G and B is a subgroup of G isomorphic to A, then B is also a summand of G) and we present several sufficient conditions of C2 abelian groups to satisfy the Schröder-Bernstein property.

1. Introduction

In the set theory, the Schröder-Bernstein theorem states that if there exist injective functions $A \rightarrow B$ and $B \rightarrow A$ between the sets A and B, then there exists a bijective function $A \rightarrow B$. This has been investigated in some branches of mathematics: In the module theory, Bumby [3] proved that the Schröder-Bernstein problem has a positive solution for homomorphism of modules which are invariant under endomorphisms of their injective envelopes. In [7], Dehghani et al. studied the Schröder-Bernstein property for direct summands. Two R-modules N and K are said to be direct summand subisomorphic to each other (or d-subisomorphic) if N is isomorphic to a direct summand of K and K is isomorphic to a direct summand of N, and a module M satisfies the Schröder-Bernstein property, or the "SB property" for short, if whenever direct summands N and K of M are d-subisomorphic to each other, then $N \cong K$ ([7, Definitions 1.5 and 1.6]). They proved that over a Noetherian ring R, every extending module (defined by the property that every submodule of the module is essential in a direct summand of it) satisfies the Schröder-Bernstein problem property. In the theory of abelian groups, the following question was raised by Kaplansky [11] (known as Kaplansky's First Test Problem):

If G and H are abelian groups such that G is isomorphic to a direct summand of H and H is isomorphic to a direct summand of G, are G and H necessarily isomorphic?

For more results on this direction, we refer to the papers [6], [8], [14].

[^0]The notion of the absolute direct summand was introduced by Fuchs in [9]. In [1] and [4], the authors introduced and studied the module-theoretical version of the absolute direct summand. A right R-module M is said to be Absolute Direct Summand (ADS) if for every decomposition $M=S \oplus T$ and every complement A of S, we have $M=S \oplus A$. Let \mathbb{P} denote the set of all prime numbers, A be an abelian group, and $p \in \mathbb{P}$. Following the terminology of [5] we say that A is p-automorphic if the map $a \rightarrow p a$ is an automorphism of A, and A is called homococyclic if there exist a cardinal λ, a value $k \in \mathbb{N} \cup\{\infty\} 0$ and $p \in \mathbb{P}$ such that $A \cong \mathbb{Z}_{p^{k}}^{\lambda}$. In the recent paper [12], the authors studied ADS abelian groups and it is shown that
Theorem 1.1. [12, Theorem 3.1] An abelian group is ADS if and only if
(1) either it is divisible,
(2) or it is a direct sum of an indecomposable torsion-free group and a divisible torsion group,
(3) or it is a torsion group such that p-component are homococyclic for all $p \in \mathbb{P}$.

In view of the studies on the Schröder-Bernstein property in the theory of abelian groups, our main aim is to study the following problem.
Problem 1.2. Characterize ADS abelian groups satisfying the Schröder-Bernstein property.

We will answer Problem 1.2 in Section 2. Precisely, we first prove the following.
Theorem 1.3. If A and B are d-subisomorphic $A D S$ abelian groups, then A and B are isomorphic.

Since each direct summand of an ADS module is ADS, we obtain the following direct consequence.

Corollary 1.4. Every ADS abelian group satisfies the Schröder-Bernstein property.

A group is reduced if it contains no nonzero divisible subgroup. Recall that every abelian group A contains a maximal divisible subgroup, say D, and a reduced subgroup, say R, such that $A=D \oplus R$.

A/an (abelian) group G is $C 2$ if whenever A is a direct summand of G and B is a subgroup of G isomorphic to A, then B is also a direct summand of $G[5]$. Since, by [5];
(i) every divisible group is injective (so quasi-injective) hence C 2 ,
(ii) a torsion-free group is C 2 iff it is divisible,
(iii) the only indecomposable C 2 groups are the cocyclic groups and \mathbb{Q},
(iv) a torsion group is C 2 iff it has homococyclic,
it is natural to raise the following problem.
Problem 1.5. Characterize C2 abelian groups satisfying the Schröder-Bernstein property.

We will partially answer Problem 1.5 in Sections 3 and 4. In particular, we formulate several structural conditions under which is a group C 2 and satisfies the Schröder-Bernstein property.

Throughout this paper, R is an associative ring with unity and all modules over R are unitary right modules. $r_{R}(x)$ denotes a right annihilator of an element x over a ring R. We also write M_{R} to indicate that M is a right R-module. For a submodule N of M, we use $N \leq M$ to mean that N is a submodule of M. We write \mathbb{Z} and \mathbb{N} for the ring of integers and for the set of all positive integer numbers, respectively. For any group G, as usually $X \subseteq G$ shows X is a subset of G but $X \leq G$ is used only for a subgroup X of G. For unexplained notions and results, we refer the reader to [9].

2. Problem 1.2

Let us formulate a well-known observation about fully invariant modules and its easy consequence.

Lemma 2.1. Let A be a fully invariant submodule of a module M and B a direct summand of M. Then $B \cap A$ is a direct summand of A and $(B+A) / A$ is a direct summand of M / A.

Proof. By the hypothesis, the natural projection $M \rightarrow B$ can be represented as an idempotent $\epsilon \in \operatorname{End}(M)$ satisfying $\epsilon(M)=B$ and $(1-\epsilon)(M) \oplus \epsilon(M)=M$. Since A is fully invariant, both images $\epsilon(A)$ and $(1-\epsilon)(A)$ are submodules of A. Thus $\epsilon(A)=A \cap B$ and $A=\epsilon(A) \oplus(1-\epsilon)(A)$. Similarly, $\tilde{\epsilon}(m+A)=\epsilon(m)+A$ presents a correctly defined idempotent endomorphism of the module M / A, hence $M / A=\tilde{\epsilon}(M / A) \oplus(1-\tilde{\epsilon})(M / A)$ with $\tilde{\epsilon}(M / A)=B+A / A$.

Lemma 2.2. Let A be a d-subisomorphic to an abelian group B, let E, F be maximal divisible subgroups of A and B respectively, and $S \subseteq \mathbb{P}$. If $A_{S}=\oplus_{p \in S} A_{p}$ and $B_{S}=\oplus_{p \in S} B_{p}$, then
(1) A_{S} is d-subisomorphic to B_{S},
(2) A / A_{S} is d-subisomorphic to B / B_{S},
(3) E is d-subisomorphic to F,
(4) A / E is d-subisomorphic to B / F.

Proof. Let us denote by $C_{S}=\bigoplus_{p \in S} C_{p}$ for an arbitrary abelian group and remark that C_{S} is a fully invariant submodule of C. Suppose that D is a direct summand of B which is isomorphic to A.
(1) Since $A_{p} \cong D_{p}=D \cap B_{p}$, it is easy to see that $A_{S} \cong D_{S}=D \cap B_{S}$, which is a direct summand of B_{S} by Lemma 2.1.
(2) Note that $A / A_{S} \cong D / D_{S}=D /\left(D \cap B_{S}\right) \cong D+B_{S} / B_{S}$ by the hypothesis. Then the conclusion follows since $D+B_{S} / B_{S}$ is a direct summand of B / B_{S} by Lemma 2.1.
(3) Denote by G the maximal divisible subgroup G of D. Since G is a direct summand of B and it is isomorphic to E, the assertion is clear.
(4) Similarly as in (2), we get $A / E \cong D / G=D /(D \cap F) \cong D+F / F$ by Lemma 2.1, where the last group is a direct summand of B / F, as F is fully invariant.

Lemma 2.3. If A and B are d-subisomorphic homococyclic abelian groups, then $A \cong B$.
Proof. By the hypothesis there exists $k, l \in \mathbb{N} \cup\{\infty\}$ and cardinals κ, λ such that $A \cong \mathbb{Z}_{p^{k}}^{(\kappa)}$ and $B \cong \mathbb{Z}_{p^{l}}^{(\lambda)}$. Since A is d-subisomorphic to B we get that $k=l$ and $\kappa \leq \lambda$. The symmetric argument says that $\kappa=\lambda$.

We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2.

Assume that A and B are d-subisomorphic ADS abelian groups. Then they are either divisible, or a direct sum of an indecomposable torsion-free group and a divisible torsion group, or torsion groups such that each p-component is homococyclic by Theorem 1.1. We show that $A \cong B$ in all these cases.

If A is divisible, then B is divisible as well, and so A and B are isomorphic by [3, Theorem]. Suppose that $A=F \oplus D$ for a nonzero indecomposable torsion-free group F and a divisible torsion group D. Since A is d-subisomorphic to B, the group $\underset{\tilde{F}}{ }$ is a proper mixed ADS group, hence it is of the same form $B=\tilde{F} \oplus \tilde{D}$ where \tilde{F} is a nonzero indecomposable torsion-free and \tilde{D} is a divisible torsion group. As $D=\oplus_{p \in \mathbb{P}} A_{p}$ and $\tilde{D}=\oplus_{p \in \mathbb{P}} B_{p}$, both subgroups D, \tilde{D} are fully invariant and D and \tilde{D} are d-subisomorphic by Lemma $2.2(1)$. Thus D and \tilde{D} are isomorphic by the argument of the first part of the proof. Similarly, $F \cong A / D$ and $\tilde{F} \cong A / \tilde{D}$ are d-subisomorphic pairs of groups by Lemma 2.2(2). Hence F and \tilde{F} are isomorphic because F contains no proper direct summand.

Finally, let $A=\oplus_{p \in \mathbb{P}} A_{p}$ and $B=\oplus_{p \in \mathbb{P}} B_{p}$ be sums of homococyclic p-components. Then A_{p} and B_{p} are d-subisomorphic by Lemma 2.2(1) and so are isomorphic by Lemma 2.3. This proves that A and B are isomorphic.

Recall that a ring R is called right pure-semisimple if every right R-module is a direct sum of finitely generated R-modules.
Example 2.4. Let R be a Dedekind domain and I a nonzero ideal of R. Then R / I is a commutative Artinian principal ideal ring by [2, Theorems 9.3 and 8.5, Exercise 9.7, p. 99], and so it is pure-semisimple by [10, Theorem 4.3]. By [7, Theorem 4.2], every right R-module has the $S B$-property. But it is not $A D S$ by [13, Theorem 2.4].

3. Problem 1.5

Example 3.1. \mathbb{Z} as a \mathbb{Z}-module is $A D S$ (since \mathbb{Z} is indecomposable) which does not satisfy C2.

Example 3.2. Let p be a prime integer and let M be the \mathbb{Z}-module $(\mathbb{Z} / \mathbb{Z} p) \oplus \mathbb{Q}$. Then M is not an ADS module. However, M satisfies C2.

We list some basic properties of reduced C2 abelian groups.

Lemma 3.3. Let A be a reduced C2 abelian group and $E=\operatorname{End}(A)$. Then
(1) for each $p \in \mathbb{P}$, there exist $n_{p} \in \mathbb{N}$, a cardinal κ_{p} and a central idempotent $e_{p} \in E$ such that $e_{p}(A)=A_{p} \cong \mathbb{Z}_{p^{n_{p}}}^{\left(\kappa_{p}\right)}$ and $\left(1-e_{p}\right)(A)$ is p-divisible,
(2) $A / t(A)$ is torsion free divisible,
(3) the map $\varepsilon: E \rightarrow \prod_{p \in \mathbb{P}} e_{p} E$ given by $\varepsilon(r)=\left(e_{p} r\right)_{p \in \mathbb{P}}$ is a ring embedding and $\oplus_{p \in \mathbb{P}} e_{p} E$ is an ideal of the ring $\varepsilon(E)$,
(4) if $s, e \in E$ and $a \in A$ such that e is an idempotent, se $(a)=0$ and $e(a) \neq 0$, then there exists $g \in E$ for which seg $=0$ and eg $\neq 0$

Proof. (1) By [5, Theorem 8], A_{p} is homococyclic and there exists a p-divisible subgroup, say D_{p}, of A such that $A=A_{p} \oplus D_{p}$. This implies the existence of an idempotent, say $e_{p} \in E$, with $e_{p}(A)=A_{p}$ and $\left(1-e_{p}\right)(A)=D_{p}$, which is central since $\operatorname{Hom}\left(A_{p}, D_{p}\right)=0=\operatorname{Hom}\left(D_{p}, A_{p}\right)$. Finally, as A is reduced and A_{p} is homococyclic, there exist $n_{p} \in \mathbb{N}$ and a cardinal κ_{p} for which $A_{p} \cong \mathbb{Z}_{p^{n} p}^{\left(\kappa_{p}\right)}$.
(2) Clearly, $A / t(A)=A / \oplus_{p \in \mathbb{P}} A_{p}$ is torsion free and it is p-divisible for each $p \in \mathbb{P}$ by (1).
(3) It is easy to see that ε is a ring homomorphism, so it is enough to show that it is injective. Let $\varepsilon(f)=0$. Then $f\left(A_{p}\right)=0$ for each $p \in \mathbb{P}$, and hence $f(t(A))=0$. Note that $A / t(A)$ is divisible by (2). Now $f(A)$ is isomorphic to a factor divisible group. Therefore $f(A)$ is a divisible subgroup of a reduced group A which implies $f(A)=0$.
(4) As there exists $p \in \mathbb{P}$ satisfying $e_{p}(e(a \mathbb{Z})) \neq 0$ by (3) and $e_{p}(A) \cong \mathbb{Z}_{p^{n_{p}}}^{\left(\kappa_{p}\right)}$ is a free module over the ring $\mathbb{Z}_{p^{n_{p}}}$ we may chose $g \in e_{p} E$ for which $g(A)=e_{p}(e(a \mathbb{Z}))$. Now $e g \neq 0$ since $e g(A)=e e_{p} e(a \mathbb{Z})=e_{p} e(a \mathbb{Z}) \neq 0$. Similarly, $\operatorname{seg}(A)=e_{p} \operatorname{se}(a \mathbb{Z})=0$, and so $\operatorname{seg}=0$.

We recall the well known fact that the central idempotents e_{p} of $\operatorname{End}(A)$ are uniquely determined by the p-component.

Proposition 3.4. Let A and B be d-subisomorphic C2 abelian groups and $\varphi: B \rightarrow$ A be a monomorphism such that $\varphi(B)$ is a direct summand in A. If A_{p} is finite for every $p \in \mathbb{P}$ such that A_{p} is a non-divisible p-component, then φ is an isomorphism.

Proof. First, note that A_{p} and B_{p} are homococyclic by [5, Theorem 8] and d subisomorphic by Lemma $2.2(1)$ for each $p \in \mathbb{P}$.

Let E and F be maximal divisible subgroups of A and B, respectively. Then E and F are d-subisomorphic by Lemma 2.2(3), and hence $E \cong F$ by [3, Theorem]. Note that E and F are direct summands of A and B respectively and A / E and B / F are d-subisomorphic groups by Lemma 2.2(3) containing no nonzero divisible subgroup. Thus we may suppose without loss of the generality that A is reduced and A_{p} is finite for all $p \in \mathbb{P}$. Now it remains to show that $A \cong B$ for such A.

Let $D:=\varphi(B)$ be a direct summand of A which is isomorphic to B. Then, $D_{p} \subseteq A_{p}$ is finite, $D_{p}=\varphi\left(B_{p}\right) \cong B_{p}$, and $A_{p} \cong B_{p}$ by Lemma 2.3, which shows that $A_{p}=D_{p}$ for each $p \in \mathbb{P}$. Since there exists a direct summand X of A satisfying $X \oplus D=A$ and $\oplus_{p \in \mathbb{P}} A_{p} \subseteq D$, we get that

$$
A / \bigoplus_{p \in \mathbb{P}} A_{p} \cong X \oplus\left(D / \bigoplus_{p \in \mathbb{P}} A_{p}\right),
$$

where the term on the right side is divisible by Lemma 3.3(2). Hence X is a divisible subgroup of A. As A is reduced, $X=0$ and so $A=D=\varphi(B)$.

As in the case of ADS groups, also any direct summand of C 2 group is C 2 , which allows us to formulate the following consequence:

Corollary 3.5. Every C2 abelian group which has every non-divisible p-component finite satisfies the Schröder-Bernstein property.

Note that, in C2 abelian groups, we can replace the notion " d-subisomorphic direct summand" by "subisomorphic direct summand".
Proposition 3.6. Let A and B be d-subisomorphic C2 abelian groups. If A is reduced and there are only finitely many primes p for which A_{p} is infinite, then A and B are isomorphic.
Proof. Denote by p_{1}, \ldots, p_{n} all primes such that $A_{p_{i}}$ is infinite. Since $A_{p_{i}}$ and $B_{p_{i}}$ are homococyclic by Lemma 3.3 and non-divisible by the hypothesis, there exist $k_{1}, \ldots, k_{n} \in \mathbb{N}$ such that $p_{i}^{k_{i}} A_{p_{i}}=0$ for each i. Furthermore $A_{p_{i}}$ and $B_{p_{i}}$ are d-subisomorphic by Lemma 2.2(1), and hence they are isomorphic by Lemma 2.3 which implies $p_{i}^{k_{i}} B_{p_{i}}=0$.

Put $r:=\prod_{i=1}^{n} p_{i}^{k_{i}}$. Then $A \cong r A \oplus \oplus_{i=1}^{n} A_{p_{i}}$ and $B \cong r B \oplus \oplus_{i=1}^{n} B_{p_{i}}$. By Lemma 2.2(2), $r A$ and $r B$ are d-subisomorphic groups with finite p-components for all $p \in \mathbb{P}$. Hence $r A \cong r B$ by Proposition 3.4.

Corollary 3.7. Every C2 abelian group which has only finitely many non-zero p-components satisfies the Schröder-Bernstein property.
Proposition 3.8. If A and B are d-subisomorphic C2 abelian groups such that there are only finitely many primes p for which each A_{p} is non-divisible infinite, then A and B are isomorphic.
Proof. It is easy to say that $A=R_{A} \oplus D_{A}$ and $A=R_{B} \oplus D_{B}$ for a pair of reduced groups $\left(R_{A}, R_{B}\right)$ and a pair of divisible groups $\left(D_{A}, D_{B}\right)$ where the both pairs $\left(R_{A}, R_{B}\right)$ and $\left(D_{A}, D_{B}\right)$ are d-subisomorphic by Lemma 2.2(3),(4). Then $R_{A} \cong R_{B}$ by Proposition 3.6 and $D_{A} \cong D_{B}$ by [3, Theorem].
Corollary 3.9. Every C2 abelian group containing only finitely many non-divisible infinite p-components satisfies the Schröder-Bernstein property.

4. On more reduced abelian groups and the C2-Condition

Recall that a ring R is said to be right C 2 if the module R_{R} is C 2 . Let us formulate an elementary description of such a ring.

Lemma 4.1. A ring R is right $C 2$ if and only if the right ideal se R is generated by an idempotent for every $e, s \in R$ such that e is an idempotent and $r_{R}(s e)=(1-e) R$. Proof. Note that a right ideal I is a direct summand in R_{R} if and only if $I=e R$ for an idempotent e.

If R_{R} is $C 2$ and $r_{R}(s e)=(1-e) R$ for an element s and an idempotent e, then the right multiplication by s induces a monomorphism $e R_{R} \rightarrow R_{R}$. Since the image se R is a direct summand, it is generated by an idempotent. For the converse, we assume that $\varphi: e R \rightarrow R$ is an embedding. Then there exists $s \in E$ such that $s r=\varphi(e(r))$. Since $r_{R}(s e)=(1-e) E$, we get an idempotent generating the image $s e R$ by the hypothesis.

Proposition 4.2. The following conditions are equivalent for a reduced abelian group A and $E=\operatorname{End}(A)$:
(1) A is $C 2$,
(2) E is right C2,
(3) For each $p \in \mathbb{P}$ there exist a central idempotent $e_{p} \in E, n_{p} \in \mathbb{N}$, and a cardinal κ_{p} such that $e_{p}(A)=A_{p} \cong \mathbb{Z}_{p^{n_{p}}}^{\left(\kappa_{p}\right)}$, the map $\varepsilon: E \rightarrow \prod_{p \in \mathbb{P}} e_{p} E$ given by $\varepsilon(r)=\left(e_{p} r\right)_{p \in \mathbb{P}}$ is a ring embedding, and for every $e, s \in E$ such that e is an idempotent and $r_{e_{p} E}\left(e_{p} s e\right)=e_{p}(1-e) E$ for all $p \in \mathbb{P}$, there exist idempotents $f_{p} \in e_{p} E$ satisfying $f_{p} e_{p} E=e_{p}$ seE for $p \in \mathbb{P}$ such that $\left(f_{p}\right)_{p \in \mathbb{P}} \in E$.

Proof. (1) \Rightarrow (3) The properties of $A_{p}, p \in \mathbb{P}$ and ε follows from Lemma 3.3(1) and (3). Note that $e(A)$ is a direct summand of the C 2 group A and the restriction of the endomorphism $s \in \operatorname{End}(A)$ to $e(A)$ forms a homomorphism $e(A) \rightarrow A$. If $s(e(a))=0$ for $e(a) \neq 0$, then there exists $g \in E$ such that $e g \neq 0$ and seg $=0$ by Lemma 3.3(4). This implies that $0 \neq e g \in r_{E}(s e)$ which contradicts to the hypothesis (i.e. $r_{E}(s e)=(1-e) E$). Therefore $s e(A)$ is a monomorphic image of $e(A)=B$, which is a direct summand of A as A is C2. Thus there exists an idempotent $f \in E$ such that $f(A)=s e(A)$ which implies that $f E=s e E$. Now it remains to put $f_{p}=e_{p} f$ for each $p \in \mathbb{P}$.
$(3) \Rightarrow(2)$ This follows immediately from Lemma 4.1 where the desired idempotent is of the form $\left(f_{p}\right)_{p \in \mathbb{P}}$.
$(2) \Rightarrow(1)$ Let B be a direct summand of A and $\varphi: B \rightarrow A$ be an embedding. Then there exist $s \in E$ and an idempotent $e \in E$ satisfying $B=e(A)$ and $s(a)=\varphi(e(a))$. Clearly, $r_{E}(s e)=(1-e) E$, which implies the existence of an idempotent $f \in E$ such that $f E=s e E$ by Lemma 4.1. Now, $f(A)=s e(A)=\varphi(B)$ is a direct summand of A, which proves that A is C 2 .

Note that the equivalence of the first two conditions does not hold for general abelian groups.

Example 4.3. Let $p \in \mathbb{P}$ and $A=\mathbb{Z}_{p^{\infty}}$. Note that A is divisible and so is C2. Then $\operatorname{End}(A)=\hat{\mathbb{Z}}_{p}$ is the ring of p-adic integers which is not C2 by Lemma 4.1 since $\hat{\mathbb{Z}}_{p}$ is a non-trivial local domain.

We formulate two consequences of Proposition 4.2.
Corollary 4.4. Let A be an abelian group and D be the maximal divisible subgroup of A. The following conditions are equivalent:
(1) A is $C 2$,
(2) $\operatorname{End}(A / D)$ is right C2.

Proof. (2) $\Rightarrow(1)$ Since direct summand of C 2 groups are C 2 and so A / D is a reduced group which is isomorphic to the direct summand of A, the claim follows from Proposition 4.2.
$(1) \Rightarrow(2)$ Let us remark that $A \cong t(D) \oplus D_{f} \oplus A / D$ where $t(D)$ is torsion divisible, D_{f} is torsion-free divisible and A / D is $t(D)$-automorphic. Hence $\oplus D_{f} \oplus A / D$ is $t(D)$-automorphic. Now it remains to apply [5, Lemma 11].

Corollary 4.5. Suppose A is a reduced abelian group, $E=\operatorname{End}(A)$ and there exists a central idempotent $e_{p} \in E$ such that $A_{p}=e_{p}(A)$ is homococyclic for every $p \in \mathbb{P}$. If $\varepsilon: E \rightarrow \prod_{p \in \mathbb{P}} e_{p} E$, given by $\varepsilon(r)=\left(e_{p} r\right)_{p \in \mathbb{P}}$, is an isomorphism, then A is C2.
Proof. It is enough to check the hypothesis of Proposition 4.2(3). Let $e, s \in E$, where e is an idempotent, and $r_{e_{p} E}\left(e_{p} s e\right)=e_{p}(1-e) E$ for each $p \in \mathbb{P}$. Since $e_{p} s e$ induces a monomorphism $B=e_{p} e(A) \rightarrow e_{p}(A)$, where B is a projective $\mathbb{Z}_{p^{n_{p}-}}$ module, we obtain $e_{p} s e(B)$ is a projective module over the Frobenius ring $\mathbb{Z}_{p^{n_{p}}}$. Thus $e_{p} s e(B)$ is injective, hence there exists an idempotent $f_{p} \in e_{p} E$ satisfying $f_{p}\left(e_{p}(A)\right)=e_{p} s e(B)$ for each $p \in \mathbb{P}$. Since $\varepsilon(E)=\prod_{p \in \mathbb{P}} e_{p} E$, we get $\left(f_{p}\right)_{p \in \mathbb{P}} \in E$, and hence A is C 2 by Proposition 4.2.

Recall that e_{p} denotes the uniquely defined central idempotent such that $e_{p}(A)=$ A_{p}. Furthermore, we will identify $E=\operatorname{End}(A)$ with its image $\varepsilon(E)$ in the ring $\prod_{p \in \mathbb{P}} e_{p} E$.

Theorem 4.6. Let A be a reduced abelian group and $E=\operatorname{End}(A)$. If, for every $p \in \mathbb{P}$, there exists a central idempotent $e_{p} \in E$ such that $A_{p}=e_{p}(A)$ is homococyclic and $E=\prod_{p \in \mathbb{P}} e_{p} E$, then A is a C2 group satisfying the Schröder-Bernstein property.

Proof. By Corollary 4.5, the reduced abelian group A is C2. Since A_{p} satisfies the Schröder-Bernstein property by Lemma 2.3 , we obtain that $e_{p} E \cong \operatorname{End}\left(A_{p}\right)$ satisfies it by $\left[7\right.$, Theorem 2.4(a)] for each $p \in \mathbb{P}$. Therefore $E=\prod_{p \in \mathbb{P}} e_{p} E$ and hence A satisfies the Schröder-Bernstein property by [7, Theorem 2.4(d),(a)].

Recall that the class of abelian groups satisfying the Schröder-Bernstein property was not closed under the factor.

Proposition 4.7. Let M be an abelian group and D be its maximal divisible subgroup. The following conditions are equivalent:
(1) M satisfies the Schröder-Bernstein property.
(2) M / D satisfies the Schröder-Bernstein property.

Proof. (2) \Rightarrow (1) Assume A and B are d-subisomorphic direct summands of M. We denote by R_{A} and R_{B} reduced subgroups and D_{A} and D_{B} (maximal) divisible subgroups satisfying $A=R_{A} \oplus D_{A}$ and $B=R_{B} \oplus D_{B}$. Clearly, D_{A} and D_{B} are direct summands of D and $R_{A} \cap D=R_{B} \cap D=0$, which implies that R_{A} and R_{B} are isomorphic to direct summands of M / D. Note that D_{A} and D_{B} are d-subisomorphic by Lemma $2.2(3)$ and R_{A} and R_{B} are d-subisomorphic by Lemma 2.2(4). Hence $D_{A} \cong D_{B}$ by [3, Theorem] and $R_{A} \cong R_{B}$ by the hypothesis.
$(1) \Rightarrow(2)$ This implication follows from [7, Theorem $2.4(\mathrm{~b})]$ since $M \cong D \oplus(M / D)$.

Theorem 4.8. Let A and D be abelian groups and $E=\operatorname{End}(A)$. If D is divisible and A is reduced C2 such that $E=\prod_{p \in \mathbb{P}} e_{p} E$, then $A \oplus D$ satisfies the SchröderBernstein property.

Proof. By Theorem 4.6, A satisfies the Schröder-Bernstein property and hence the assertion follows from Proposition 4.7.

Example 4.9. Let $A=\prod_{p \in \mathbb{P}} \mathbb{Z}_{p^{n_{p}}}^{\left(\kappa_{p}\right)}$ for a system of natural numbers n_{p} and cardinals κ_{p} for each $p \in \mathbb{P}$.
(1) A is an abelian reduced group since $\bigcap_{p \in \mathbb{P}} p^{n_{p}} A=0$.
(2) By applying the idea of [15, Lemma 2.2 and Proposition 2.4], we can easily see that

$$
E=\operatorname{End}(A)=\prod_{p \in \mathbb{P}} e_{p} E \cong \prod_{p \in \mathbb{P}} \operatorname{End}\left(\mathbb{Z}_{p^{n_{p}}}^{\left(\kappa_{p}\right)}\right)
$$

where $e_{q}=\left(\delta_{p q}\right)_{p \in \mathbb{P}}$ for the Kronecker's δ and $e_{q} E \cong \operatorname{End}\left(A_{q}\right), q \in \mathbb{P}$. Thus A is a C2 group satisfying the Schröder-Bernstein property by Theorem 4.6.
(3) By Theorem 4.8, $A \oplus(\mathbb{Q} / \mathbb{Z})^{(\kappa)} \oplus \mathbb{Q}^{(\lambda)}$ also satisfies the Schröder-Bernstein property for every cardinals κ and λ.

References

[1] A. Alahmadi, S. K. Jain, A. Leroy: ADS modules, J. Algebra, 352(2012), 215-222.
[2] M. F. Atiyah, I. G. MacDonald: Introduction to Commutative Algebra. Reading, Massachusetts: Addison-Wesley (1969).
[3] R. T. Bumby: Modules which are isomorphic to submodules of each other, Arch. Math. 16 (1965) 184-185.
[4] W. D. Burgess, R. Raphael: On modules with the absolute direct summand property, Ring Theory, 137-148, Granville, OH, 1992, World Sci. Publ., River Edge, 1993.
[5] G. Calugareanu, P. Keef: Abelian Groups with C2, to appear in J. Algebra Appl. https://doi.org/10.1142/S021949882550149X.
[6] P. Crawley: Solution of Kaplansky's Test Problems for primary abelian groups, J. Algebra, 2(1965), 413-431.
[7] N. Dehghani, F. A. Ebrahim, S. T. Rizvi: On the Schröder-Bernstein property for modules, J. Pure Appl. Algebra, 223(1)(2019), 422-438.
[8] P. C. Eklof, S. Shelah: The Kaplansky Test Problems for \mathcal{N}-separable groups, Proc.Amer. Math.Soc.,126(7)(1998), 1901-1907.
[9] L. Fuchs: Infinite Abelian Groups, Vol.I, Academic press, New York and London 1970.
[10] P. Griffith: On the decomposition of modules and generalized left uniserial rings, Math. Ann. 184 (1970), 300-308.
[11] I. Kaplansky: Infinite Abelian Groups, University of Michigan Press, AnnArbor(1954).
[12] M. T. Koşan, J. Žemlička: ADS Abelian groups, to appear in J. Algebra Appl., doi:10.1142/S0219498824501822.
[13] T. C. Quynh, M. T. and Koşan: On ADS modules and rings. Commun. Algebra 42(8)(2014), 3541-3551.
[14] E.Sasiada: Negative solution of I. Kaplansky's first test problem for abeliang roups and a problem of K.Borsuk concerning cohomology groups, Bull. Acad. Polon. Sci. Ser.Sci.Math. Astronom.Phys., 9(1961)331-334.
[15] J. Žemlička: When products of self-small modules are self-small, Commun. Algebra 36(7) (2008), 2570-2576.

Faculty of Sciences, Department of Mathematics, Gazi University, Ankara, Turkey E-mail address: mtamerkosan@gazi.edu.tr, tkosan@gmail.com

Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18675 Praha 8, Czechia

E-mail address: zemlicka@karlin.mff.cuni.cz

[^0]: Date: February 6, 2024.
 2000 Mathematics Subject Classification. 20K20, 20K21
 Key words and phrases. Schröder-Bernstein property, Absolute Direct Summand, C2 property.

