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ABSTRACT. A right R-module M satisfies the Schröder-Bernstein property, if
whenever direct summands, say N and K, of M are d-subisomorphic to each
other (i.e. if N is isomorphic to a direct summand of K and K is isomorphic
to a direct summand of N ), then N ∼= K. The module M is said to be ADS
(Absolute Direct Summand) if for every decomposition M = S⊕T and every
complement A of S, we have M = S⊕A. We primarily show that the question,
whether ADS abelian groups satisfying the Schröder-Bernstein property, has
a positive answer. Then we consider a related problem on the property C2
(a group G is C2 if whenever A is a summand of G and B is a subgroup of
G isomorphic to A, then B is also a summand of G) and we present several
sufficient conditions of C2 abelian groups to satisfy the Schröder-Bernstein
property.

1. INTRODUCTION

In the set theory, the Schröder-Bernstein theorem states that if there exist in-
jective functions A → B and B → A between the sets A and B, then there
exists a bijective function A → B. This has been investigated in some branches
of mathematics: In the module theory, Bumby [3] proved that the Schröder-
Bernstein problem has a positive solution for homomorphism of modules which
are invariant under endomorphisms of their injective envelopes. In [8], De-
hghani et al. studied the Schröder-Bernstein property for several classes of
modules. Two R-modules N and K are said to be direct summand subisomorphic
to each other (or d-subisomorphic) if N is isomorphic to a direct summand of K
and K is isomorphic to a direct summand of N , and a module M satisfies the
Schröder-Bernstein property, or the “SB property” for short, if whenever direct
summands N and K of M are d-subisomorphic to each other, then N ∼= K ([8,
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Definitions 1.5 and 1.6]). They proved that over a Noetherian ring R, every ex-
tending module (defined by the property that every submodule of the module
is essential in a direct summand) satisfies the Schröder-Bernstein property. In
the theory of abelian groups, the following question was raised by Kaplansky
[12] (known as Kaplansky’s First Test Problem):

If G and H are abelian groups such that G is isomorphic to a direct summand
of H and H is isomorphic to a direct summand of G, are G and H necessarily
isomorphic?

For more results on this direction, we refer to the papers [7], [9], [18].
The notion of the absolute direct summand was introduced by Fuchs in [10]. In

[1] and [4], the authors introduced and studied the module-theoretical version
of the absolute direct summand. A right R-module M is said to be Absolute
Direct Summand (ADS) if for every decomposition M = S ⊕ T and every com-
plement A of S, we have M = S⊕A. Let P denote the set of all prime numbers,
A be an abelian group, and p ∈ P. Following the terminology of [6], we say that
A is p-automorphic if the map a → pa is an automorphism of A, and A is called
homococyclic if there exist a cardinal λ, a value k ∈ N∪{∞} and p ∈ P such that
A ∼= Zλ

pk
. Recall the characterization of ADS abelian groups, which was first

published by Rangaswamy in the paper [17] and independently proved in the
recent paper [13]:

Theorem 1.1 ([17, Corollary 3.8],[13, Theorem 3.1]). An abelian group is ADS if
and only if

(1) either it is divisible,
(2) or it is a direct sum of an indecomposable torsion-free group and a divisible

torsion group,
(3) or it is a torsion group such that p-components are homococyclic for all p ∈ P.

In view of the studies on the Schröder-Bernstein property in the theory of
abelian groups, our main aim is to study the following problem.

Problem 1.2. Characterize ADS abelian groups satisfying the Schröder-Bernstein
property.

We will answer Problem 1.2 in Section 2. First we prove the next theorem.

Theorem 1.3. If A and B are d-subisomorphic ADS abelian groups, then A and B

are isomorphic.

Since each direct summand of an ADS module is ADS, we obtain the follow-
ing direct consequence.
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Corollary 1.4. Every ADS abelian group satisfies the Schröder-Bernstein property.

A direct consequence of Corollary 1.4 and Theorem 1.1 will be the following
result for automorphism-invariant abelian groups.

Corollary 1.5. Let G be an abelian group. If G is either divisible or is a torsion group
with homococyclic components, then G satisfies the Schröder-Bernstein property.

Recall that a module M which is invariant under automorphisms of its in-
jective hull is called an automorphism-invariant module ([14]). Since an abelian
group is automorphism-invariant iff it is pseudo-injective iff it is is either di-
visible or torsion with homococyclic components by [5, Theorem 2.1], we have
the following result of Corollary 1.5:

Corollary 1.6. Every automorphism-invariant (pseudo-injective) abelian group sat-
isfies the Schröder-Bernstein property.

A group is reduced if it contains no nonzero divisible subgroup. Recall that
every abelian group A contains a maximal divisible subgroup, say D, and a
reduced subgroup, say R, such that A = D ⊕R.

A group G is C2 if whenever A is a direct summand of G and B is a subgroup
of G isomorphic to A, then B is also a direct summand of G [6]. Since, by [6];

(i) every divisible group is injective (so quasi-injective) hence C2,

(ii) a torsion-free group is C2 iff it is divisible,

(iii) the only indecomposable C2 groups are the cocyclic groups and Q,

(iv) a torsion group is C2 iff it has homococyclic,

it is natural to raise the following problem.

Problem 1.7. Characterize C2 abelian groups satisfying the Schröder-Bernstein prop-
erty.

We will partially answer Problem 1.7 in Sections 3 and 4. In particular,
we formulate several structural conditions under which C2 groups satisfy the
Schröder-Bernstein property.

It might be noted in the text that any class of groups that is closed under
summands and which is classified by cardinal invariants that respect direct
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sum decompositions will have the property that any two d-subisomorphic
groups are isomorphic; so that in particular, any group in the class will sat-
isfy the SB-property.

Throughout this paper, R is an associative ring with unity and all modules
over R are unitary right modules. rR(x) denotes a right annihilator of an ele-
ment x over a ring R. We also write MR to indicate that M is a right R-module.
For a submodule N of M , we use N ≤ M . We write Z and N for the ring of
integers and for the set of all positive integer numbers, respectively. For any
group G, as usually X ⊆ G shows X is a subset of G but X ≤ G is used only for
a subgroup X of G. For unexplained notions and results, we refer the reader
to [10].

2. ADS ABELIAN GROUPS WITH SB PROPERTY

Let us formulate a well-known observation about fully invariant modules
and its easy consequence.

Lemma 2.1. Let A be a fully invariant submodule of a module M and B a direct
summand of M . Then B ∩ A is a direct summand of A and (B + A)/A is a direct
summand of M/A .

Proof. By the hypothesis, the natural projection M → B can be represented as
an idempotent ϵ ∈ End(M) satisfying ϵ(M) = B and (1 − ϵ)(M) ⊕ ϵ(M) = M .
Since A is fully invariant, both images ϵ(A) and (1 − ϵ)(A) are submodules of
A. Thus ϵ(A) = A∩B and A = ϵ(A)⊕ (1− ϵ)(A). Similarly, ϵ̃(m+A) = ϵ(m)+A

presents a correctly defined idempotent endomorphism of the module M/A,
hence M/A = ϵ̃(M/A)⊕ (1− ϵ̃)(M/A) with ϵ̃(M/A) = (B + A)/A. □

Lemma 2.2. Let A be a d-subisomorphic to an abelian group B, let E, F be maximal
divisible subgroups of A and B respectively, and S ⊆ P. If AS =

⊕
p∈S Ap and

BS =
⊕

p∈S Bp, then

(1) AS is d-subisomorphic to BS ,
(2) A/AS is d-subisomorphic to B/BS ,
(3) E is d-subisomorphic to F ,
(4) A/E is d-subisomorphic to B/F .

Proof. Let us denote by CS =
⊕

p∈S Cp for an arbitrary abelian group and re-
mark that CS is a fully invariant submodule of C. Suppose that D is a direct
summand of B which is isomorphic to A.
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(1) Since Ap
∼= Dp = D ∩ Bp, it is easy to see that AS

∼= DS = D ∩ BS , which is
a direct summand of BS by Lemma 2.1.
(2) Note that A/AS

∼= D/DS = D/(D ∩ BS) ∼= (D + BS)/BS by the hypothesis.
Then the conclusion follows since (D + BS)/BS is a direct summand of B/BS

by Lemma 2.1.
(3) Denote by G the maximal divisible subgroup G of D. Since G is a direct
summand of B and it is isomorphic to E, the assertion is clear.
(4) Similarly as in (2), we get A/E ∼= D/G = D/(D ∩ F ) ∼= (D + F )/F by
Lemma 2.1, where the last group is a direct summand of B/F , as F is fully
invariant. □

Lemma 2.3. If A and B are subisomorphic (d-subisomorphic) homococyclic abelian
groups, then A ∼= B.

Proof. By the hypothesis, there exist k, l ∈ N∪{∞} and cardinals κ, λ such that
A ∼= Z(κ)

pk
and B ∼= Z(λ)

pl
.

First, assume that A is d-subisomorphic to B. Then k = l and κ ≤ λ. The
symmetric argument says that κ = λ.

Now, we assume that A and B are subisomorphic abelian groups. Since
AZ and BZ are quasi-injective and so continuous, we get that A ∼= B by [15,
Proposition 10]. □

We are now ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3.
Assume that A and B are d-subisomorphic ADS abelian groups. Then they

are either divisible, or a direct sum of an indecomposable torsion-free group
and a divisible torsion group, or torsion groups such that each p-component is
homococyclic by Theorem 1.1. We show that A ∼= B in all these cases.

If A is divisible, then B is divisible as well, and so A and B are isomorphic by
[3, Theorem]. Suppose that A = F ⊕D for a nonzero indecomposable torsion-
free group F and a divisible torsion group D. Since A is d-subisomorphic to
B, the group B is a proper mixed ADS group, hence it is of the same form
B = F̃ ⊕ D̃ where F̃ is a nonzero indecomposable torsion-free and D̃ is a
divisible torsion group. As D =

⊕
p∈PAp and D̃ =

⊕
p∈P Bp, both subgroups

D, D̃ are fully invariant and D and D̃ are d-subisomorphic by Lemma 2.2(1).
Thus D and D̃ are isomorphic by the argument of the first part of the proof.
Similarly, F ∼= A/D and F̃ ∼= A/D̃ are d-subisomorphic pairs of groups by
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Lemma 2.2(2). Hence F and F̃ are isomorphic because F contains no proper
direct summand.

Finally, let A =
⊕

p∈P Ap and B =
⊕

p∈PBp be sums of homococyclic p-
components. Then Ap and Bp are d-subisomorphic by Lemma 2.2(1) and so
are isomorphic by Lemma 2.3. This proves that A and B are isomorphic.

Recall that a ring R is called right pure-semisimple if every right R-module is
a direct sum of finitely generated R-modules. The next example illustrates that
modules satisfying the SB-property are not necessarily ADS.

Example 2.4. Let R be a Dedekind domain and I a nonzero ideal of R. Then R/I is
a commutative Artinian principal ideal ring by [2, Theorems 9.3 and 8.5, Exercise
9.7, p. 99], and so it is pure-semisimple by [11, Theorem 4.3]. By [8, Theorem 4.2],
every right R-module has the SB-property. But it is not ADS by [16, Theorem 2.4].

3. C2-ABELIAN GROUPS WITH SB-PROPERTY

Example 3.1. (1) Z as a Z-module is ADS (since Z is indecomposable) which does not
satisfy C2.

(2) The localization Z(p) of Z at the prime p is ADS but it is not C2.

Example 3.2. Let p be a prime integer number and let M be the Z-module (Z/Zp)⊕Q.
Then M is not an ADS module. However, M satisfies C2.

We list some basic properties of reduced C2 abelian groups.

Lemma 3.3. Let A be a reduced C2 abelian group and E = End(A). Then
(1) for each p ∈ P, there exist np ∈ N, a cardinal κp and a central idempotent

ep ∈ E such that ep(A) = Ap
∼= Z(κp)

pnp and (1− ep)(A) is p-divisible,
(2) A/t(A) is torsion free divisible,
(3) the map ε : E →

∏
p∈P epE given by ε(r) = (epr)p∈P is a ring embedding and⊕

p∈P epE is an ideal of the ring ε(E),
(4) if s, e ∈ E and a ∈ A such that e is an idempotent, se(a) = 0 and e(a) ̸= 0,

then there exists g ∈ E for which seg = 0 and eg ̸= 0.

Proof. (1) By [6, Theorem 8], Ap is homococyclic and there exists a p-divisible
subgroup, say Dp, of A such that A = Ap ⊕ Dp. This implies the existence of
an idempotent, say ep ∈ E, with ep(A) = Ap and (1 − ep)(A) = Dp, which is
central since Hom(Ap, Dp) = 0 = Hom(Dp, Ap). Finally, as A is reduced and Ap
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is homococyclic, there exist np ∈ N and a cardinal κp for whichAp
∼= Z(κp)

pnp .
(2) Clearly, A/t(A) = A/

⊕
p∈PAp is torsion free and it is p-divisible for each

p ∈ P by (1).
(3) It is easy to see that ε is a ring homomorphism, so it is enough to show
that it is injective. Let ε(f) = 0. Then f(Ap) = 0 for each p ∈ P, and hence
f(t(A)) = 0. Note that A/t(A) is divisible by (2). Now f(A) is isomorphic to
a factor divisible group. Therefore f(A) is a divisible subgroup of a reduced
group A which implies f(A) = 0.
(4) As there exists p ∈ P satisfying ep(e(aZ)) ̸= 0 by (3) and ep(A) ∼= Z(κp)

pnp is
a free module over the ring Zpnp we may chose g ∈ epE for which g(A) =

ep(e(aZ)). Now eg ̸= 0 since eg(A) = eepe(aZ) = epe(aZ) ̸= 0. Similarly,
seg(A) = epse(aZ) = 0, and so seg = 0. □

We recall the well known fact that the central idempotents ep of End(A) are
uniquely determined by the p-component.

Proposition 3.4. Let A and B be d-subisomorphic C2 abelian groups and Ap be finite
for every p ∈ P such that Ap is a non-divisible p-component. Then A and B are
isomorphic.

Proof. First, note that Ap and Bp are homococyclic by [6, Theorem 8] and d-
subisomorphic by Lemma 2.2(1) for each p ∈ P.

Let E and F be maximal divisible subgroups of A and B, respectively. Then
E and F are d-subisomorphic by Lemma 2.2(3), and hence E ∼= F by [3, Theo-
rem]. Note that E and F are direct summands of A and B respectively and A/E

and B/F are d-subisomorphic groups by Lemma 2.2(3) containing no nonzero
divisible subgroup. Thus we may suppose without loss of the generality that
A is reduced and Ap is finite for all p ∈ P and it remains to show that A ∼= B

for such A.
Suppose that φ : B → A is a monomorphism such that D := φ(B) is a

direct summand in A, which is isomorphic to B. Then, Dp ⊆ Ap is finite,
Dp = φ(Bp) ∼= Bp, and Ap

∼= Bp by Lemma 2.3, which shows that Ap = Dp for
each p ∈ P. Since there exists a direct summand X of A satisfying X ⊕D = A

and
⊕

p∈PAp ⊆ D, we get that

A/
⊕
p∈P

Ap
∼= X ⊕ (D/

⊕
p∈P

Ap),

where the term on the right side is divisible by Lemma 3.3(2). Hence X is a
divisible subgroup of A. As A is reduced, X = 0 and so A = D = φ(B). □
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As in the case of ADS groups, also any direct summand of C2 group is C2,
which allows us to formulate the following consequence:

Corollary 3.5. Every C2 abelian group which has every non-divisible p-component
finite satisfies the Schröder-Bernstein property.

We note that, for abelian groups with C2 property, the notions of ′′subisomorphic′′

and ′′d-subisomorphic′′ coincide ([8, Theorem 3.3]).

Proposition 3.6. Let A and B be d-subisomorphic C2 abelian groups. If A is reduced
and there are only finitely many primes p for which Ap is infinite, then A and B are
isomorphic.

Proof. Denote by p1, p2, . . . , pn all primes such that Api is infinite. Since Api

and Bpi are homococyclic by Lemma 3.3 and non-divisible by the hypothesis,
there exist k1, . . . , kn ∈ N such that pkii Api = 0 for each i. Furthermore Api and
Bpi are d-subisomorphic by Lemma 2.2(1), and hence they are isomorphic by
Lemma 2.3 which implies pkii Bpi = 0.

Put r :=
∏n

i=1 p
ki
i . Then A ∼= rA ⊕

⊕n
i=1Api and B ∼= rB ⊕

⊕n
i=1Bpi . By

Lemma 2.2(2), rA and rB are d-subisomorphic groups with finite p-components
for all p ∈ P. Hence rA ∼= rB by Proposition 3.4. □

Corollary 3.7. Every C2 abelian group which has only finitely many non-zero p-
components satisfies the Schröder-Bernstein property.

Proposition 3.8. If A and B are d-subisomorphic C2 abelian groups such that there
are only finitely many primes p for which each Ap is non-divisible infinite, then A and
B are isomorphic.

Proof. It is easy to say that A = RA⊕DA and A = RB⊕DB for a pair of reduced
groups (RA, RB) and a pair of divisible groups (DA, DB) where the both pairs
(RA, RB) and (DA, DB) are d-subisomorphic by Lemma 2.2(3),(4). Then RA

∼=
RB by Proposition 3.6 and DA

∼= DB by [3, Theorem]. □

Corollary 3.9. Every C2 abelian group containing only finitely many non-divisible
infinite p-components satisfies the Schröder-Bernstein property.

4. MORE ON REDUCED ABELIAN GROUPS AND THE C2-CONDITION

Recall that a ring R is said to be right C2 if the module RR is C2. Let us
formulate an elementary description of such a ring.
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Lemma 4.1. A ring R is right C2 if and only if the right ideal seR is generated by an
idempotent for every e, s ∈ R such that e is an idempotent and rR(se) = (1− e)R.

Proof. Note that a right ideal I is a direct summand in RR if and only if I = eR

for an idempotent e.
Let RR have C2-property and rR(se) = (1− e)R where e2 = e ∈ R and s ∈ R.

It is clear that seR ∼= R/rR(se) ∼= eR. Therefore by C2-property of RR, seR
should be a direct summand of RR, as desired.

For the converse, we assume that φ : eR → R is an embedding. Then there
exists s ∈ R such that s = φ(e). Since rR(se) = (1− e)R, we get an idempotent
generating the image seR by the hypothesis. □

Proposition 4.2. The following conditions are equivalent for a reduced abelian group
A and E = End(A):

(1) A is C2,
(2) E is right C2,
(3) For each p ∈ P there exist a central idempotent ep ∈ E, np ∈ N, and a cardinal

κp such that ep(A) = Ap
∼= Z(κp)

pnp , the map ε : E →
∏

p∈P epE given by
ε(r) = (epr)p∈P is a ring embedding, and for every e, s ∈ E such that e is an
idempotent and repE(epse) = ep(1− e)E for all p ∈ P, there exist idempotents
fp ∈ epE satisfying fpepE = epseE for p ∈ P such that (fp)p∈P ∈ E.

Proof. (1)⇒(3) The properties of Ap, p ∈ P and ε follow from Lemma 3.3(1) and
(3). Note that e(A) is a direct summand of the C2 group A and the restriction
of the endomorphism s ∈ End(A) to e(A) forms a homomorphism e(A) → A.
If s(e(a)) = 0 for e(a) ̸= 0, then there exists g ∈ E such that eg ̸= 0 and seg = 0

by Lemma 3.3(4). This implies that 0 ̸= eg ∈ rE(se) which contradicts to the
hypothesis (i.e. rE(se) = (1 − e)E). Therefore se(A) is a monomorphic image
of e(A) = B, which is a direct summand of A as A is C2. Thus there exists an
idempotent f ∈ E such that f(A) = se(A) which implies that fE = seE. Now
it remains to put fp = epf for each p ∈ P.
(3)⇒(2) This follows immediately from Lemma 4.1 where the desired idempo-
tent is of the form (fp)p∈P.
(2)⇒(1) Let B be a direct summand of A and φ : B → A be an embedding.
Then there exist s ∈ E and an idempotent e ∈ E satisfying B = e(A) and
s(a) = φ(e(a)). Clearly, rE(se) = (1 − e)E, which implies the existence of an
idempotent f ∈ E such that fE = seE by Lemma 4.1. Now, f(A) = se(A) =

φ(B) is a direct summand of A, which proves that A is C2. □
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Note that the equivalence of the first two conditions does not hold for gen-
eral abelian groups.

Example 4.3. Let p ∈ P and A = Zp∞ . Note that A is divisible and so is C2. Then
End(A) = Ẑp is the ring of p-adic integers which is not C2 by Lemma 4.1 since Ẑp is
a non-trivial local domain.

We formulate two consequences of Proposition 4.2.

Corollary 4.4. Let A be an abelian group and D be the maximal divisible subgroup of
A. The following conditions are equivalent:

(1) A is C2,
(2) End(A/D) is right C2.

Proof. (2)⇒(1) Since direct summands of C2 groups are C2 and so A/D is a
reduced group which is isomorphic to the direct summand of A, the claim
follows from Proposition 4.2.
(1)⇒(2) Let us remark that A ∼= t(D)⊕Df⊕A/D where t(D) is torsion divisible,
Df is torsion-free divisible and A/D is t(D)-automorphic. Hence ⊕Df ⊕ A/D

is t(D)-automorphic. Now it remains to apply [6, Lemma 11]. □

Corollary 4.5. Suppose A is a reduced abelian group, E = End(A) and there exists
a central idempotent ep ∈ E such that Ap = ep(A) is homococyclic for every p ∈ P. If
ε : E →

∏
p∈P epE, given by ε(r) = (epr)p∈P, is an isomorphism, then A is C2.

Proof. It is enough to check the hypothesis of Proposition 4.2(3). Let e, s ∈ E,
where e is an idempotent, and repE(epse) = ep(1−e)E for each p ∈ P. Since epse

induces a monomorphism B = epe(A) → ep(A), where B is a projective Zpnp -
module, we obtain epse(B) is a projective module over the Frobenius ring Zpnp .
Thus epse(B) is injective, hence there exists an idempotent fp ∈ epE satisfying
fp(ep(A)) = epse(B) for each p ∈ P. Since ε(E) =

∏
p∈P epE, we get (fp)p∈P ∈ E,

and hence A is C2 by Proposition 4.2. □

Recall that ep denotes the uniquely defined central idempotent such that
ep(A) = Ap. Furthermore, we will identify E = End(A) with its image ε(E)

in the ring
∏

p∈P epE.

Theorem 4.6. Let A be a reduced abelian group and E = End(A). If, for every p ∈ P,
there exists a central idempotent ep ∈ E such that Ap = ep(A) is homococyclic and
E =

∏
p∈P epE, then A is a C2 group satisfying the Schröder-Bernstein property.
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Proof. By Corollary 4.5, the reduced abelian group A is C2. Since Ap satisfies
the Schröder-Bernstein property by Lemma 2.3, we obtain that epE ∼= End(Ap)

satisfies it by [8, Theorem 2.4(a)] for each p ∈ P. Therefore E =
∏

p∈P epE and
hence A satisfies the Schröder-Bernstein property by [8, Theorem 2.4(d),(a)].

□

Recall that the class of abelian groups satisfying the Schröder-Bernstein prop-
erty was not closed under the factor.

Proposition 4.7. Let M be an abelian group and D be its maximal divisible subgroup.
The following conditions are equivalent:

(1) M satisfies the Schröder-Bernstein property.
(2) M/D satisfies the Schröder-Bernstein property.

Proof. (2)⇒(1) Assume A and B are d-subisomorphic direct summands of M .
We denote by RA and RB reduced subgroups and DA and DB (maximal) divis-
ible subgroups satisfying A = RA ⊕ DA and B = RB ⊕ DB. Clearly, DA and
DB are direct summands of D and RA ∩D = RB ∩D = 0, which implies that
RA and RB are isomorphic to direct summands of M/D. Note that DA and DB

are d-subisomorphic by Lemma 2.2(3) and RA and RB are d-subisomorphic by
Lemma 2.2(4). Hence DA

∼= DB by [3, Theorem] and RA
∼= RB by the hypothe-

sis.
(1)⇒(2) This implication follows from [8, Theorem 2.4(b)] since M ∼= D ⊕
(M/D). □

Theorem 4.8. Let A and D be abelian groups and E = End(A). If D is divisible and
A is reduced C2 such that E =

∏
p∈P epE, then A⊕D satisfies the Schröder-Bernstein

property.

Proof. By Theorem 4.6, A satisfies the Schröder-Bernstein property and hence
the assertion follows from Proposition 4.7. □

Example 4.9. Let A =
∏

p∈P Z
(κp)
pnp for a system of natural numbers np and cardinals

κp for each p ∈ P.
(1) A is an abelian reduced group since

⋂
p∈P p

npA = 0.
(2) By applying the idea of [19, Lemma 2.2 and Proposition 2.4], we can easily see
that

E = End(A) =
∏
p∈P

epE ∼=
∏
p∈P

End(Z(κp)
pnp )

where eq = (δpq)p∈P for the Kronecker’s δ and eqE ∼= End(Aq), q ∈ P. Thus A is a C2
group satisfying the Schröder-Bernstein property by Theorem 4.6.
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(3) By Theorem 4.8, A⊕(Q/Z)(κ)⊕Q(λ) also satisfies the Schröder-Bernstein property
for every cardinals κ and λ.

Proposition 4.10. Let S ⊆ P(P) be an ideal containing {p} for all p ∈ P (so S is
closed under finite unions and subsets). For each p ∈ P, let κ be a cardinal and np ∈ N.
Then

A = {(xp)p∈P ∈
∏
p∈P

Z(κp)
pnp : supp((xp)p∈P) = p ∈ P : xp ̸= 0 ∈ S}

is a C2-group satisfying the Schröder-Bernstein property.

Proposition 4.10 follows from Theorem 4.6 since E(AS) will naturally equal∏
p∈P epE. Note that if S = P(P), then we have Example 4.9. If S is just the finite

subsets of P, then AS = ⊕p∈PZ
(κp)
pnp . And of course, there are an uncountably

infinite number of intermediate such ideals S between these two extremes.
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