ON THE SCHRODER-BERNSTEIN PROPERTY FOR ABELIAN
GROUPS
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ABSTRACT. A right R-module M satisfies the Schréder-Bernstein property, if
whenever direct summands, say N and K, of M are d-subisomorphic to each
other (i.e. if N is isomorphic to a direct summand of K and K is isomorphic
to a direct summand of N), then N =z K. The module M is said to be ADS
(Absolute Direct Summand) if for every decomposition M =S & T and every
complement A of S, we have M = S& A. We primarily show that the question,
whether ADS abelian groups satisfying the Schréder-Bernstein property, has
a positive answer. Then we consider a related problem on the property C2
(a group G is C2 if whenever A is a summand of G and B is a subgroup of
G isomorphic to A, then B is also a summand of G) and we present several
sufficient conditions of C2 abelian groups to satisfy the Schroder-Bernstein

property.

1. INTRODUCTION

In the set theory, the Schroder-Bernstein theorem states that if there exist in-
jective functions A - B and B — A between the sets A and B, then there exists
a bijective function A — B. This has been investigated in some branches of math-
ematics: In the module theory, Bumby [3] proved that the Schroder-Bernstein
problem has a positive solution for homomorphism of modules which are invariant
under endomorphisms of their injective envelopes. In [7], Dehghani et al. studied
the Schroder-Bernstein property for direct summands. Two R-modules N and K
are said to be direct summand subisomorphic to each other (or d-subisomorphic) if
N is isomorphic to a direct summand of K and K is isomorphic to a direct summand
of N, and a module M satisfies the Schrdoder-Bernstein property, or the “SB prop-
erty” for short, if whenever direct summands N and K of M are d-subisomorphic
to each other, then N = K ([7, Definitions 1.5 and 1.6]). They proved that over
a Noetherian ring R, every extending module (defined by the property that ev-
ery submodule of the module is essential in a direct summand of it) satisfies the
Schréder-Bernstein problem property. In the theory of abelian groups, the following
question was raised by Kaplansky [11] (known as Kaplansky’s First Test Problem):

If G and H are abelian groups such that G is isomorphic to a direct summand
of H and H is isomorphic to a direct summand of G, are G and H necessarily
isomorphic?

For more results on this direction, we refer to the papers [6], [8], [14].
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The notion of the absolute direct summand was introduced by Fuchs in [9]. In
[1] and [4], the authors introduced and studied the module-theoretical version of
the absolute direct summand. A right R-module M is said to be Absolute Direct
Summand (ADS) if for every decomposition M = S@T and every complement A of
S, we have M =S @ A. Let P denote the set of all prime numbers, A be an abelian
group, and p € P. Following the terminology of [5] we say that A is p-automorphic
if the map a — pa is an automorphism of A, and A is called homococyclic if there
exist a cardinal A, a value k € NU{00}0 and p € P such that A = Z;k. In the recent
paper [12], the authors studied ADS abelian groups and it is shown that

Theorem 1.1. [12, Theorem 3.1] An abelian group is ADS if and only if
(1) either it is divisible,
(2) oritis a direct sum of an indecomposable torsion-free group and a divisible
torsion group,
(3) oritis a torsion group such that p-component are homococyclic for allp € P.

In view of the studies on the Schréder-Bernstein property in the theory of abelian
groups, our main aim is to study the following problem.

Problem 1.2. Characterize ADS abelian groups satisfying the Schréder-Bernstein
property.

We will answer Problem 1.2 in Section 2. Precisely, we first prove the following.

Theorem 1.3. If A and B are d-subisomorphic ADS abelian groups, then A and
B are isomorphic.

Since each direct summand of an ADS module is ADS, we obtain the following
direct consequence.

Corollary 1.4. Every ADS abelian group satisfies the Schréder—Bernstein prop-
erty.

A group is reduced if it contains no nonzero divisible subgroup. Recall that
every abelian group A contains a maximal divisible subgroup, say D, and a reduced
subgroup, say R, such that A=D & R.

A/an (abelian) group G is C2 if whenever A is a direct summand of G and B is
a subgroup of G isomorphic to A, then B is also a direct summand of G [5]. Since,

by [5];
(i) every divisible group is injective (so quasi-injective) hence C2,
(i1) a torsion-free group is C2 iff it is divisible,
(i74) the only indecomposable C2 groups are the cocyclic groups and Q,

(iv) a torsion group is C2 iff it has homococyclic,

it is natural to raise the following problem.

Problem 1.5. Characterize C2 abelian groups satisfying the Schrioder-Bernstein
property.
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We will partially answer Problem 1.5 in Sections 3 and 4. In particular, we
formulate several structural conditions under which is a group C2 and satisfies the
Schroder-Bernstein property.

Throughout this paper, R is an associative ring with unity and all modules over
R are unitary right modules. rgr(z) denotes a right annihilator of an element x
over a ring R. We also write Mg to indicate that M is a right R-module. For a
submodule N of M, we use N < M to mean that N is a submodule of M. We write
Z and N for the ring of integers and for the set of all positive integer numbers,
respectively. For any group G, as usually X ¢ G shows X is a subset of G but
X < G is used only for a subgroup X of G. For unexplained notions and results,
we refer the reader to [9)].

2. PROBLEM 1.2

Let us formulate a well-known observation about fully invariant modules and its
easy consequence.

Lemma 2.1. Let A be a fully invariant submodule of a module M and B a direct
summand of M. Then Bn A is a direct summand of A and (B + A)/A is a direct
summand of M[A .

Proof. By the hypothesis, the natural projection M — B can be represented as
an idempotent € € End(M) satisfying e(M) = B and (1 -€)(M) @ e(M) = M.
Since A is fully invariant, both images e(A4) and (1 —€)(A) are submodules of A.
Thus €(A) = AnB and A = ¢(A) ® (1 —¢)(A). Similarly, é(m + A) = ¢(m) + A
presents a correctly defined idempotent endomorphism of the module M /A, hence
MJA=¢(M/A)® (1-€)(M/A) with é(M/A) = B+ AJA. O

Lemma 2.2. Let A be a d-subisomorphic to an abelian group B, let E, F be
mazimal divisible subgroups of A and B respectively, and S € P. If Ag = @pes Ap
and Bs = @peg By, then

(1) Ag is d-subisomorphic to Bg,

(2) A/Ag is d-subisomorphic to B/Bg,

(3) E is d-subisomorphic to F,

(4) A/E is d-subisomorphic to BJF.

Proof. Let us denote by Cs = @5 Cp for an arbitrary abelian group and remark
that Cg is a fully invariant submodule of C'. Suppose that D is a direct summand
of B which is isomorphic to A.

(1) Since A, 2 D, = D n B,, it is easy to see that Ag = Dg = D n Bg, which is a
direct summand of Bg by Lemma 2.1.

(2) Note that A/As 2 D/Dg = D/(Dn Bgs) = D+ Bs/Bg by the hypothesis. Then
the conclusion follows since D+ Bg/Bg is a direct summand of B/Bg by Lemma 2.1.
(3) Denote by G the maximal divisible subgroup G of D. Since G is a direct
summand of B and it is isomorphic to F, the assertion is clear.

(4) Similarly as in (2), we get A/JE 2 D/G=D/(DnF)=z D+ F/F by Lemma 2.1,
where the last group is a direct summand of B/F, as F' is fully invariant. 0
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Lemma 2.3. If A and B are d-subisomorphic homococyclic abelian groups, then
Az B.

Proof. By the hypothesis there exists k,l € Nu {oo} and cardinals s, A such that
Az ZL’Z) and B % Zz(j‘). Since A is d-subisomorphic to B we get that k& = [ and
K < A. The symmetric argument says that x = A. ([

We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2.

Assume that A and B are d-subisomorphic ADS abelian groups. Then they are
either divisible, or a direct sum of an indecomposable torsion-free group and a di-
visible torsion group, or torsion groups such that each p-component is homococyclic
by Theorem 1.1. We show that A =~ B in all these cases.

If A is divisible, then B is divisible as well, and so A and B are isomorphic by
[3, Theorem|. Suppose that A = F @ D for a nonzero indecomposable torsion-free
group F' and a divisible torsion group D. Since A is d-subisomorphic to B, the
group B is a proper mixed ADS group, hence it is of the same form B = F @ D
where F is a nonzero indecomposable torsion-free and D is a divisible torsion group.
As D =@®,p A, and D= @®pep By, both subgroups D, D are fully invariant and D
and D are d-subisomorphic by Lemma 2.2(1). Thus D and D are isomorphic by
the argument of the first part of the proof. Similarly, FF =~ A/D and F = A/b are
d-subisomorphic pairs of groups by Lemma 2.2(2). Hence F and F are isomorphic
because F' contains no proper direct summand.

Finally, let A = @,ep Ap and B = @,p B, be sums of homococyclic p-components.
Then A, and B, are d-subisomorphic by Lemma 2.2(1) and so are isomorphic by
Lemma 2.3. This proves that A and B are isomorphic.

Recall that a ring R is called right pure-semisimple if every right R-module is a
direct sum of finitely generated R-modules.

Example 2.4. Let R be a Dedekind domain and I a nonzero ideal of R. Then R[I
is a commutative Artinian principal ideal ring by [2, Theorems 9.3 and 8.5, Exercise
9.7, p. 99], and so it is pure-semisimple by [10, Theorem 4.3]. By [7, Theorem 4.2],
every right R-module has the SB-property. But it is not ADS by [13, Theorem 2.4].

3. PROBLEM 1.5

Example 3.1. Z as a Z-module is ADS (since Z is indecomposable) which does
not satisfy C2.

Example 3.2. Let p be a prime integer and let M be the Z-module (Z|Zp) ® Q.
Then M is not an ADS module. However, M satisfies C2.

We list some basic properties of reduced C2 abelian groups.
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Lemma 3.3. Let A be a reduced C2 abelian group and E = End(A). Then

(1) for each p € P, there exist n, € N, a cardinal k, and a central idempotent
ep € E such that e,(A) = A, = Z;z’;,) and (1 -e,)(A) is p-divisible,

(2) AJt(A) is torsion free divisible,

(3) the map e: E - [1,epepE given by e(r) = (epr)pep is a ring embedding and
@Bper epE is an ideal of the ring e(E),

(4) if s,e € E and a € A such that e is an idempotent, se(a) =0 and e(a) # 0,
then there exists g € E for which seg =0 and eg # 0

Proof. (1) By [5, Theorem 8], A, is homococyclic and there exists a p-divisible
subgroup, say D), of A such that A = A, ® D,,. This implies the existence of an
idempotent, say e, € E, with e, (A) = A, and (1-e,)(A) = D,,, which is central since
Hom(A,,D,) =0=Hom(D,, A,). Finally, as A is reduced and A, is homococyclic,
there exist n, € N and a cardinal s, for whichA4, = Z;’Zz).

(2) Clearly, A/t(A) = A/ @,ep A, is torsion free and it is p-divisible for each p € P
by (1).

(3) Tt is easy to see that ¢ is a ring homomorphism, so it is enough to show that it
is injective. Let e(f) = 0. Then f(A,) =0 for each p € P, and hence f(¢(A4)) = 0.
Note that A/t(A) is divisible by (2). Now f(A) is isomorphic to a factor divisible
group. Therefore f(A) is a divisible subgroup of a reduced group A which implies
f(A)=0.

(4) As there exists p € P satisfying e,(e(aZ)) # 0 by (3) and e,(A) = Z;’Z’p’) is a free
module over the ring Z,~» we may chose g € e, E for which g(A) = e,(e(aZ)). Now
eg # 0 since eg(A) = eepe(aZ) = epe(aZ) # 0. Similarly, seg(A) = epse(aZ) =0, and
so seg = 0. (]

We recall the well known fact that the central idempotents e, of End(A) are
uniquely determined by the p-component.

Proposition 3.4. Let A and B be d-subisomorphic C2 abelian groups and ¢ : B —
A be a monomorphism such that ¢(B) is a direct summand in A. If A, is finite for
every p € P such that A, is a non-divisible p-component, then ¢ is an isomorphism.

Proof. First, note that A, and B, are homococyclic by [5, Theorem 8| and d-
subisomorphic by Lemma 2.2(1) for each p € P.

Let E and F be maximal divisible subgroups of A and B, respectively. Then F
and F are d-subisomorphic by Lemma 2.2(3), and hence E = F by [3, Theorem].
Note that E and F' are direct summands of A and B respectively and A/FE and
B/F are d-subisomorphic groups by Lemma 2.2(3) containing no nonzero divisible
subgroup. Thus we may suppose without loss of the generality that A is reduced
and A, is finite for all p € P. Now it remains to show that A = B for such A.

Let D := ¢(B) be a direct summand of A which is isomorphic to B. Then,
D, c A, is finite, D, = ¢(B,) = B, and A, = B, by Lemma 2.3, which shows that
Ap = D), for each p € P. Since there exists a direct summand X of A satisfying
X®D=Aand @pep Ap €D, we get that

AlD A,z X e (D/DA,),
peP peP
where the term on the right side is divisible by Lemma 3.3(2). Hence X is a divisible
subgroup of A. As A is reduced, X =0 and so A =D = p(B). O
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As in the case of ADS groups, also any direct summand of C2 group is C2, which
allows us to formulate the following consequence:

Corollary 3.5. Fvery C2 abelian group which has every non-divisible p-component
finite satisfies the Schréoder-Bernstein property.

Note that, in C2 abelian groups, we can replace the notion ""d-subisomorphic
direct summand” by ”subisomorphic direct summand”.

Proposition 3.6. Let A and B be d-subisomorphic C2 abelian groups. If A is
reduced and there are only finitely many primes p for which A, is infinite, then A
and B are isomorphic.

Proof. Denote by pi,...,p, all primes such that A, is infinite. Since A,, and
B, are homococyclic by Lemma 3.3 and non-divisible by the hypothesis, there
exist k1,...,ky, € N such that pf Ap, =0 for each i. Furthermore A4,, and B,, are
d-subisomorphic by Lemma 2.2(1), and hence they are isomorphic by Lemma 2.3
which implies pfi By, =0.

Put 7 := [[7%;p". Then A = rA® @, A,, and B = rB & @, B,,. By
Lemma 2.2(2), rA and rB are d-subisomorphic groups with finite p-components
for all p e P. Hence rA % rB by Proposition 3.4. (]

Corollary 3.7. Every C2 abelian group which has only finitely many non-zero
p-components satisfies the Schroder-Bernstein property.

Proposition 3.8. If A and B are d-subisomorphic C2 abelian groups such that
there are only finitely many primes p for which each A, is non-divisible infinite,
then A and B are isomorphic.

Proof. 1t is easy to say that A= Ry @® D4 and A = Rp & Dp for a pair of reduced
groups (R4, Rp) and a pair of divisible groups (D4, Dp) where the both pairs

(Ra, Rp) and (D4, Dpg) are d-subisomorphic by Lemma 2.2(3),(4). Then R4 2 Rp
by Proposition 3.6 and D4 2 Dg by [3, Theorem]. O

Corollary 3.9. Fvery C2 abelian group containing only finitely many non-divisible
infinite p-components satisfies the Schréder-Bernstein property.

4. ON MORE REDUCED ABELIAN GROUPS AND THE C2-CONDITION

Recall that a ring R is said to be right C2 if the module Ry is C2. Let us
formulate an elementary description of such a ring.

Lemma 4.1. A ring R is right C2 if and only if the right ideal seR is generated by
an idempotent for every e, s € R such that e is an idempotent and rr(se) = (1-¢)R.

Proof. Note that a right ideal I is a direct summand in Rp if and only if I = eR
for an idempotent e.

If Rp is C2 and rr(se) = (1-€) R for an element s and an idempotent e, then the
right multiplication by s induces a monomorphism eRr — Rg. Since the image seR
is a direct summand, it is generated by an idempotent. For the converse, we assume
that ¢ : eR - R is an embedding. Then there exists s € E such that sr = ¢(e(r)).
Since rr(se) = (1 - e)E, we get an idempotent generating the image seR by the
hypothesis. ([
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Proposition 4.2. The following conditions are equivalent for a reduced abelian
group A and E = End(A):
(1) Ais C2,
(2) E is right C2,
(3) For each p € P there exist a central idempotent e, € E, n, € N, and a
cardinal k), such that e,(A) = A, 2 Z%) | the map € : B - [epe,E

pnP
given by €(r) = (epr)pep is a Ting embedding, and for every e,s € E such
that e is an idempotent and rc,p(eyse) = ex(1—e)E for all p € P, there
exist idempotents f, € e, satisfying fpep ' = epsel for p € P such that

(fp)pe]P’ eb.

Proof. (1)=(3) The properties of Ay, p € P and ¢ follows from Lemma 3.3(1) and
(3). Note that e(A) is a direct summand of the C2 group A and the restriction
of the endomorphism s € End(A) to e(A) forms a homomorphism e(A) - A. If
s(e(a)) = 0 for e(a) # 0, then there exists g € E such that eg # 0 and seg = 0
by Lemma 3.3(4). This implies that 0 # eg € rg(se) which contradicts to the
hypothesis (i.e. rg(se) = (1 -e)E). Therefore se(A) is a monomorphic image
of e(A) = B, which is a direct summand of A as A is C2. Thus there exists an
idempotent f € F such that f(A) = se(A) which implies that fF = seE. Now it
remains to put f, = e, f for each p e P.

(3)=(2) This follows immediately from Lemma 4.1 where the desired idempotent
is of the form (f,)pep.

(2)=(1) Let B be a direct summand of A and ¢ : B - A be an embedding. Then
there exist s € F and an idempotent e € E satisfying B = e(A) and s(a) = ¢(e(a)).
Clearly, rg(se) = (1-¢e)E, which implies the existence of an idempotent f € E such
that fF = seE by Lemma 4.1. Now, f(A) = se(A) = ¢(B) is a direct summand of
A, which proves that A is C2. O

Note that the equivalence of the first two conditions does not hold for general
abelian groups.

Example 4.3. Let pe P and A = Zy~. Note that A is divisible and so is C2. Then
End(A) = 217 is the ring of p-adic integers which is not C2 by Lemma 4.1 since Zp
is a non-trivial local domain.

We formulate two consequences of Proposition 4.2.

Corollary 4.4. Let A be an abelian group and D be the mazximal divisible subgroup
of A. The following conditions are equivalent:

(1) A is C2,

(2) End(A/D) is right C2.

Proof. (2)=(1) Since direct summand of C2 groups are C2 and so A/D is a reduced
group which is isomorphic to the direct summand of A, the claim follows from
Proposition 4.2.

(1)=(2) Let us remark that A = ¢(D)® Dy & A/D where t(D) is torsion divisible,
Dy is torsion-free divisible and A/D is ¢(D)-automorphic. Hence @D ® A/D is
t(D)-automorphic. Now it remains to apply [5, Lemma 11]. O
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Corollary 4.5. Suppose A is a reduced abelian group, E = End(A) and there exists
a central idempotent e, € E such that A, = e,(A) is homococyclic for every p € P.
Ife: E = l,epepE, given by e(r) = (epr)pep, is an isomorphism, then A is C2.

Proof. Tt is enough to check the hypothesis of Proposition 4.2(3). Let e,s € FE
,where ¢ is an idempotent, and 7. g(epse) = e,(1 —e)E for each p € P. Since
epse induces a monomorphism B = eye(A) - e,(A), where B is a projective Zyns-
module, we obtain e,se(B) is a projective module over the Frobenius ring Zp».
Thus e,se(B) is injective, hence there exists an idempotent f, € e, E satisfying
fp(ep(A)) = epse(B) for each p € P. Since e(E) = [I,epepE, we get (fp)per € E,
and hence A is C2 by Proposition 4.2. O

Recall that e, denotes the uniquely defined central idempotent such that e,(A4) =
A,. Furthermore, we will identify E = End(A) with its image ¢(E) in the ring
HpEP epE‘

Theorem 4.6. Let A be a reduced abelian group and E = End(A). If, for every
p € P, there exists a central idempotent e, € E such that Ay, = e,(A) is homococyclic
and E =Tl ep epE, then A is a C2 group satisfying the Schroder-Bernstein property.

Proof. By Corollary 4.5, the reduced abelian group A is C2. Since A, satisfies
the Schrdoder-Bernstein property by Lemma 2.3, we obtain that e, E = End(A4,)
satisfies it by [7, Theorem 2.4(a)] for each p € P. Therefore E = [],cp €, E and hence
A satisfies the Schréder-Bernstein property by [7, Theorem 2.4(d),(a)]. O

Recall that the class of abelian groups satisfying the Schréder-Bernstein property
was not closed under the factor.

Proposition 4.7. Let M be an abelian group and D be its maximal divisible sub-
group. The following conditions are equivalent:

(1) M satisfies the Schréder-Bernstein property.
(2) M/D satisfies the Schroder-Bernstein property.

Proof. (2)=(1) Assume A and B are d-subisomorphic direct summands of M. We
denote by R4 and Rp reduced subgroups and D4 and Dp (maximal) divisible
subgroups satisfying A = Ry @ Dy and B = Rg @ Dg. Clearly, D4 and Dp are
direct summands of D and R4nD = RgnD =0, which implies that R4 and Rp are
isomorphic to direct summands of M /D. Note that D 4 and Dp are d-subisomorphic
by Lemma 2.2(3) and R4 and Rp are d-subisomorphic by Lemma 2.2(4). Hence
Dy 2 Dp by [3, Theorem| and R4 = Rp by the hypothesis.
(1)=(2) This implication follows from [7, Theorem 2.4(b)] since M = D & (M /D).
O

Theorem 4.8. Let A and D be abelian groups and E = End(A). If D is divisible
and A is reduced C2 such that E = [],epepE, then A® D satisfies the Schroder-
Bernstein property.

Proof. By Theorem 4.6, A satisfies the Schréder—Bernstein property and hence the
assertion follows from Proposition 4.7. (]
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Example 4.9. Let A =]],cp Z;’Zﬁ) for a system of natural numbers n, and cardinals
kp for each p e P.
(1) A is an abelian reduced group since Npyep p"? A = 0.
(2) By applying the idea of [15, Lemma 2.2 and Proposition 2.4], we can easily see
that

E=End(A) = [T, E = []End(Z(7)

pelP peP

where eq = (0pq)pep for the Kronecker’s § and e E = End(A,), ¢ € P. Thus A is a
C2 group satisfying the Schrider-Bernstein property by Theorem 4.6.
(3) By Theorem 4.8, A& (Q/Z)") & QW) also satisfies the Schrider-Bernstein
property for every cardinals kK and .
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