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Abstract. The paper is focused on questions when some homological and submodule-chain
conditions satisfied by a module M are preserved by the group module MG. Namely, it is

proved for a group G and an R-module M that MGRG is flat if and only if MR is flat, and
MGRG is artinian if and only if MR is artinian and G is finite, which are two questions raised by
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Throughout the paper R will always denote a ring with identity and the notion of an R-module
will mean a unitary right module. Let us start with the key definition of a group module which
generalizes the widely studied notion of a group ring. Suppose that G is a group, and M is a module
over a ring R. Let MG denote the set all formal linear combinations of the form

∑
g∈Gmgg, where

mg ∈M and mg = 0 for almost all g. Denote by RG the corresponding group ring and determine
on MG structure of a right RG-module:∑

g∈G
mgg +

∑
g∈G

ngg =
∑
g∈G

(mg + ng)g,

(
∑
g∈G

mgg)(
∑
g∈G

hgg) =
∑
g∈G

(
∑

h,h′:hh′=g

mhr
′
h)g

for all elements
∑
g∈Gmgg,

∑
g∈G ngg ∈ MG and

∑
g∈G rgg ∈ RG. Then the module structure

MGRG is correctly defined and it is said to be a group module over the group G by [5]. If we
identify every element m ∈ M with m · 1 ∈ MG, it is easy to see that M is an R-submodule of
MG, where 1 denotes the identity element of G. By [7, Lemma 2.1], if MG is a group module,
then MG ∼=RG M ⊗R RG.

In [13], Zhou asked the following two questions in his presentation:
Q1. Characterize when MGRG is flat.
Q2. Characterize when MGRG is artinian.

Let G be a group and M be a nonzero R-module. In this note, we answer these two questions:
• MR is a flat R-module if and only if MGRG is a flat RG-module (see Theorem 8).
• MGRG is artinian if and only if MR is artinian and G is finite (see Theorem 19).

Furthermore, we prove several necessary conditions of a group under which the group module
satisfies some other conditions on chain of submodules, in particular:
• If MGRG is semiartinian, then MR is semiartinian (see Theorem 11).
• If MGRG is noetherian, then both MR and G are noetherian (see Theorem 20).

Throughout this article, for a submodule N of M , we use N ≤ M (N < M) to mean that N
is a submodule of M (respectively, a proper submodule), and we write N ≤e M to indicate that
N is an essential submodule of M . We write J(R), J(M),Soc(R),Soc(M), Z(R) for the Jacobson
radical of the ring R, for the radical of the module M , the socle of R, the socle of M and the
singular ideal of R, respectively. For an element m of a module M , rR(m) = {r ∈ R| mr = 0} is
the annihilator of m.
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1. Flat and ADS-modules

Recall that a right module M over a ring R is said to be ADS if for every decomposition
M = A⊕B and every complement C of A, we have M = A⊕ C ([1], see also, [6]).

Before we start to the investigate group ADS-modules, we need to recall the notion of an
excellent extension, introduced by Passman [11], and named by Bonami [2].

Let R and S be rings with the same unity such that R is a subring of S. The ring S is an
excellent extension of R if the following conditions are satisfied:

(1) If M is an S-module with an S-submodule SN and N is a direct summand of M as an
R-module, then N is a direct summand of M as an S-module.

(2) There is a finite set {1 = s1, s2, . . . , sn} ⊆ S such that S is a free left and right R-module
with a basis {1 = s1, s2, . . . , sn} and Rsi = siR for all i = 1, . . . , n.

As it is shown in [9], examples of excellent extensions include n × n matrix rings Mn(R) and
crossed product R ∗G, where G is a finite group with |G|−1 ∈ R.

We will need the following facts.

Lemma 1. [1, Lemma 3.1] An R-module M is ADS if and only if for each decomposition M =
A⊕B, A and B are mutually injective.

Lemma 2. [10, Corollary 1.4] Let S be an excellent extension of R, and M and N be S-modules.
If NR is MR-injective then NS is MS-injective.

Lemma 3. [10, Lemma 1.5] Let S be an excellent extension of R, and M and N be R-modules.
If N ⊗R SS is M ⊗R SS-injective then NR is MR-injective.

Let us prove several elementary facts on submodules of a group module (cf. [5, 7]) For an
R-module M , SR(M) denotes the set of all submodules of M .

Lemma 4. Let M be a nonzero R-module, G a group and H a subgroup of G.

(1) The functor − ⊗RH RG : RH −Mod → RG −Mod is exact, preserves direct limits, and
A⊗RH RG 6= 0 for each nonzero RH-module A.

(2) There exists the unique isomorphism ϕHM : MH ⊗RH RG→ MG satisfying the condition
ϕHM (mh⊗ g) = mhg for every m ∈M , h ∈ H and g ∈ G.

(3) The map ΦHM : SRH(MH) → SRG(MG) defined by the rule ΦHM (A) = ϕHM (A ⊗RH RG),
where A ⊗RH RG is identified with the corresponding submodule of MH ⊗RH RG, is
injective and monotonic with respect to ordering by inclusion.

Proof. (1) Let T be a right transversal of the subgroupH. ThenRG ∼=RH

⊕
t∈T RHt

∼=RH RH(|T |)

is a free left RH-module. Hence −⊗RH RG is exact and

A⊗RH RG ∼=RH A⊗RH RH(|T |) ∼=RH A(|T |) 6= 0

for any A 6= 0. Moreover, the tensor functor −⊗R RG preserves direct limits by Eilenberg-Watts
Theorem because RG is obviously a flat R-module,.

(2) The existence of the surjective homomorphism ϕHM follows from the universal property of
the tensor product. The proof of the injectivity of ϕHM is an easy exercise.

(3) First note that for A ≤ B ≤MH we have that A⊗RH RG ≤ B ⊗RH RG ≤MH ⊗RH RG
(recall that we can identify the tensor product N ⊗RH RG for every N ≤MH with a submodule
{
∑
i ni ⊗ αi| ni ∈ N,αi ∈ RH} of the RG-module MH ⊗RH RG, and in the sequel which follows

by (1)). Since ϕHM is an isomorphism, we obtain

ΦHM (A) = ϕHM (A⊗RH RG) ≤ ϕHMB ⊗RH RG) = ΦHM (B).

It remains to prove that ΦHM is injective. Let A 6= B. Then either A ( A + B or B ( A + B.
Without lost of the generality, we suppose the strictness of the first inclusion.

Applying the functor −⊗RH RG on the exact sequence

0→ A→ A+B → B +A/A→ 0

we get by (1) the exact sequence

0→ A⊗RH RG
α→ (A+B)⊗RH RG→ (B +A/A)⊗RH RG→ 0.
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Since the monomorphism α (identified with the inclusion) is not epimorphism, we have

A⊗RH ( (A+B)⊗RH RG = A⊗RH RG+B ⊗RH RG,

which proves that A⊗RH RG 6= B ⊗RH RG. As ϕHM is an isomorphism,

ΦHM (A) = ϕHM (A⊗RH RG) 6= ϕHMB ⊗RH RG) = ΦHM (B)

as desired. �

Proposition 5. Let S be an excellent extension of R and let M be a right S-module.

(1) If MR is an ADS-module, then so is MS.
(2) If M ⊗R SS is an ADS-module, then so is MR.

Proof. (1) Let M = AS ⊕BS . Then AR is BR-injective by Lemma 1 hence AS is BS-injective by
Lemma 2, which suffices to prove by Lemma 1.

(2) Let M = AR⊕BR. Then M ⊗R SS = (AR⊗R SS)⊕ (BR⊗R SS) hence A⊗R SS is A⊗R SS-
injective by Lemma 1 and so AR is BR-injective by Lemma 3. Now it remains to use Lemma 1
again. �

Corollary 6. Let M be an R-module and G be a finite group with an invertible order in R. If
MG is an ADS RG-module, then MR is an ADS R-module.

Proof. Since MGRG ∼= M ⊗R RGRG by Lemma 4(1) and RG is an excellent extension by [12,
Lemma 1.1], we can apply Proposition 5(2). �

As Lemma 3 could be easy generalized for extensions which are excellent relatively to a module
M , i.e. such that the second axiom holds only for direct summands of M , we could suppose
invertibility of the group order in the ring End(M) instead of R.

However the notion of the ADS module naturally generalizes semisimple modules, [5, Theorem
2.3] cannot be directly generalized for an ADS module as:

Example 7. (1) Let F be a field and G an infinite cyclic group. Then FG ∼= F [x, x−1] is a trivial
ADS FG-module since it is a domain, however G is infinite.

(2) Let p be a prime and Zp be a field and G a group both of order p. Then

ZpG ∼= Zp[x]/(xp − 1) = Zp[x]/(x− 1)p

is a local ring. Then ZpG is an indecomposable ZpG-module, so it is ADS. However, the order of
G is zero in Zp

Now, we characterize flat group modules.

Theorem 8. Let G be a group and M an R-module. Then M is a flat R-module if and only if
MG is a flat RG-module.

Proof. (⇒) By [8, Theorem 4.34], the module MR is a direct limit of a directed system (Fi, i ∈ I)
consisting of finitely generated free modules. Since −⊗RRG preserves direct limits by Lemma 4(1),
MGRG ∼= M ⊗RRGRG is a direct limit of the directed system (Fi⊗RRG, i ∈ I) consisting of free
RG-modules, which is flat by [8, Proposition 4.4].

(⇐) Applying [8, Theorem 4.34], we get that MGRG is a direct limit of a directed system
(Mi, i ∈ I) consisting of finitely generated free RG-modules. Obviously Mi are free R-modules as
well and (Mi, i ∈ I) is a directed system in the category of R-modules. Then MGR is a direct
limit of free modules (Mi, i ∈ I) in the category of R-modules by [4, Lemma 2.3]. Hence MGR is
flat by [8, Proposition 4.4]. Since MR is a direct summand in MGR, it is flat by [8, Proposition
4.2]. �
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2. Modules satisfying some chain conditions

A module M is said to be semiartinian if every non-zero factor of M has a nonzero socle (or,
equivalently, each non-zero factor of M contains a simple submodule). Given a semiartinian module
M , the socle chain of M is a continuous strictly increasing chain (Mα|α ≤ σ) of submodules of
M satisfying Mα+1/Mα = Soc(M/Mα) for each α < σ and M = Mσ. Notice that every artinian
module is semiartinian.

We start the section with an easy technical observation.

Lemma 9. Let M be a nonzero R-module, N ≤ G, m ∈M \{0} and m1 ∈M \N . If Soc(M) = 0
and mR ∩N = 0, then there exists r ∈ R such that mr 6= 0 and m1 /∈ mrR+N .

Proof. If m1 /∈ mR+N , then it suffices to take r = 1. Suppose that m1 ∈ mR+N and denote by
π the canonical projection M → M/N . Let us observe that Soc(mR) = 0 because Soc(M) = 0,
and

π(m)R = π(mR) = mR+N/N ∼= mR

as mR ∩N = 0. Since 0 6= π(m1) ∈ π(mR) and Soc(π(mR)) = 0, there exists P ≤e π(mR) such
that π(m1) /∈ P . This means that there exists r ∈ R such that 0 6= π(m)r ∈ P . Hence mr 6= 0 and
m1 /∈ mrR+N . �

The following claim constitutes a basic step of our prove that semiartinian group modules have
semiartinian underlying modules.

Lemma 10. Let M be a nonzero R-module and G be a group. If Soc(MGRG) 6= 0, then Soc(MR) 6=
0.

Proof. If G = 1, then MG ∼= M and there is nothing to prove. Let G be a nontrivial group and fix
an element m =

∑n
i=1migi ∈ Soc(MG) with a minimal n such that mRG is a simple RG-module.

Note that m is non-zero and rR(ma) = rR(mb) 6= R for all a < b ≤ n, otherwise, if there is
s ∈ rR(ma) \ rR(mb), then ms =

∑n
i=1,i6=amisgi gives an example of a shorter element generating

the same simple module.
Assume to contrary that Soc(MR) = 0. We will show by the induction on t that for every

t = 0, . . . n there exists s ∈ R \ rR(m1) such that m1 /∈
∑t
i=1misR. Since m1 6= 0, the claim is

clear for s = 1 and t = 0.
Suppose that there exists st−1 ∈ R \ rR(m1) such that m1 /∈

∑t−1
i=1mist−1R. Let us put

N =
∑t−1
i=1mist−1R and we will prove the claim is true for t. If there exists r ∈ R such that

0 6= mtst−1r ∈ N we put s = st−1r and we are done because rR(m1) = rR(mt). Otherwise
suppose mtst−1R ∩ N = 0. As m1st−1 6= 0 and so mtst−1 6= 0 we may apply Lemma 9, hence

there exists r ∈ R \ rR(mtst−1) such that m1 /∈ mist−1rR+N ⊇ mist−1rR+
∑t
i=1mist−1rR. If

we put s = st−1r, then m1 /∈
∑t−1
i=1mist−1R. Since rR(m1) = rR(mt), we can see m1s 6= 0, hence

then proof of the induction step is done.
Let s be an element for which m1s 6= 0 and m1 /∈

∑n
i=1misR. Then 0 6= ms ∈ mRG, so

msRG = mRG as mRG is simple. Hence there exists an element ρ =
∑
j rjhj ∈ RG for which

msρ = m. Thus m1 =
∑
i,j:g1=gihj

misrj which contradicts to m1 /∈
∑n
i=1misR. �

Theorem 11. Let M be an R-module and G be a group. If MGRG is semiartinian then MR is
semiartinian.

Proof. Let N be an arbitrary proper submodule of M . It is enough to show that Soc(M/N) 6=
0. Since NG is a proper submodule of MG and a nonzero factor of a semiartinian module is
semiartinian, we get that MG/NG ∼= (M/N)G has an essential socle. Hence Soc(M/N) is nonzero
by Lemma 10. �

Note that Example 7(1) shows that for an infinite cyclic group G and a field F , the FG-module
FG is not semiartinian however F is even artinian.

Using a result of the work [5] about semisimple group modules, we characterize semiartinian
group modules over finite groups having invertible order in its endomorphism ring.
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Proposition 12. Let M be an R-module and G be a finite group with order invertible in EndR(M).
Then MR is semiartinian if and only if MGRG is semiartinian.

Proof. Suppose that MR is semiartinian with the socle chain (Mα|α ≤ σ). Since Mα+1/Mα is a
semisimple R-module, Mα+1GRG/MαGRG ∼= (Mα+1/Mα)GRG is a semisimple RG-module by [5,
Theorem 3.2] for every α < σ. Thus MGRG is semiartinian.

If, on the other hand, MGRG is a semiartinian RG-module, then MR is a semiartinian R-module
by Theorem 11. �

The following claim shows that several constructions of non-artinian group rings work also in
the case of group modules.

Proposition 13. Let M be a nonzero R-module and G be a group. If

(1) either G is an infinite cyclic group
(2) or G contains an infinite strictly increasing chain of finite subgroups,

then MGRG is not artinian.

Proof. (1) Let g be a generator of a cyclic group G and m ∈ M \ {0}. Define a cyclic submodule
Mn = m(1 + g)nRG for every n. Then M1 ⊇ M2 ⊇ . . . forms a decreasing chain of submodules
and it remains to prove that Mn )Mn+1 for every n.

Assume that there exists n such that Mn = Mn+1. There are integers u, v and α =
∑v
i=u aig

i ∈
RG such that u ≤ v, mau 6= 0 6= mav and

m(1 + g)n = m(1 + g)n+1
v∑
i=u

aig
i = m(1 + g)n(aug

u +

v∑
i=u+1

(ai + ai−1)gi + avg
v+1).

Comparing coefficients of gu in case that u < 0 we obtain that mau = 0, a contradiction. If u ≥ 0,
then v ≥ u ≥ 0, and comparing coefficients of gn+v+1 we get equality mav = 0, which contradicts
to chose of α.

Since M1 ) M2 ) . . . is a strictly decreasing chain of submodules, MG is not an artinian
RG-module.

(2) Let H1 ( H2 ( . . . be a strictly increasing chain finite subgroups of G and m ∈ M \ {0}.
Put γi =

∑
h∈Hi

mh for each i. If T is a right transversal of the subgroup Hi in the group Hi+1,

then γi+1 = γi ·
∑
t∈T 1t, which proves that γi+1 ∈ γiRG. Furthermore, if

∑
gmgg ∈ γi+1RG, then

m1 = mh for every h ∈ Hi+1. Since Hi ( Hi+1 we see that γi /∈ γi+1RG. We have constructed
a strictly decreasing chain of submodules γ1RG ) γ2RG ) . . . which witnesses that MG is not
artinian. �

Recall that a group G is called locally finite if every finitely generated subgroup of G is finite
and G is periodic if all its elements have a finite order.

Example 14. (1) Let G = Zp∞ be a Prüfer p-group for a prime p. Then G is a periodic artinian
group and MG is non-artinian for every nonzero artinian module M by Proposition 13(2).

(2) If G is an infinite locally finite group, it contains an infinite set {gi|i ∈ N} ⊆ G such that
gn /∈ 〈g1, . . . gn−1〉 for each n. Then Hi = 〈g1, . . . gi〉, i ∈ N forms an infinite strictly increasing
chain of finite subgroups, so MGRG is non-artinian by Proposition 13(2) for an arbitrary nonzero
module M . In particular, if G = Q/Z, we can see that the structure of decreasing chains of
submodules is very reach by Lemma 4.

(3) If G contains an infinite cyclic subgroup 〈g〉, then M〈g〉R〈g〉 is non-artinian by Proposi-
tion 13(1), hence we can find a strictly decreasing chain of submodules in MGRG by Lemma 4(3).

The following observation is a straightforward consequence of Lemma 4.

Lemma 15. Let M be an R-module, G a group and H a subgroup of G. If MG is artinian
(noetherian), then MH is artinian (noetherian) as well.

Proof. If M = 0, there is nothing to prove. If (Ai| i ∈ N) is a strictly decreasing (increasing) chain
of submodules of MH, then we have (ΦHM (Ai)| i ∈ N) forms a strictly decreasing (increasing)
chain of submodules of MG by Lemma 4(3). �
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Proposition 16. Let M be an R-module and G be a group.

(1) If M is artinian (noetherian) and G is finite, then MGRG is artinian (noetherian).
(2) If MGRG is artinian then MR is artinian and G is periodic.

Proof. (1) Since MG ∼=R M
(|G|) is an artinian (noetherian) R-module, it is also artinian (noether-

ian) as an RG-module.
(2) Note that M〈g〉 isan artinian R〈g〉-module for each g ∈ G by Lemma 15, in particular

M ∼=R M〈1〉 is an artinian R-module. Since M〈g〉 is artinian, the cyclic group 〈g〉 is finite by
Proposition 13(1), which proves that G is periodic. �

It is well known that if e ∈ R is an idempotent and M is an R-module, then e is identity of the
unitary ring eRe and Me has a natural structure of eRe-module.

Lemma 17. Let e ∈ R be an idempotent, M a nonzero R-module and G a group.

(1) If Ke and Le are eRe-submodules of the module Me such that K ( L, then KeR and
LeR are R-submodules of M and KeR ( LeR.

(2) If M is an artinian (noetherian) R-module, then Me is an artinian (noetherian) eRe-
module.

(3) If MG is an artinian (noetherian) RG-module, then MeG is an artinian (noetherian)
eReG-module.

Proof. (1) As K ( L, we obtain that KeR ⊆ LeR are submodules of the R-module M . Assume
that KeR = LeR. Then K = KeRe = LeRe = L, which contradicts to the hypothesis K ( L.

(2) If (Ni)i∈N is a strictly decreasing (increasing) chain of eRe-submodules of the module Me,
then (NiR)i∈N forms a strictly decreasing (increasing) chain of R-submodules of M by (1).

(3) SinceR is a subring of the group ringRG, the element e is an idempotent ofRG. Furthermore
e commutes with all elements of G, hence MGe = MeG is a module over eRGe = eReG. Now the
claim follows from (2). �

The key role in our main result presents the following translation of an artinian or noetherian
group module over simple module to a construction of an artinian or noetherian group ring.

Proposition 18. Let S be a simple R-module, G be a group and T = End(SR). Then T is a
skew-field and

(1) if SG is an artinian RG-module, then TG is a right artinian ring,
(2) if SG is a noetherian RG-module, then TG is a right noetherian ring.

Proof. Since S is simple, it is easy to see that T is a skew-field, hence TS ∼=T T
(κ) for some cardinal

number κ has the structure of a free left T -module, i.e. of a vector space over the skew-field T .
Put A = End(TS) ∼= End(TT

(κ)). Then there exists an idempotent e ∈ A such that eAe ∼= T
(any endomorphism which performs as identity on some one-dimensional subspace and it is zero
on some complements). Note that S has the structure of the A-module and R can be seen as a
subring of A, so RG is also a subring of AG. Since S is a simple R-module, it is a simple A-
module. Moreover, as SG is an artinian (noetherian) RG-module, it is an artinian (noetherian)
AG-module. Now, by Lemma 17(3), SeG is an artinian (noetherian) eAeG-module. As eAe ∼= T
and as Se is a simple module over eAe, we obtain that TG is an artinian (noetherian) TG module,
which finishes the proof. �

The previous proposition allows us to translate celebrated Connels’ results on chain conditions
of group rings [3] to the case of group modules.

Theorem 19. Let R be a ring, G a group, and M be a nonzero R-module. Then MGGR is artinian
if and only if MR is artinian and G is finite.

Proof. Note that the reverse implication follows immediately from Proposition 16(1). Suppose that
MGGR is artinian. Then MR is artinian by Proposition 16(2), so it remains to prove that G is
finite. Let S ⊆M be a simple submodule of M . Then SG is a submodule of MG, hence artinian
module. Then T = End(SR) is a skew-field for which TG is a right artinian ring by Proposition 18.
Hence G is finite by [3, Theorem 1]. �

6



We say that a group G is noetherian if it satisfies ACC on subgroups.

Theorem 20. Let R be a ring, G a group, and Ma nonzero R-module. If MGGR is noetherian,
then both MR and G are noetherian.

Proof. The moduleMR is noetherian by Proposition 16(1). Thus there exists a maximal submodule
N ≤M and S = M/N is a simple R-module. As MGGR is noetherian, the module SG ∼= MG/NG
is noetherian as well. Applying Proposition 18 again we get that TG is a right noetherian group
ring for a skew-field T = End(SR). Now, the claim follows from [3, Theorem 2(b)]. �

We finish the paper by listing several corresponding open problems from which the formulation
of the third one is due to Zhou [13] and the last one is for long time open even in context of group
rings:

Question. Describe equivalent conditions on a module M and a group G under which MG is
semiartinian, ADS, pure injective, or noetherian.
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