KERNELS OF HOMOMORPHISMS BETWEEN UNIFORM
QUASI-INJECTIVE MODULES

M. TAMER KOSAN, TRUONG CONG QUYNH, AND JAN ZEMLICKA

ABSTRACT. In this paper, we study the behaviour of endomorphism rings of indecompos-
able (uniform) quasi-injective modules. A very natural question here is, for a morphism
f A — B, with A, B indecomposable (uniform) quasi-injective right R-modules, and
g : E(A) — E(B) an extension of f where E(—) denotes the injective hull, what is the
relation between kernels of f and g, their monogeny classes and their upper parts?

1. INTRODUCTION

It is well known by the so-called Krull-Schmidt theorem that if we consider the direct
sum of modules M = M; @ My @ -+ & My, such that for all i the rings Endg(M;) are
local (i.e. they have a unique maximal ideal), then the above direct decomposition of M
into a direct sum of indecomposable modules is unique up to an isomorphism and up to a
permutation.

Several classes of modules satisfying a weak form of the Krull-Schmidt property have
been found recently in the literature. For instance, such a weak form holds for the classes
of uniserial modules [4], of cyclically presented modules over a local ring [4], of kernels
of homomorphisms between indecomposable injective modules [7], and cyclically finitely
presented modules of the projective dimension < 1 [9]. In all these cases, the following
holds: there are two equivalence relations ~ and = on the class such that, for any two
finite families {Ay,---, An} and {By, -+, B,}, ©2,4; = @7, B; if and only if m = n
and there exist two bijections o, 7 : {1,--- ,m} — {1,--- ,n} such that A; ~ B, and
A; = B forevery i =1,--- ,n.

All rings are assumed to be associative and with nonzero identity element; all modules
are assumed to be unitary. Let R be a ring, M be a right R-module, and let N be a
submodule of the module M. If N N K # 0 for any nonzero submodule K in M, then N
is called an essential submodule in M, and we say that M is an essential extension of the
module N. If M is an injective module and N is an essential submodule in M, then M is
called the injective hull of the module N. The injective hull is unique up to isomorphism
and it is denoted by E(N). A submodule X of the module M is said to be closed in M
if X =Y for every submodule Y in M that is an essential extension of the module X. A
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module M is said to be uniform if any two nonzero submodules of M have the nonzero
intersection, i.e., M does not have proper closed submodules. We refer to [2], [5], [10] and
[11] for all the undefined notions in this paper.

For a module N, a module M is said to be injective with respect to N or N-injective
if for any submodule K in N, every homomorphism « : K — M can be extended to a
homomorphism @ : N — M, i.e. @|x = a. Note that a module is injective if it is injective
with respect to each module. A module is said to be quasi-injective or self-injective provided
it is injective with respect to itself. It is well known that a module M is quasi-injective if
and only if f(M) C M for any endomorphism f of the injective hull of the module M (see
[8] or [11, 17.11]). It is clear that every injective module is quasi-injective. Every finite
cyclic group is a quasi-injective noninjective module over the ring of integers.

Notice that, for a non-zero quasi-injective module M, M is uniform (equivalently, M is in-
decomposable) iff E(M) is uniform (equivalently, F(M) is indecomposable) iff End(E(M))
is a local ring. So, a natural question to ask is what happens when one considers uniform
quasi-injective modules. Hence, the purpose of this article is to study, in an abstract set-
ting, these weak forms of the finite weak Krull-Schmidt theorem for uniform quasi-injective
modules, by applying tools and concepts of [6, 7].

2. SOME CONSTRUCTION LEMMAS AND NOTATIONS

We start by recalling the following well-known characterizations of quasi-injective mod-
ules (see, for example, [8, Theorem 1.1] and [11, 17.9]).

Lemma 2.1. The following conditions are equivalent for a right R-module M :
(1) M is quasi-injective,
(2) a(M) C M for each a € End(E(M)),
(3) M is subbimodule of the bimodule gna(p)E(M)g,
(4) Tr(M,E(M)) = M.

Lemma 2.2. The following conditions are equivalent for a non-zero quasi-injective module
M:

) M is uniform,

) M is indecomposable,

) E(M) is uniform,

) E(M) is indecomposable,

) End(M) is a local ring,

) End(E(M)) is a local ring.

For right R-modules M and N, if f € Hom(M, N) and K is a submodule of M, then
flx € Hom(K, N) denotes the restriction of f on K.
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Lemma 2.3. Let M be a uniform quasi-injective module, N be a non-zero submodule of
M and f € End(M). Then the following conditions are equivalent:

(1) f is an automorphism,

(2) f is injective,

(3) fln is injective.
Proof. (1)=(2)=(3) The implications are trivial.
(3)=(1) Let f|n be injective. Then ker f|y = ker fN N = 0. Now ker f = 0 and so f
is injective because M is uniform. Thus f induces an isomorphism of M onto f(M), say
g: f(M)— M, such that gf = id,;. Since M is quasi-injective, there exists an extension
g € End(M) of g. Clearly, g is an isomorphism and gf = id,;, which implies that f is an
isomorphisms as well. O

Similar argument as in the previous proof give us the following elementary but useful
result.

Lemma 2.4. If M and be M’ are uniform relatively injective modules and N a non-zero
submodule of M, then any monomorphism N — M’ extends to an isomorphism M — M’'.

Example 2.5. Let p be a prime number and n a natural number. Since E(Zym) = Zye
and a(Zym) C Zym for each o € End(Zy~), the Z-module Z,m is uniform quasi-injective
but it is not injective.

By Lemma 2.2, End(E(M)) of an indecomposable (a uniform) quasi-injective module
M is local.

Proposition 2.6. Assume M is an indecomposable (a uniform) quasi-injective module.
Then

(1) End(M) is a local ring with the maximal ideal
J(End(M)) ={f € End(M) | f is non-injective}.
(2) End(M)/J(End(M)) = End(E(M))/J(End(E(M))).
Proof. (1) By Lemmas 2.2 and 2.3, the ring End(E(M)) is local with the maximal ideal
J(End(E(M))) ={f € End(E(M)) | f is non-injective}.

(2) Clearly, the map p : End(EF(M)) — End(M) defined by the rule p(f) = f|ar, which is
well-defined by Lemma 2.1, is a ring homomorphism onto End(M). Now it is easy to say
that End(M) = End(E(M))/ ker p is local as well and

J(End(M)) = p(J(End(E(M)))) = {f € End(M) | f is non-injective}
by Lemma 2.3. U
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For non-zero non-injective homomorphisms ¢ : M; — M, and ¢’ : M| — M), and
f € Hom(ker ¢, ker ¢'), we fix the following notations that will be used throughout the
paper:

k1(f) = {fi € Hom(My, M7) | filkerp = [}
ka(f) = {f2 € Hom(Mz, M3) | 3f1 € k1(f) - ¢'f1 = farp}.

Lemma 2.7. Non-zero non-injective homomorphisms ¢ : My — My and ¢' : M{ — M},
and f € Hom(ker p, ker ¢') satisfies the following properties:

(1) If M7 is Mi-injective and My is My-injective, then r1(f) # 0 and ro(f) # 0.

(2) If f1, 01 € Kk1(f), then fi — g1 is not injective.
(3) If M] is uniform and fo, g € Ko(f), then fo — go is not injective.

Proof. (1) Since ker ¢ is a submodule of M; and f can be viewed as a homomorphism
to M, the existence of f; € k1(f) follows immediately from the M;j-injectivity of Mj. If
fi € k1(f), then there exists f; € Hom(o(M,), ¢’ (M!)) satisfying fip = ¢'f1. Thus fi can
be extended to fo € Hom(M,, M) such that fop = ¢ f by the Ms-injectivity of MJ.

(2) This is clear since ker ¢ C ker(f; — g1).

(3) Let f1, g1 € k1(f) and fa, g2 € ka(f) such that fop = ¢’ f1 and g = ¢'g1. Assume that
fa — g2 is injective and denote by @ € Hom(M;/ker ¢, Ms) the injective homomorphism
induces by the homomorphism ¢. Then there exists a homomorphism ¢ such that the
diagram

Ml/ker¢L>M2

lg lf292

©
commutes. Since ¢'g = (fo — ¢2)P is injective, [5, Lemma 6.26(a)] implies that ¢’ is
injective, a contradiction. O

In the following result, we consider the case when ¢ = ker ¢, hence M; = M7, My = M
and ker ¢ = ker ¢'.

Proposition 2.8. Let My = M, My = M)}, be indecomposable (uniform) quasi-injective
modules, ker p = ker ¢’ and f € End(ker ¢). Then the following conditions are equivalent:
(1) f is an automorphism,
(2) all homomorphisms of k1(f) and ka(f) are injective,
(3) there exist homomorphisms fi € ki(f) and fo € ka(f) which are injective.

Proof. (1)=-(2) The implication is clear.
(2)=(3) The implication is an easy consequence of Lemma 2.7.
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(3)=(1) We follow arguments of the proof of [7, Theorem 2.1]. Note that the existence
of the injective map f; € k1(f) implies that f is injective, so all homomorphisms of x4 (f)
are injective. Hence there are injective homomorphisms f; € k1(f) and fo € ka(f) such
that the diagram with exact rows commutes:

0 ker ¢ M, —2> M,

C b

)

0 ker ¢ M,y M,
(Clearly, it induces the commutative diagram
0 ker ¢ My —5 (M) —0
b
0 ker ¢ My —5 o(M;) —0

with exact rows where f is injective. Since f; is an isomorphism by Lemma 2.3, f is an
isomorphism by the Snake lemma. U

3. THE ENDOMORPHISM RING

Theorem 3.1. Let My, My be indecomposable (uniform) quasi-injective modules, and let
w: My — M,y be a non-zero non-injective morphism with E := End(ker ¢). Set
I, ={f € E| f is non-injective}

and

L ={fe€FE|3f;€k(f): f2 is non-injective}.
Then I, and Iy are completely prime maximal ideals of E, and

I ={f € E|3f1 € ki(f) is non-injective},

L={f€E|3fi € r(f).kerp C fi ' (kerp)}.

Moreover,

(1) if 1 C Iy, then E is local with the mazimal ideal I,

(2) if Iy C I, then E is local with the mazimal ideal I,

(3) if I and I are not comparable, then E is semilocal such that J(E) = I, N I and
EJJ(E) = E/I, x E/I.

Proof. We define mappings p; : E — End(M;)/J(End(m;)) for i = 1,2 by the rule
pi(f) = fi + J(End(m;))
for f; € k;(f). The correctness of the definition follows from Proposition 2.6 and Lemma 2.7.

Moreover, ker p; = I; and it is completely prime ideals since End(M;)/J(End(M;)) are di-
vision rings. Since [; and [y are proper ideals, I; U I, contains noninvertible elements and
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all elements of F'\ (I; U Iy) are invertible by Proposition 2.8. Thus every proper right ideal
of E is contained in I; U I5. If I} and I, are comparable, then it holds true either the case
(1) or (2).

If they are not comparable, then J(E) = I; NI, and I; and I; are two maximal ideals of
E. Now it is easy to see that E'/J(E) = E/I; x E /I, by the Chinese reminder theorem. [

Let A and B be two modules. According to [4] and [7], we say that

e A and B have the same monogeny class, denoted by [A],, = [B]n, if there exist a
monomorphism A — B and a monomorphism B — A;

e A and B have the same upper part, denoted by [A], = [B]., if there exist a homomor-
phism ¢ : E(A) — E(B) and a homomorphism 1 : E(B) — E(A) such that ¢71(B) = A
and ¥ "1(A) = B.

Lemma 3.2. Let My, Ms, M; and M be indecomposable quasi-injective modules with
M, M7 relative injective and My, MY relative injective. If ¢ : My — My and @' : M| — M,
are non-injective homomorphisms, then ker(p) = ker(¢') if and only if either ¢ = ¢’ =0
and My = M, or there exist isomorphisms fi : My — M/ and fy : My — M) such that
o' f1 = fap.

Proof. Suppose that there exists an isomorphism f : ker(p) — ker(¢'). Since the indecom-
posable (uniform) module M is Mi-injective, f extends to a monomorphism f; : M; — Mj.
Clearly, f; is an isomorphism. It is also easy to see that the isomorphism f; induces the
isomorphism f, : My /ker(¢) — M /ker(¢'). Since the indecomposable (uniform) module
M} is Ms-injective, there exists a homomorphism fy : My — M such that the following
diagram is commutative:

0 — M /ker(p) . M,
f1\ fz\
0 —— Mj/ker(¢!) —*— M}

where ¢ and ¢’ are monomorphisms induced by ¢ and ¢’. Thus, we have a commutative
diagram with exact rows

©p

0 —— ker(p) - M, - M,
f fi f2
0 — ker(y) - M —5— M}
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Now, we have the following two cases:
(i) If ¢ = 0, then ker(p) = M; and ker(¢') = Mj. They imply that M; = M] and
/
=0.
(ii) If ¢ # 0, then M, /ker(p) # 0. From the isomorphism fi, we infer that f, is an
isomorphism.
The converse follows immediately from Proposition 2.8. O

Proposition 3.3. Let My, My, M7, M, be quasi-injective indecomposable modules such that
the modules My, M| are relative injective and the modules My, My are relative injective. If
©: My — My, M{ — M} are arbitrary homomorphisms, then ker(p) = ker(y¢') if and
only if [ker(o)lm = [ker(')]m and [ker(p)]u = [ker(¢')]u.

Proof. Tt is enough to prove the reverse implication. The proof follows the arguments of
[7, Lemma 2.4].

One can easily check that this observation holds if one of the two homomorphisms ¢, ¢’
is a monomorphism. Thus, we can suppose that both ¢ and ¢ are non-injective.

Assume that [ker(¢)], = [ker(¢')]m and [ker(p)], = [ker(¢’)],. Then, there are a
monomorphism [ : ker(p) — ker(¢') and a homomorphism k : E(ker(y)) — E(ker(¢'))
such that k=1 (ker(y')) = ker(p). Note that M| is Mi-injective, ker(y) is essential in M;
and ker(y') is essential in M]. Therefore, k induces, by the restriction, a homomorphism
hy : My — M} and hy*(ker(¢')) = ker(p). If f is an isomorphism, we are done. Thus,
we can assume that the monomorphism f is not an isomorphism between ker(y) and
ker(¢'). Inasmuch as the indecomposable module M] is Mj-injective, the monomorphism
f extends to an isomorphism f; : M; — M] by Lemma 2.4. Now, the isomorphism f;
induces the isomorphism f; : M;/ker(p) — M| /ker(y') such that the following diagram
1s commutative:

0 ker(y) M; —— M /ker(y)
fJ flJ f_1J
0 ker(¢") M{ —— M /ker(¢')

By the Snake lemma, one can check that ker(f;) = coker(f). We have that f is not an
epimorphism and obtain that f; is not a monomorphism.

By our construction, we have that hy(ker(¢)) C ker(¢’), and so h; induces, by the
restriction, a homomorphism h : ker(yp) — ker(¢’). Thus, we have a commutative diagram

ker(p) My —— M /ker(p)

N

ker(¢") M| ——— M /ker(¢)

0
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From hi!(ker(¢')) = ker(p), we infer that hy is a monomorphism. We have the following
two cases:

Case 1. h; is an isomorphism. Then, the Snake lemma gives that ker(hy) = coker(h),
and so h is an epimorphism. On the other hand, h; is an extension of h, we obtain that h
is a monomorphism. We deduce that h is an isomorphism or ker(y) = ker(y').

Case 2. h; is not an isomorphism. We have that M; is M;-injective and M] is an
indecomposable module and obtain that h; is not a monomorphism. It follows that A is
not a monomorphism, since ker(y) is essential in M;. From the sum of the two previous
commutative diagrams, we get the following commutative diagram

0 ker(e) My, —— M /ker(p) 0
f—l—hJ f1+h1J f1+h1J
0 ker(¢') M] —— M /ker(¢) 0

Now, we show that f; 4+ h; is a monomorphism. In fact, let « be an element of M; with
(fi + h1)(z) = 0. Then, we have that fi(z) = —hy(x). Since M is uniform, ker(h;) is
essential in M;. Suppose that x is nonzero. Then, there exists an element € R such that
xr # 0 and hy(azr) = 0, and so fi(zr) = 0. Inasmuch as f; is a monomorphism, we get
xr = 0, a contradiction. It shows that f; + hy is a monomorphism. By the hypothesis,
M, is Mj-injective and M| is indecomposable we immediately obtain that f; 4+ hy is an
isomorphism. Thus, the restriction f+h of f;+hq to ker(p) is a monomorphism. Similarly,
f1 non-injective, h; injective and M, /ker(p) = im(p) C My uniform imply that f; + hy
is a monomorphism. From the Snake lemma, f + h is an epimorphism. We deduce that
f + h is an isomorphism, and so ker(y) = ker(¢’). O

Recall from [6, Section 4.14] that a semilocal category is a preadditive category with
a nonzero object such that the endomorphism ring of every nonzero object is a semilocal
ring.

Facchini in [6, Section 4.15] remarked that if R is a semilocal ring and 7 : R — R/J(R) is
the canonical projection of R onto R modulo its Jacobson radical, then 7 : R — R/J(R) is
a surjective local morphism, so that V(r) : V(R) — V(R/J(R)) is an injective divisor ho-
momorphism by [6, Proposition 3.29]. Moreover, the injective divisor homomorphism V()
is a morphism of monoids with order-units of (V(R), (Rg)) into (V(R/J(R)),(R/J(R))).

According to Facchini [6, Page 142-143], if A, B are additive categories and F : A — B
is an additive functor, we say that F' is:

(1) direct-summand reflecting if for every pair A, B of objects of A with F(A) iso-
morphic to a direct summand of F'(B), A is isomorphic to a direct summand of B.
(Here, if A and B are objects of an additive category C, we say that A is isomorphic
to a direct summand of B if there exists an object C' of C such that B is a biproduct
of Aand C.)
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(2) weakly direct-summand reflecting if for every pair A, B of objects of A with F'(A)
isomorphic to a direct summand of F(B), there exists an object C' of A with
F(C) =0 and A isomorphic to a direct summand of B & C.

Notice that

(a) direct-summand reflecting implies weakly direct-summand reflecting

(b) every additive functorF' : A — B induces a monoid homomorphism V' (F') : V(A) —
V(B) between the (possibly large) additive monoids V(A) and V(B). The functor
F is isomorphism reflecting if and only if V(F') is an injective mapping, essentially
surjective if and only if V(F') is a surjective mapping, and it is direct-summand
reflecting if and only if the monoid morphism V' (F') is a divisor homomorphism,
weakly direct-summand reflecting if and only if the monoid morphism V' (F') is an
essential morphism, a weak equivalence if and only if V' (F') is a monoid isomorphism.

Finally, if C is a full subcategory of Mod-R, we denote the full subcategory of Mod-R
whose objects are all modules that are isomorphic to direct summands of finite direct sums

of modules in Ob(C) by C. If C is a semilocal category, then C is also semilocal (see [6,
Page 297]).

In a preadditive category A with a nonzero object, we denote its Jacobson radical by 7.

Proposition 3.4. Let ¢; : My — My (i = 1,2,...,n,n > 2) and ¢’ : M{ — M,
be n + 1 non-injective homomorphisms between indecomposable quasi-injective modules
My, Mo, M7, M, such that M, M are relative injective and Mo, M., are relative injective.
Suppose that ker(y') is isomorphic to a direct summand of @;_, ker(y;), but ker(y') %
ker(p;) for everyi=1,2 ... ,n. Then there are two distinct indices 1,j = 1,2,...,n such

that [ker(@')|m = [ker(@i)lm and [ker(@")]u = [ker(g;)]u-

Proof. By Theorem 3.1, ker(y;) for i = 1,...,n and the modules ker(¢’) are all modules
whose endomorphism rings are semilocal of type < 2. Set

A= add<@ ker(¢')),

i.e. A contains all direct summands of finite direct sums of modules isomorphic to ker(¢;)},
so that A is a semilocal full subcategory of Mod-R. Therefore the canonical monoid mor-
phism V(A) - V(A/J(A)) is an injective divisor homomorphism, because the canonical
projection functor A — A/J(A) is an isomorphism-reflecting direct-summand reflecting
functor by the previous paragraphs. Therefore, the rest follows from [6, Theorem 9.10] and
[6, Proposition 9.14] O

Lemma 3.5. Let ¢ : My — M, ¢ : M] — M} and ¢" : M{ — M} be non-injective
homomorphisms between indecomposable quasi-injective modules such that My, M{, M{ are
relative injective and My, M, MY are relative injective.

If we assume [ker ()], = [ker(©)]m and [ker(p)], = [ker(¢")]u, then the following hold:

(1) ker(p) ® D = ker(¢') @ ker(¢") for some module D.
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(2) The module D in (1) is unique up to isomorphism and is the kernel of a non-
imjective morphism between indecomposable quasi-injective modules.

(3) [Pl = [ker(¢")]m and [D]., = [ker(¢)]u

Proof. (1) By the hypothesis, there exist monomorphisms f : ker(y) — k
g : ker(¢') — ker(p), and homomorphisms ky : E(ker(y)) — E(ker(y¢")
E(ker(¢")) — E(ker(p)) such that k;'(ker(¢”)) = ker(p) and ky ' (ker(p))
We have that M, M{, M{ are relative injective and we obtain that k(M)
k(M) < M.

Call hy := ki|py and Iy = ka[p. Clearly, hy € Hom(M,toMY'), Iy € Hom(My', M,]
and h{'(ker(¢")) = ker(p) and I (ker(¢)) = ker(¢"). Let h : ker(¢) — ker(y") be the
restriction of hy and [ : ker(¢") — ker(y) be the restriction of [y .

We have the following cases:

Case 1. go f is an isomorphism. Then f splits, and so f is an isomorphism, since both
ker(p) and ker(y') are uniform. Now D := ker(¢”) has the required properties.

Case 2. [oh is an isomorphism. Then, both [ and A are isomorphisms. We deduce that
ker(p) = ker(¢'). If D := ker(y’), then D has the required properties.

Case 3. Neither g o f nor [ o h are isomorphisms. By the assumption,

er(¢’) and
) and ks :

= ker(¢").
< M{ and

I, = {a € End(ker(y)) | o is non-injective}

and
I, = {a € End(ker(p)) | Jag € ka(a) : asy is non-injective}

are completely prime maximal ideals of End(ker(¢)), we get go f is a monomorphism, hence
it does not belongs to the ideal I;. Inasmuch as g o f is not an isomorphism we infer that
go f € I,. On the other hand, we have that I, = {a € End(ker(p)) | ker o C aj*(kerp)}
by Theorem 3.1, so it follows that [ o h ¢ I,. Similarly, we get [ o h € I;. From this, we
immediately obtain that go f +1loh ¢ I U I,. Thus, go f 4+ [ o h is an automorphism of
ker(y). Then the composite homomorphism of the homomorphisms

f
h , (gof—l—loh)_lo(g l)
ker(o) —= ker(¢') @ ker(yp”) — ker(y)

is the identity homomorphism, and so ker(¢) @& D = ker(¢') @ ker(¢”) for some R-module
D.

(2) Assume that ker(y) & D = ker(¢') @ ker(¢") = ker(p) @ D'. Since End(ker(y)) is
a semilocal endomorphism ring by Theorem 3.1, we obtain that D = D’ by [5, Corollary
4.6], hence we have shown that the module D is unique up to isomorphism.

Next, we show that D is the kernel of a non-injective homomorphism between indecom-
posable quasi-injective modules. In fact, let M = M] & M{. Hence M is quasi-injective.
Let N denote the injective hull of N in o[M], i.e. M-injective hull of N ([11, 17.8]).
From the M-injectivity of M, M| and M/, we have ker(p) = M, ker(¢’) = M, and
ker(¢") = Mj'. The isomorphism ker(p)® D = ker(¢') ® ker(¢") reduces an isomorphism

1

ker(¢) @ D = ker(y') @ ker(¢"), and so
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My®D= l{:er(/go)\@ D = ker(gp’@er(tp”) = M| & M.

From [ker(¢)|m = [ker(¢')]m, we obtain that M; is embeddable into M| and Mj is em-
beddable into M;. It follows that M; = Mj by [10, Theorem 3.17]. By the direct-sum
cancellation of modules with semilocal endomorphism rings again, we infer that D= M.
On the other hand, we have the isomorphism

(M & D)/(ker(p) © D) = (M} & M)/ (ker(¢) & ker (")),
and so
(M /ker(¢)] @ [D/D] 2= [M; /ker(¢)] @ [My” /ker(#")] = im(¢) @ im (")
is embeddable into M’ := M) & M. Similarly, from the above argument for My, MJ, M}

we have My ® D/D = M} & M} in o[M']. Since [ker()]l. = [ker(¢”)]. and My, M}’
are relatively injective, there are homomorphisms o : M; — M{ and 8 : My” — M,
such that a~!(ker(¢”)) = ker(p) and B~(ker(¢)) = ker(y”). It shows that there exist
monomorphisms M /ker(p) — M [ker(¢") and M| /ker(¢") — My /ker(p). Thus, there
are monomorphisms My — M} and MY — My, and so My = MY by [10, Theorem 3.17].

Then, we infer that ﬁ/D = M) = M{Ee\r(gp’) in o[M’']. If ¢ =0, then D = D = My
Now, D is the kernel of the zero homomorphism M] — M. If ¢’ # 0, then D is the kernel

of the composite morphism D — lA)/D — ZA)/D Note that D = M7 and lA)/D >~ M. We
deduce that it is the kernel of a non-injective morphism between indecomposable quasi-
injective modules.

(3) From the proof of (2), we have that D is the kernel of either M| — M} or My — M.

Case 1. If D = ker(y'), then ker(p) = ker(¢') and so D has the required properties.
Similarly, it is true for the case D = ker(¢").

Case 2. If D 2 ker(y¢') and D 2 ker(¢”), then we can apply Proposition 3.4 to the
direct summand D of ker(¢') @ ker(y¢”), and so we get that either [D],, = [ker(¢")|n
and [D], = [ker(¢')], or [D], = [ker(¢')]m and [D], = [ker(¢”)].. Suppose that [D], =
[ker(¢")]u. From Proposition 3.3, we obtain that D = ker(¢). Thus, by Proposition 3.4
applied to the direct summands ker(¢') and ker(¢”) of ker(v) @ D, we imply that the
modules ker(¢'), ker(¢”), ker(¢) and D have the same monogeny part and the same upper
part. We deduce that , ker(¢') = ker(¢") = ker(¢) = D, which is a contradiction.

O

Theorem 3.6. (Weak Krull-Schmidt theorem) Let ¢; : My — My, i = 1,2,...,n, and
@i Miy — My, 5 =1,2,...,k, be non-injective homomorphisms between indecomposable
quasi-injective modules M;i, Mo, My, Mo such that Mﬂ,]\fj'»1 are relative injective and
My, M, are relative injective. Then @, ker(p;) = @?:1 ker(¢}) if and only if n =k
and there exist two permutations o,7 of {1,2,...,n} such that [ker(¢;)lm = [ker (¢ ;)lm

and [ker(p;)]u = [ker (@) ;))lu for every i=1,2,....n.
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Proof. We notice that the kernels ker(y;) and ker(¢}) are uniform modules. If @;_, ker(;)

@521 ker(¢}), then they have the same Goldie dimension, and so n = k. In order to show
that the existence of the permutations ¢ and 7, we use induction on n. The case n = 1 be-
ing trivial. Assume that ker(;) is isomorphic to some ker(¢}). Cancelling the isomorphic
modules ker(p;) and ker(¢}) (cancellation of modules holds because they have semilocal
endomorphism rings), we can clearly proceed by induction. Then, we can suppose that
ker(pi) 2 ker(y}) for every 4,j = 1,2,...,n. Note that End(ker(y;)) and End(ker(¢}))
are not local.

Now ker(p1) is isomorphic to a direct summand of €B]_, ker(¢}). From Proposition
3.4, we infer that there exist two distinct indices ¢, = 1,2,...,n such that [ker(y1)]nm =
[ker(¢;)]m and [ker(p1)]u = [ker(¢))].. Without loss of generality we may suppose i = 1
and j = 2. Now we can proceed as in [1, Theorem 5.3] using Lemma 3.5 instead of [1,
Lemma 5.2]. O
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