Informace k semináři Evolving structures in mathematics NMMB471

Výběrový seminář pro studenty bakalářského, navazujícího magisterského a doktorského studia

Tvůrčí seminář o možnostech, jak modelovat evoluci složitých adaptujících se systémů na počítači

Seminář vede

Tomáš Mikolov za pomoci  Jiřího Tůmy a případných hostů

Místo a čas

Seminární místnost katedry algebry, 3. patro, budova Sokolovská 83, úterý 15,40

Konzultace

Lze domluvit osobně po semináři nebo mailem na tuma (at)  karlin.mff.cuni.cz, nebo telefonem 2 2191 3240

Zápočet

Bude za pravidelnou a aktivní účast na semináři


Program semináře v tomto semestru

25.2.2020  Tomáš Mikolov, prezentace

3.3.2020  Bára Hudcová, Komplexní systémy, klasifikace pomocí tranzient, prezentace           

10.3.2020  Hugo Cisneros, Evaluating complexity in cellular automata, prezentace






Zde je loňský plánovaný program semináře, na tento rok bude ještě upraveno.

Computing Machinery and Intelligence, A. Turing
- We will discuss some early ideas about artificial intelligence, and high-level overview of topics such as Turing-completeness.

Society of Mind, Marwin Minsky
- In this book, Marwin advocates that complex intelligent behavior is a result of cooperation of simple agents, and that the human mind can be explained this way.

The Quark and The Jaguar, Murray Gell-Mann
- Occam's razor, Minimum description length, Kolmogorov complexity, Algorithmic probability, measures of complexity proposed by Gell-Mann

L-systems: Mathematical Models for Cellular Interactions in Development, A. Lindenmayer; Wikipedia
- parallel string rewriting grammars that can generate objects that resemble those found in nature (leaves, trees); the grammars can be very trivial, while the objects may appear complex to us

Fractals: The fractal geometry of nature, B. Mandelbrot
- Fractals are objects that appear the same at different scales, while some appear rather complex to us. 

Von Neumann's Self-Reproducing Automata, A. W. Burks
- Conway's Game of Life can be seen as a simple example how cellular automatons work. However, the ideas here are deeper than they appear at first, and we can see that the original motivation for the development of cellular automatons was to design mathematical structures that can copy themselves in a non-trivial way, and possibly increase in complexity while doing so.

Studying Artificial Life with Cellular Automata, C. G. Langton
- Deals with mathematical structures that can have similar properties to how we define life: self-reproduction, evolution.

Genetic Algorithms, J. Holland
- We will discuss the basic ideas behind evolutionary and genetic algorithms and genetic programming, and compare these algorithms with the previously discussed attempts to design objects that can evolve.

Neuroevolution
- Evolving neural networks through augmenting topologies, K. O. Stanley and R. Miikkulainen
- Another attempt to simulate evolution that uses neural networks. In this talk, we will briefly discuss the basics of artificial neural networks, and extend these to models that can grow in complexity.

Psychology of Mathematics
Henri Poincare, Mathematical Creation
Jacques Hadamard, An Essy on the Psyhology of Invention in the Filed of Mathematics