Libor Barto

HOME POCOCOP RESEARCH FOR STUDENTS

 

 

UNIVERSAL ALGEBRA (NMAG405)

Lecture: Thr 9:00 - 10:30 K433KNM
Practicals run by Max Hadek: Thr 10:40 - 12:10 K4

Grading:

  • Practicals ("Z: Zapocet"): homeworks (60% from the sum of 4 best scores out of 5 homeworks)
  • Lecture ("Zk: Zkouska"): written test + oral examination

Literature:

 

topics (future topics may change)recommended readinglecture notes homework
2.10.Motivation. Algebra (signature, type). Examples.
Pr.: Lattices vs. lattice ordered sets
Bergman 1.1, 1.2 lecture 1 practical 1
9.10.Lattices, complete lattices, closure operators.
Pr.: Distributive and modular lattices.
Bergman 2.1, 2.2, 2.3 lecture 2 practical 2
16.10. Algebraic lattices and closure operators. Galois correspondences.
Pr.: Complete lattices, closure operators, Galois correspondences.
Bergman 2.4, 2.5 lecture 3 practical 3 Homework 1
due 30.10. 10:40
23.10. Subalgebras, products, quotients.
Pr.: Subalgebras, congruences.
Bergman 1.3, 1.4, 1.5 lecture 4
corrected (lower quality)
30.10. H,S,P operators, variety. Homomorphisms.
Pr.: HSP, homomorphisms.
Bergman 1.1, 1.3, 3.1, 3.5 lecture 5 Homework 2
due 20.11. 10:40
6.11. Direct and subdirect decomposition
Pr.: Direct and subdirect decomposition.
Bergman 3.2, 3.3 lecture 6
13.11. Subdirect decomoposition, SIs in congruence distributive vaieties
Pr.: ?
Bergman 3.4, 3.5, (5.2) lecture 7
20.11. Terms, identities, free algebras.
Pr.: Free algebras.
Bergman 4.3, 4.4 lecture 8 Homework 3
due 4.12. 10:40
27.11. The syntax-semantics Galois correspondence, Birkhoff's theorem.
Pr.: Equational bases.
Bergman 4.4, (4.6) lecture 9
4.12. Clones. Free algebras as clones of term operations.
Pr.: Clones.
Bergman 4.1 lecture 10 Homework 4
due 18.12. 10:40
11.12. The operations-relations Galois correspondence.
Pr.: Algebraic and relational clones.
Bergman 4.2 lecture 11
18.12. Mal'cev conditions: Mal'cev, majority.
Pr.: Mal'cev conditions
Bergman 4.7 (part) lecture 12 Homework 5
due 8.1. 10:40
8.1. ? Tame Congruence Theory
Pr.: ?
 

 

 

ARCHIV


[Archiv 2024/25 zimni a letni semestr]
[Archiv 2023/24 letni semestr (neni)]
[Archiv 2023/24 zimni semestr]
[Archiv 2022/23 letni semestr]
[Archiv 2022/23 zimni semestr]
[Archiv 2021/22 letni semestr]
[Archiv 2021/22 zimni semestr]
[Archiv 2020/21 letni semestr]
[Archiv 2020/21 zimni semestr]
[Archiv 2019/20 zimni semestr]
[Archiv 2018/19 letni semestr]
[Archiv 2018/19 zimni semestr]
[Archiv 2017/18 letni semestr]
[Archiv 2017/18 zimni semestr]
[Archiv 2016/17 letni semestr]
[Archiv 2016/17 zimni semestr]
[Archiv 2015/16 letni semestr]
[Archiv 2015/16 zimni semestr]
[Archiv 2014/15 letni semestr]
[Archiv 2014/15 zimni semestr]
[Archiv 2013/14 letni semestr]
[Archiv 2013/14 zimni semestr]
[Archiv 2012/13 letni semestr]
[Archiv 2012/13 zimni semestr]
[Archiv McMaster]
[Archiv 2009/10 letni semestr]
[Archiv 2009/10 zimni semestr]
[Archiv 2008/09 letni semestr]
[Archiv 2008/09 zimni semestr]
[Archiv 2007/08 letni semestr]
[Archiv 2007/08 zimni semestr]
[Archiv 2006/07 letni semestr]
[Archiv 2006/07 zimni semestr]
[Archiv 2005/06 letni semestr]