Personal Website:
Scott Congreve

Publications

Journal Articles

  1. S. Congreve and P. Houston. Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes. Adv. Comput. Math., 48, 2022. DOI 10.1007/s10444-022-09968-w. SpringerNature SharedIt.
  2. S. Congreve, J. Gedicke, and I. Perugia. Robust adaptive hp discontinuous Galerkin finite element methods for the Helmholtz equation. SIAM J. Sci. Comput., 42(2):A1121–A1147, 2019. DOI 10.1137/18M1207909.
  3. S. Congreve, P. Houston, and I. Perugia. Adaptive refinement for hp-version Trefftz discontinuous Galerkin methods for the homogeneous Helmholtz problem. Adv. Comput. Math., 45(1):361–393, 2019. DOI 10.1007/s10444-018-9621-9.
  4. S. Congreve and T. P. Wihler. Iterative Galerkin discretizations for strongly monotone problems. J. Comput. Appl. Math., 311:457–472, 2017. DOI 10.1016/j.cam.2016.08.014.
  5. S. Congreve and P. Houston. Two-grid hp-version discontinuous Galerkin finite element methods for quasi-Newtonian flows. Int. J. Numer. Anal. Model., 11(3):496–524, 2014.
  6. S. Congreve, P. Houston, E. Süli, and T. P. Wihler. Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: Strongly monotone quasi-Newtonian flows. IMA J. Numer. Anal., 33(4):1386–1415, 2013. DOI 10.1093/imanum/drs046.
  7. S. Congreve, P. Houston, and T. P. Wihler. Two-grid hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic PDEs. J. Sci. Comput., 55(2):471–497, 2013. DOI 10.1007/s10915-012-9644-1.

Conference Proceedings

  1. S. Congreve and P. Houston. Two-grid hp-DGFEMs on agglomerated coarse meshes. Proc. Appl. Math. Mech., 19:e201900175, 2019. DOI 10.1002/pamm.201900175.
  2. S. Congreve, J. Gedicke, and I. Perugia. Numerical investigation of the conditioning for plane wave discontinuous Galerkin methods. In F. Radu, K. Kumar, I. Berre, J. Nordbotten, and I. Pop, editors, Numerical Mathematics and Advanced Applications ENUMATH 2017, volume 126 of Lecture Notes in Computational Science and Engineering, pages 493–500. Voss, Norway, 2017. Springer. DOI 10.1007/978-3-319-96415-7_44.
  3. S. Congreve and P. Houston. Two-grid hp-DGFEM for second order quasi-linear elliptic PDEs based on a single Newton iteration. In J. Li and H. Yang, editors, Proceedings of the 8th International Conference on Scientific Computing and Applications, volume 586 of Contemporary Mathematics, pages 135–142. University of Nevada, Las Vegas, 2013. AMS. DOI 10.1090/conm/586/11629.
  4. S. Congreve, P. Houston, and T. P. Wihler. Two-grid hp-version discontinuous Galerkin finite element methods for quasi-Newtonian flows. In A. Cangiani, R. Davidchack, E. Georgoulis, A. Gorban, J. Levesley, and M. Tretyakov, editors, Numerical Mathematics and Advanced Applications ENUMATH 2011, Lecture Notes in Computational Science and Engineering, pages 341–349. University of Leicester, Leicester, UK, 2012. Springer. DOI 10.1007/978-3-642-33134-3_37.
  5. S. Congreve, P. Houston, and T. P. Wihler. Two-grid hp-version DGFEMs for strongly monotone second-order quasilinear elliptic PDEs. Proc. Appl. Math. Mech., 11:3–6, 2011. DOI 10.1002/pamm.201110002.

Theses

  1. S. Congreve. Two-grid hp-Version discontinuous Galerkin finite element methods for quasilinear PDEs. PhD thesis, University of Nottingham, Nottingham, UK, 2014. Nottingham eThesis.
  2. S. Congreve. A posteriori error analysis of hp-adaptive finite element methods for second-order quasi-linear PDEs. Master's thesis, University of Nottingham, Nottingham, UK, 2010.