Milan Pokorný

A) Monographs

[1] Feireisl, Eduard, Karper, Trygve G., Pokorný, Milan: Mathematical theory of compressible viscous fluids. Analysis and numerics. Advances in Mathematical Fluid Mechanics. Lecture Notes in Mathematical Fluid Mechanics. Birkhäuser/Springer, Cham, 2016.

B) Chapters in scientific monographs

[3] Mucha, Piotr B., Pokorný, Milan, Zatorska, Ewelina: Existence of Stationary Weak Solutions for the Heat Conducting Flows.  In: Giga, Yoshikazu, Novotný, Antonín (eds.): Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer Verlag, 2018, 2595–2662.

[2] Kreml, Ondřej, Mucha, Piotr B., Pokorný, Milan: Existence and Uniqueness of Strong Stationary Solutions. In: Giga, Yoshikazu, Novotný, Antoníın (eds.): Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer Verlag, 2018, 2663–2719.

[1] Kračmar, Stanislav, Novotný, Antonín, Pokorný, Milan: Estimates of three-dimensional Oseen kernels in weighted Lp spaces. In: Sequeira, Adélia, Beirão da Veiga, Hugo, Videman, Juha H. (eds.): Applied nonlinear analysis, Kluwer/Plenum, New York, 1999, 281–316.

C) Papers

[70] Pokorný, Milan, Skříšovský, Emil: Homogenization of the evolutionary compressible Navier–Stokes–Fourier system in domains with tiny holes, Journal of Elliptic and Parabolic Equations, 7 (2021), 361-391.

[69] Novotný, Antonín, Pokorný, Milan: Continuity equation and vacuum regions in compressible flows, Journal of Evolution Equations, 21 (2021), 2891-2922.

[68] Axmann, Šimon, Pokorný, Milan: Steady solutions to a model of compressible chemically reacting fluid with high density, Mathematical Methods in Applied Sciences 44 (2021), 6422–6447.

[67] Pokorný, Milan, Skříšovský, Emil: Weak solutions for compressible Navier–Stokes–Fourier system in two space dimensions with adiabatic exponent almost one, Acta Appl. Math. 172 (2021), Paper No. 1, 31 pp.

[66] Lu, Yong, Pokorný, Milan: Homogenization of stationary Navier–Stokes–Fourier system in domains with tiny holes, J. Differential Equations 278 (2021), 463–492.

[65] Lu, Yong, Pokorný, Milan: Global existence of large data weak solutions for a simplified compressible Oldroyd-B model without stress diffusion, Anal. Theory Appl. 36 (2020), 348–372.

[64] Novotný, Antonín, Pokorný, Milan: Weak Solutions for Some Compressible Multicomponent Fluid Models, Archive for Rational Mechanics and Analysis 235 (2020), 355–403.

[63] Axmann, Šimon, Mucha, Piotr B., Pokorný, Milan: Steady solutions to the Navier–Stokes–Fourier system for dense compressible fluid, Topological Methods in Nonlinear Analysis 52 (2018), 259–283.

[62] Ducomet, Bernard, Caggio, Matteo, Nečasová, Šárka, Pokorný, Milan: The rotating Navier–Stokes–Fourier–Poisson system on thin domains, Asymptotic Analysis 109 (2018), 111–141.

[61] Mucha, Piotr B., Peszek, Jan, Pokorný, Milan: Flocking particles in a non-Newtonian shear thickening fluid, Nonlinearity 31 (2018), 2703–2725.

[60] Ducomet, Bernard, Nečasová, Šárka, Pokorný, Milan, Rodríguez-Bellido, M. Angeles: Derivation of the Navier–Stokes–Poisson system with radiation for an accretion disk, Journal of Mathematical Fluid Mechanics 20 (2018), 697–719.

[59] Piasecki, Tomasz, Pokorný, Milan: On steady solutions to a model of chemically reacting heat conducting compressible mixture with slip boundary conditions. In: Danchin, Raphaël, Farwig, Reinhard, Neustupa, Jiří, Penel, Patrick (eds.): Mathematical analysis in fluid mechanics: selected recent results. Contemp. Math. 710, Amer. Math. Soc., Providence, RI, 2018, 223–242.

[58] Bulíček, Miroslav, Pokorný, Milan, Zamponi, Nicola: Existence analysis for incompressible fluid model of electrically charged chemically reacting and heat conducting mixtures, SIAM Journal on Mathematical Analysis 49 (2017), 3776–3830.

[57] Axmann, Šimon, Mucha, Piotr B., Pokorný, Milan: Steady solutions to viscous shallow water equations. The case of heavy water, Communications in Mathematical Sciences 15 (2017), 1385–1402.

[56] Piasecki, Tomasz, Pokorný, Milan: Weak and variational entropy solutions to the system describing steady flow of a compressible reactive mixture, Nonlinear Analysis-Theory, Methods and Applications 159 (2017), 365–392.

[55] Axmann, Šimon, Pokorný, Milan: A generalization of some regularity criteria to the Navier–Stokes equations involving one velocity component. In: Amann, Herbert, Giga, Yoshikazu, Kozono, Hideo, Okamoto, Hisashi, Yamazaki, Masao (eds.): Recent developments of mathematical fluid mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Basel, 2016, 79–97.

[54] Maltese, David, Michálek, Martin, Mucha, Piotr B., Novotný, Antonín, Pokorný, Milan, Zatorska, Ewelina: Existence of weak solutions for compressible Navier–Stokes equations with entropy transport, Journal of Differential Equations 261 (2016), 4448–4485. 

[53] Mucha, Piotr B., Pokorný, Milan, Zatorska, Ewelina: Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution, SIAM Journal on Mathematical Analysis 47 (2015), 3747–3797. 

[52] Farwig, Reinhard, Pokorný, Milan: A linearized model for compressible flow past a rotating obstacle: analysis via modified Bochner–Riesz multipliers, Zeitschrift für Analysis und ihre Anwendungen 34 (2015), 285–308. 

[51] Kreml Ondřej, Pokorný, Milan, Šalom, Pavel: On the global existence for a regularized model of viscoelastic non-Newtonian fluid, Colloquium Mathematicum 139 (2015), 149–163. 

[50] Axmann, Šimon, Pokorný, Milan: Time-periodic solutions to the full Navier–Stokes–Fourier system with radiation on the boundary, Journal of Mathematical Analysis and Applications 428 (2015), 414–444. 

[49] Giovangigli, Vincent, Pokorný, Milan, Zatorska, Ewelina: On the steady flow of reactive gaseous mixture, Analysis (Berlin) 35 (2015), 319–341.

[48] Piasecki, Tomasz, Pokorný, Milan: Strong solutions to the Navier–Stokes–Fourier system with slip-inflow boundary conditions, Zeitschrift fr Angewandte Mathematik und Mechanik 94 (2014), 1035–1057.

[47] Mucha, Piotr B., Pokorný, Milan: The rot-div system in exterior domains, Journal of Mathematical Fluid Mechanics 16 (2014), 701–720. 

[46] Mucha, Piotr B., Pokorný, Milan, Zatorska, Ewelina: Approximate solutions to a model of two-component reactive flow, Discrete and Continuous Dynamical Systems Series S 7 (2014), 1079–1099. 

[45] Jesslé, Didier, Novotný, Antonín, Pokorný, Milan: Steady Navier–Stokes–Fourier system with slip boundary conditions, Mathematical Models & Methods in Applied Sciences 24 (2014), 751–781.

[44] Mucha, Piotr B., Pokorný, Milan, Zatorska, Ewelina: Chemically reacting mixtures in terms of degenerated parabolic setting, Journal of Mathematical Physics 54 (2013), 071501, 17 pp.

[43] Kreml, Ondřej; Nečasová, Šárka, Pokorný, Milan: On the steady equations for compressible radiative gas, Zeitschrift für Angewandte Mathematik und Physik 64 (2013), 539–571. 

[42] Penel, Patrick, Pokorný, Milan: Improvement of some anisotropic regularity criteria for the Navier–Stokes equations, Discrete and Continuous Dynamical Systems Series S 6 (2013), 1401–1407. 

[41] Feireisl, Eduard, Mucha, Piotr B., Novotný, Antonín, Pokorný, Milan: Time-periodic solutions to the full Navier–Stokes–Fourier system, Archive for Rational Mechanics and Analysis 204 (2012), 745–786. 

[40] Naumann, Joachim, Pokorný, Milan, Wolf, Jörg: On the existence of weak solutions to the equations of steady flow of heat-conducting fluids with dissipative heating, Nonlinear Analysis—Real World Applications 13 (2012), 1600–1620. 

[39] Kubica, Adam, Pokorný, Milan, Zajączkowski, Wojciech: Remarks on regularity criteria for axially symmetric weak solutions to the Navier–Stokes equations, Mathematical Methods in the Applied Sciences 35 (2012), 360–371. 

[38] Penel, Patrick, Pokorný, Milan: On anisotropic regularity criteria for the solutions to 3D Navier–Stokes equations, Journal of Mathematical Fluid Mechanics 13 (2011), 341–353. 

[37] Novotný, Antonín, Pokorný, Milan: Weak and variational solutions to steady equations for compressible heat conducting fluids, SIAM Journal on Mathematical Analysis 43 (2011), 1158–1188.

[36] Novotný Antonín, Pokorný, Milan: Steady compressible Navier–Stokes–Fourier system for monoatomic gas and its generalizations, Journal of Differential Equations 251 (2011), 270–315. 

[35] Pokorný, Milan: On the steady solutions to a model of compressible heat conducting fluid in two space dimensions, Journal of Partial Differential Equations 24 (2011), 334–350.

[34] Novotný, Antonín, Pokorný, Milan: Weak solutions for steady compressible Navier–Stokes–Fourier system in two space dimensions, Applications of Mathematics 56 (2011), 137–160.

[33] Mucha, Piotr B., Pokorný, Milan: Weak solutions to equations of steady compressible heat conducting fluids, Mathematical Models & Methods in Applied Sciences 20 (2010), 785–813. 

[32] Zhou, Yong, Pokorný, Milan: On the regularity of the solutions of the Navier–Stokes equations via one velocity component, Nonlinearity 23 (2010), 1097–1107. 

[31] Kreml, Ondřej, Pokorný, Milan: On the local strong solutions for the FENE dumbbell model, Discrete and Continuous Dynamical Systems Series S 3 (2010), 311–324. 

[30] Pecharová, Petra, Pokorný, Milan: Steady compressible Navier–Stokes–Fourier system in two space dimensions, Commentationes Mathematicae Universitatis Carolinae 51 (2010), 653–679.

[29] Zhou, Yong, Pokorný, Milan: On a regularity criterion for the Navier–Stokes equations involving gradient of one velocity component, Journal of Mathematical Physics 50 (2009), 123514, 11 pp. 

[28] Mucha, Piotr B., Pokorný, Milan: On the steady compressible Navier–Stokes–Fourier system, Communications in Mathematical Physics 288 (2009), 349–377.

[27] Kreml, Ondřej, Pokorný, Milan: On the local strong solutions for a system describing the flow of a viscoelastic fluid. In: Mucha, Piotr B., Niezgódka, Marek, Rybka, Piotr (eds.): Nonlocal and abstract  parabolic equations and their applications. Banach Center Publ., 86, Polish Acad. Sci. Inst. Math., Warsaw, 2009, 195–206. 

[26] Pokorný, Milan, Mucha, Piotr B.: 3D steady compressible Navier–Stokes equations, Discrete and Continuous Dynamical Systems Series S 1 (2008), 151–163. 

[25] Novotný, Antonín Pokorný, Milan: Stabilization to equilibria of compressible Navier–Stokes equations with infinite mass, Computers & Mathematics with Applications 53 (2007), 437–451.

[24] Kreml, Ondřej, Pokorný, Milan: A regularity criterion for the angular velocity component in axisymmetric Navier–Stokes equations, Electronic Journal on Differential Equations (2007), 8, pp. 10. 

[23] Mucha, Piotr B., Pokorný, Milan: On a new approach to the issue of existence and regularity for the steady compressible Navier–Stokes equations, Nonlinearity 19 (2006), 1747–1768. 

[22] Novo, Sebastian, Novotný, Antonín, Pokorný, Milan: Steady compressible Navier–Stokes equations in domains with non-compact boundaries, Mathematical Methods in the Applied Sciences 28 (2005), 1445–1479. 

[21] Pokorný, Milan: A short note on regularity criteria for the Navier– Stokes equations containing the velocity gradient. In: Mucha, Piotr, B., Penel, Patrick, Wiegner, Michael, Zajączkowski, Wojciech (eds.): Regularity and other aspects of the Navier–Stokes equations. Banach Center Publ., 70, Polish Acad. Sci. Inst. Math., Warsaw, 2005, 199–207.

[20] Málek, Josef, Pokorný, Milan: On a certain class of singular solutions for power-law fluids, IASME Transactions 2 (2005), 1227–1231.

[19] Penel, Patrick, Pokorný, Milan: Some new regularity criteria for the Navier–Stokes equations containing gradient of the velocity, Applications of Mathematics 49 (2004), 483–493. 

[18] Pokorný, Milan: On the result of He concerning the smoothness of solutions to the Navier–Stokes equations, Electronic Journal on Differential Equations (2003), 11, pp. 8. 

[17] Galdi, Giovanni P., Vaidya, Ashwin, Pokorný, Milan, Joseph, Daniel D., Feng, Jimmy: Orientation of symmetric bodies falling in a second-order liquid at nonzero Reynolds number, Mathematical Models & Methods in Applied Sciences 12 (2002), 1653–1690. 

[16] Montgomery-Smith, Stephen, Pokorný, Milan: A counterexample to the smoothness of the solution to an equation arising in fluid mechanics, Commentationes Mathematicae Universitatis Carolinae 43 (2002), 61– 75.

[15] Novotný, Antonín, Pokorný, Milan: Steady plane flow of viscoelastic fluid past an obstacle, Applications of Mathematics 47 (2002), 231–254. 

[14] Pokorný, Milan: A regularity criterion for the angular velocity component in the case of axisymmetric Navier–Stokes equations. In: Bemelmans, Josef, Brighi, Bernard, Brillard, Alain, Chipot, Michel, Conrad, Francis, Shafrir, Itai, Valente, Vanda, Vergara-Caffarelli, Giorgio (eds.): Elliptic and parabolic problems (Rolduc/Gaeta, 2001). World Sci. Publ., River Edge, NJ, 2002, 233–242.

[13] Novo, Sébastien, Novotný, Antonín, Pokorný, Milan: Some notes to the transport equation and to the Green formula, Rendiconti del Seminario Matematico della Universita di Padova 106 (2001), 65–76.

[12] Padula, Mariarosaria, Pokorný, Milan: Stability and decay to zero of the L2-norms of perturbations to a viscous compressible heat conductive fluid motion exterior to a ball, Journal of Mathematical Fluid Mechanics 3 (2001), 342–357. 

[11] Kračmar, Stanislav, Novotný, Antonín, Pokorný, Milan: Estimates of Oseen kernels in weighted Lp spaces, Journal of the Mathematical Society of Japan 53 (2001), 59–111. 

[10] Neustupa, Jiří, Pokorný, Milan: Axisymmetric flow of Navier–Stokes fluid in the whole space with non-zero angular velocity component. In: Nečasová, Šárka, Petzeltová, Hana, Pokorný, Milan, Sequeira, Adélia (eds.): Proceedings of Partial Differential Equations and Applications (Olomouc, 1999). Math. Bohem. 126 (2001), 469–481. 

[9] Neustupa, Jiří, Pokorný, Milan: An interior regularity criterion for an axially symmetric suitable weak solution to the Navier–Stokes equations, Journal of Mathematical Fluid Mechanics 2 (2000), 381–399.

[8] Farwig, Reinhard, Novotný, Antonín, Pokorný, Milan: The fundamental solution of a modified Oseen problem, Zeitschrift für Analysis und ihre Anwendungen 19 (2000), 713–728. 

[7] Novotný, Antonín, Pokorný, Milan: Three-dimensional steady flow of viscoelastic fluid past an obstacle, Journal of Mathematical Fluid Mechanics 2 (2000), 294–314.

[6] Pokorný, Milan, Trojek, Petr: Some notes to certain modification of the Oseen problem, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 39 (2000), 169–182.

[5] Pokorný, Milan: Steady flow of viscoelastic fluid past an obstacle— asymptotic behaviour of solutions. In: Nečas, Jindřich, Jäger, Willi, Stará, Jana, John, Oldřich, Najzar, Karel (eds.): Partial differential equations (Praha, 1998). Chapman & Hall/CRC Res. Notes Math., 406, Boca Raton, FL, 2000, 283–289. 

[4] Leonardi, Salvatore, Málek, Josef, Nečas, Jindřich, Pokorný, Milan: On axially symmetric flows in R3, Zeitschrift für Analysis und ihre Anwendungen 18 (1999), 639–649. 

[3] Málek, Josef, Nečas, Jindřich, Pokorný, Milan, Schonbek, Maria E.: On possible singular solutions to the Navier-Stokes equations, Mathematische Nachrichten 199 (1999), 97–114. 

[2] Pokorný, Milan: Steady plane flow of second-grade fluid in exterior domains, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 36 (1997), 167–177.

[1] Pokorný, Milan: Cauchy problem for the non-Newtonian viscous incompressible fluid, Applications of Mathematics 41 (1996), 169–201.

D) Lecture Notes

[1] Černý, Robert, Pokorný, Milan: Základy matematické analýzy pro studenty fyziky, MatfyzPress, 2020.


E) Dissertations

[4] Pokorný, Milan: Steady compressible Navier–Stokes–Fourier system and related problems: Large data results. Thesis to obtain the degree doctor of sciences, Academy of Sciences of the Czech Republic, Prague, 2020.

[3] Pokorný, Milan: Matematická analýza parciálních diferenciálních rovnic popisujících proudění newtonovských tekutin. Habilitation thesis, Charles University, Prague, 2006.

[2] Pokorný, Milan: Asymptotic behaviour of solutions to certain partial differential equations describing the flow of fluids in unbounded domains. PhD. Thesis, University of Toulon and Charles University, Prague, 1999.

[1] Pokorný, Milan: Cauchy problem for the non-Newtonian viscous incompressible fluid. Master degree thesis, Charles University, Prague, 1993.


F) Other publications

F1) Popularization papers

[1] Pokorný, Milan: Navier–Stokesovy rovnice: slabé řešení, jeho jednoznačnost a regularita, Kvaternion 2 (2013), 83–101.


F2) Editorial work

[7] Bulíček, Miroslav, Feireisl, Eduard, Pokorný, Milan (eds.): New Trends and Results in Mathematical Description of Fluid Flows. Extended lecture notes from the ESSAM school ”Mathematical Aspects of Fluid Flows” held in Kácov (Czech Republic) in May/June 2017. Nečas Center Series, Birkhäuer, Basel, 2018.

[6] Nečasová, Šárka, Pokorný, Milan, Šverák, Vladimír (eds.): Selected Works of Jindřich Nečas: PDEs, Continuum Mechanics and Regularity. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel, 2015.

[5] Nečasová, Šárka, Pokorný, Milan: Short Biography of Jindřich Nečas. In: Nečasová, Šárka, Pokorný, Milan, Šverák, Vladimír (eds.): Selected Works of Jindřich Nečas: PDEs, Continuum Mechanics and Regularity. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel, 2015, 3–6.

[4] Dafermos, Constantine M., Pokorný, Milan (eds.): Handbook of Differential Equations: Evolutionary Equations, Volume 5. Elsevier, North Holland, Amsterodam, 2009.

[3] Dafermos, Constantine M., Pokorný, Milan (eds.): Handbook of Differential Equations: Evolutionary Equations, Volume 4. Elsevier, North Holland, Amsterodam, 2008.

[2] Nečasová, Šárka, Petzeltová, Hana, Pokorný, Milan, Sequeira, Adélia (eds.): Proceedings of Partial Differential Equations and Applications (Olomouc, 1999). Mathematica Bohemica 126, 2001. 

[1] Nečasová, Šárka, Petzeltová, Hana, Pokorný, Milan, Sequeira, Adélia: To the 70th anniversary of birthday of Prof. Nečas. In: Nečasová, Šárka, Petzeltová, Hana, Pokorný, Milan, Sequeira, Adélia (eds.): Proceedings of Partial Differential Equations and Applications (Olomouc, 1999). Mathematica Bohemica 126 (2001), 257–263.