A. Books.
S.Fučík, J.Nečas, J.Souček, V.Souček: Spectral analysis of nonlinear operators, Lect. Notes in Math., N.346, Springer-Verlag, 1973
S.Fučík, J.Nečas, V.Souček, : Einfuhrung in die Variationsrechnung, Teubner-texte zur Mathematik, Leipzig, 1977
R.Delanghe, F.Sommen, V.Souček: Clifford Algebra and Spinor-valued Functions, Mathematics and Its Applications 53, Kluwer Academic Publishers, 1992, 485 str.
B. Research articles.
1. V.Souček: The minimum existence of a functional, CMUC,11,2,1970,205-225.
2. V.Souček: The nonexistence of minimal surfaces on nonconvex domains, Com.Math.Univ.Carolinae,12,4,1971,723-735.
3. J.Souček, V.Souček: Morse-Sard theorem for real-analytic functions, Com.Math.Univ.Carolinae,13,1,1972,45-51.
4. S. Fučík, J.Nečas, J.Souček, V.Souček: Strengtheninh upper bound for the number of the critical levels of nonlinear functionals, Com.Math.Univ.Carolinae, 13, 2, 1972, 297-310.
5. S. Fučík, J.Nečas,
J.Souček, V.Souček: Upper bound for the number of critical
levels for nonlinear operators in Banach spaces of the type of
second order nonlinear
partial differential operators,
Jour.Funct.Analysis,11,3,1972,314-333.
6. S. Fučík, J.Nečas, J.Souček, V.Souček: Upper bound for the numbers of eigenvalues for nonlinear operators, Ann.Sc.Norm.Sup.Pisa,27,1,1973,53-71.
7. S. Fučík, J.Nečas, J.Souček, V.Souček: New infinite dimensional version of Morse-Sard theorem, Boll.Un.Math.Ital.,6,4,1972,317-322.
8. S. Fučík, M.Kučera, J.Souček, V.Souček: Topics on nonlinear analysis, Proc. of the Summer school on nonlinear analysis, Hidensee, 197.
9. S. Fučík, J.Nečas, J.Souček, V.Souček: Note to nonlinear spectral theory: Application to the nonlinear integral equations of the Lichtenstein type, Math.Nachrichten,58,1973,257-267.
10. V.Souček: Théoreme de Morse-Sard sur un ensemble analytique, Séminaire d'etude de géometrie analytique, 1973-1974, Paris, 1-11.
11. S. Fučík, M.Kučera, J.Nečas, J.Souček, V.Souček: Morse-Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels, Čas.pěst.matematiky, 99,1974,217-243.
12. S. Fučík, J.Nečas, J.Souček, V.Souček: Krasnoselskii's main bifurcation theorem, Arch.Rat.Mech. and Anal.,54,1974,328-339.
13. J.Souček, V.Souček: On the spectrum of a nonlinear operator, Czech.Math.Jour.,24,1974,614-663.
14. J.Souček, V.Souček: Time-space duality and the Salam-Weinberg model, Proc. 8th Winter School on Abstract Anal., Špindl. mlyn 1980,161-167.
15. J.Souček, V.Souček: Towards to subquantum theory, Proc 8th Winter School on Abstract Anal., špindl. mlyn 1980, 168-172.
16. V.Souček: Analysis in complex quaternions and its connections with math. physics, Proc.9th Winter School on Abstract Analysis, 1981,168-172.
17. V.Janiš, J.Souček, V.Souček: Feynman path integral as spectral decomposition, Proc.9th Winter School on Abstract Analysis, Srni 1981, 158-161.
18. V.Janiš, J.Souček, V.Souček: Manifestly covariant quantization technique equivalent to quantum field theory, Proc.9th Winter School on Abstract Anal., Srni 1981, 162-167.
19. J.Souček, V.Souček: The time-space structure of the Salam-Weinberg model, Quantum chromodynamics, Proc. Hadron structure 80, Smolenice 1980, Phys. and Applic., vol.7,Bratislava 1982,261-266.
20. V.Souček: Complex quaternions, their connection to twistor theory, Czech.J.Phys. B32,1982,688-691. pdf
21. V.Souček: The conformal group action on P1(CH), Twistor Newsletters, Oxford,12,1982,25-29.
22. V.Souček: Boundary-value type and initial-value type integral formulas for massless fields, Twistor Newsletters, Oxford,14,1982,17-19. pdf
23. V.Souček: Complex-quaternionic analysis applied to spin-1/2 massless fields, Complex Variables,1,1983,327-346. pdf
24. V.Souček: Holomorphicity in quaternionic analysis, in Seminario di variabili complesse, Bologna Istituto di Geometria, Univ. di Bologna, 1982, 147-153. pdf
25. V.Souček: Complex quaternionic analysis, connection to mathematical physics, in Seminario di variabili complesse, Bologna Istituto di Geometria, Univ. di Bologna, 1982, 154-161. pdf
26. V.Souček: Cauchy integral formula, in Seminario di variabili complesse, Bologna Istituto di Geometria, Univ. di Bologna, 1982, 162-171. pdf
27. V.Janiš, J.Souček, V.Souček: Operator formalism equivalent to the Feynman quantization technique, Jour.Math.Physics,24,4,1983,834-838.
28. V.Bartík, A.V.Ferreira, M.Markl, V.Souček: Index and Cauchy integral formula in complex quaternionic analysis, Simon Stevin,59,3,1985,321-330.
29. V.Souček: H-valued differential forms on H, Proc. of the 11th Winter School on Abstract Analysis 1983, Suppl. ai Rendiconti del Circolo matematico di Palermo, ser.II,3,1984,293-300. pdf
30. J.Bureš, V.Souček: Generalized hypercomplex analysis and its integral formulas, Complex Variables: Theory and Application,1985,5,53-70. pdf
31. J.Bureš, V.Souček: On generalized Cauchy-Riemann equations on manifolds, Proc. of the 12th Winter School on Abstract Analysis 1984, Suppl ai Rendiconti del Circolo matematico di Palermo, ser.II,6,1984,31-42. pdf
32. J.Bureš, V.Souček: Integral formulae for spinor fields, Proc. of the 13th Winter School on Abstract Analysis 1985, Suppl. ai Rendiconti del Circolo matematico di Palermo, ser.II,9,1985,37-42. pdf
33. J.Bureš, V.Souček: Regular spinor valued mappings, Seminarii di Geometria, Bologna 1984, ed. S.Coen, Bologna 1986, 7-22. pdf
34. M.Dodson, V.Souček: Leray residue applied to solutions of the Laplace and wave equations, Seminarii di Geometria,Bologna 1984, ed. S.Coen, Bologna 1986, 93-107. pdf
35. F.Sommen, V.Souček: Hypercomplex differential forms applied to the de Rham and the Dolbeault complex, Seminarii di Geometria, Bologna 1984, ed. S.Coen, Bologna 1986, 177-192. pdf
36. V.Souček: Generalized Cauchy-Riemann equations on manifolds, Proc. of the Workshop Clifford algebra and their applications in mathematical physics, eds. J.Chisholm, A.Common, D.Riedel Publ. Comp., 1986, 219-227. pdf
37. M.Dodson, A.Silva, V.Souček: A note on Whittaker's cardinal series in harmonic analysis, Proc.Edinb.Math.Soc.,1986,29,349-357. pdf
38. J.Bureš, V.Souček: The Penrose transform and Clifford analysis, Proc. Winter School "Geometry and Physics", Srni 1990, Suppl. ai Rend. del Circolo Matematico di Palermo, ser.II, 26, 1991, 97-104.
39. R. Delanghe, V. Souček: On the structure of spinor-valued differential forms, Complex Variables, 18, 1992, 223-236.
40. R.Delanghe, F.Sommen, V.Souček: Explicit relization of spinor spaces and its application to Clifford analysis, Applicable Analysis 45, 1992, 95-116.
41. R.Delanghe, F.Sommen, V.Souček: Residues in Clifford analysis, in H.Begehr, A.Jeffrey (Eds.): Partial differential equations with complex analysis, Pitman Research Notes in Math. 262, 1992, 61-92. pdf
42. F.Sommen, V.Souček: Monogenic differential forms, Complex Variables, Theory and Appl., 19, 1992, 81-90. pdf
43. J.Bureš, V.Souček: The Penrose transform for Dirac equation, in Proc. of the Winter School "Geometry and Physics", Srní, 1991, Suppl. ai Rend.Circ.Mat.Palermo, II, 30, 1993, 183-193.
44. V.Souček: Monogenic forms on manifolds, in Z.Oziewicz et al. (Eds.): Spinors, Twistors, Clifford Algebras and Quantum Deformations, Klu\-wer, 1993, 159-166.
45. V.Souček: Clifford analysis for higher spins, in F.Brackx, R.Delanghe, H.Serras: Clifford Algebras and their Applications in Mathematical Physics, Proc. of the Third Conference held at Deinze, Belgium 1993, 223-232. pdf
46. J.Bureš, V.Souček: The Penrose transform on isotropic Grassmannians, in S.Gindikin, P.Michor (Eds.): 75 years of Radon transform, Int. Press, 1994, 81-104.
47. V.Souček: Residues for monogenic forms on Riemannian manifolds, in Proc. of the Winter School "Geometry and Physics", Srní, 1993, Suppl. ai Rend.Circ.Mat.Palermo, II, 37, 1994, 233-242.
48. C.Klimčík, A.Pompoš, V.Souček: Grading of spinor bundles and gravitating matter in non-commutative geometry, Lett. Math. Phys., 30, 1994, 259-266.
49. J.Bureš, V.Souček: The inverse Penrose transform for the Dirac and complex Laplace equations, F.Noruget et al. (Eds.): Géométrie complexe, Proc. of the Conference on Complex Geometry, Paris, 1992 Herman, 1996, 3-22. pdf
50. V.Souček: Higher spin and conformal invariants in Clifford analysis, in Proc. of Symposium "Analytical and numerical methods in Clifford analysis, Seiffen, 1996, 175-186.
51. A.Čap, J.Slovák, V.Souček: Invariant operators on manifolds with AHS structures, I. Invariant differentiation, Acta Mat.Univ.Comenianae, 66, 1997, 33-69.
52. A.Čap, J.Slovák, V.Souček: Invariant operators on manifolds with AHS structures, II., Vienna, 1994, Acta Mat.Univ.Comenianae, 66, 1997, 203-220.
53. V.Souček: Monogenic forms and the BGG resolution,, in: Dirac operators in Analysis, Addison Wesley Longman, Edinburgh, 1998, 152-169.
54. J.Bureš, V.Souček: Eigenvalues of conformally invariant operators on spheres, in Proc. of the Winter School "Geometry and Physics", Srní, 1998, Suppl. ai Rend.Circ.Mat.Palermo, II, 1999, 109-122.
55. J.Bureš, S.Ofman, V.Souček: Integral transforms for divisors of P_n(C) and solutions of partial differential systems, Czech. Math. Jour. 50, 125, 2000, 763-790.
56. V.Souček: Clifford analysis as a study of invariant operators, in Kluwer Academic Publisher, Dordrecht, 2001, 323-339.
57. V. Souček: Invariant operators and Clifford analysis, Adv.Appl.Cliff.Algebras, 11(S1), 2001, 37-52.
58. J. Bureš, F. Sommen, P. Van Lancker, V. Souček: Rarita-Schwinger type operators in Cliffor analysis, Jour. Funct. Analysis, 185, 2001, 425-455.
59. J.Slovák, V.Souček: Invariant operators of the first order on manifolds with a given parabolic structure, in Société Mathématique de France, Paris, 2001, 251-276.
60. A.Čap, J.Slovák, V.Souček: Bernstein-Gelfand-Gelfand sequences, Ann.Math., 154, 2001, 97-113
61. J. Bureš, F. Sommen, P. Van Lancker, V. Souček: Symmetric analogues of Rarita-Schwinger equations, Ann. Global Anal.and Geometry, 21, 2002, 215-240.
62. L. Krump, V.Souček: Hasse diagrams for parabolic geometries, in Proc. of the 22nd Winter School „Geometry and Physics“, Srni, 2002, Suppl. Ai Rend. Circ. Mat. Palermo, II, 71, 2003, 133-141.
63. D. Calderbank, T.
Diemmer, V. Souček: Ricci-corrected derivatives and invariant
differential operators, Diff. Geom. Appl., 23, 2, 2005, 149-175.
64. J. Bureš, V.
Souček: Complexes of invariant differential operators in several
quaternionic variables, Compl. Var. Elliptic Equat., 51,
5-6, 2006. 463-487.
66. J. Bureš,
F.
Sommen, V. Souček, P. Van Lancker: Separation of variables in
Clifford analysis and its application to Rarita-Schwinger field,
In: T. Simos et al. (Eds.): Proc. ICNAAM 2006, Hersonnisos,
Creete, Greece, AIP Conf. Proc. 2006,
630-633.
68. V.
Souček: Analogues
of the Dolbeault complex and the separation of variables,
in M. Eastwood, V. Miller, Symmetries and overdetermined systems
of partial differential equations
The IMA volumes in math. and its appl., Springer, New
York, 2007, 537-550.
71. F
And Elliptic Equations, 52,10-11, 2007,
1063-1079.
74. R. Gover, P. Somberg, V. Souček: Yang-Mills detour
complexes and conformal geometry, Communications in Mathematical
Physics, Springer Berlin/Heidelberg, 278, 2 (2008)
307-327.
75. M. Eastwood, P. Somberg, V. Souček:
Special tensors in the deformation theory of quadratic algebras for
the classical Lie algebras, Jour. Geom. Physics, Elsevier,
57 (2007)
2539–2546.
76. F. Brackx, H. De Schepper, D. Eelbode, V. Souček: Explicit forms for monogenic projections,
in T. Simos et
al. (Eds.): Proceedings ICNAAM 2008, Psalidi, Kos, Greece, AIP
Conference Proceedings 1048, New York, 2008.
77. F. Brackx, H. De Schepper, D. Eelbode, V. Souček:
Differential forms in Hermitean Clifford analysis ,
in T. Simos et
al. (Eds.): Proceedings ICNAAM 2008, Psalidi, Kos, Greece, AIP
Conference Proceedings 1048, New York, 2008.
78. B. Oersted,
P.Somberg, V. Souček: The Howe duality for the Dunkl version of
the Dirac operator, Advances in Applied Clifford Algebras,
Volume 19, Number 2, 2009, p. 403-415.
80. R. Delanghe, R. Lávička and V. Souček: The Howe
duality for Hodge systems, in: Proceedings of 18th
International Conference on the Application of Computer Science
and Mathematics in Architecture and Civil Engineering (ed. K.
Gürlebeck and C. Könke), Bauhaus-Universität Weimar, Weimar,
2009. pdf
97. R.
Delanghe, R. Lávička and V. Souček, The Fischer decomposition for
Hodge-de Rham systems in Euclidean spaces, Math. Meth. Appl. Sci.,
35 (2012), 10–16. pdf
98. R.
Delanghe, R. Lávička, V. Souček, The Gelfand-Tsetlin bases for
Hodge-de Rham systems in Euclidean spaces, Math. Meth. Appl. Sci.
(2012) DOI: 10.1002/mma.1563. pdf
Ann. Global Anal.Geom,
2012, DOI 10.1007/s10455-011-9306-9.
pdf
101. A. Čap, V. Souček: Subcomplexes in
curved BGG sequences, Math.
Annalen, 354, 1 (2012), 111-136.