Publications

Journal papers

  1. Tůma K., Rezaee-Hajidehi M., Hron J., Farrell P.E., Stupkiewicz S.:
    Phase-field modeling of multivariant martensitic transformation at finite-strain: Computational aspects and large-scale finite-element simulations,
    Comput. Meth. Appl. Mech. Eng., Vol. 377, 113705, 2021, IF: 5.763.
  2. Chabiniok R., Hron J., Jarolímová A., Málek J., Rajagopal K.R., Rajagopal K., Švihlová H., Tůma K.:
    A benchmark problem to evaluate implementational issues for three-dimensional flows of incompressible fluids subject to slip boundary conditions,
    Appl. Eng. Sci., Vol. 6, 100038, 2021.
  3. Průša V., Tůma K.:
    Temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading,
    Appl. Eng. Sci., Vol. 6, 100054, 2021.
  4. Rezaee-Hajidehi M., Tůma K., Stupkiewicz S.:
    A note on Padé approximants of tensor logarithm with application to Hencky-type hyperelasticity,
    Comput. Mech., Vol. 68, 619–632, 2021, IF: 3.459.
  5. Rezaee-Hajidehi M., Tůma K., Stupkiewicz S.:
    Gradient-enhanced thermomechanical 3D model for simulation of transformation patterns in pseudoelastic shape memory alloys,
    Int. J. Plasticity, Vol. 128, 102589, 2020, IF: 6.490.
  6. Průša, V., Rajagopal, K. R., and Tůma, K.:
    Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids,
    Int. J. Non-Linear Mech., Vol. 121, 103433, 2020, IF: 2.225.
  7. Dostalík, M., Průša, V., Tůma, K.:
    Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type fluid,
    Entropy, Vol. 21, No. 12, 1219, 2019, IF: 2.419.
  8. Málek J., Rajagopal K.R., Tůma K.:
    Derivation of the Variants of the Burgers Model Using a Thermodynamic Approach and Appealing to the Concept of Evolving Natural Configurations,
    Fluids, Vol. 3, No. 4, pp. 1–18, 2018.
  9. Tůma K., Stein J., Průša V., Friedmann E.:
    Motion of the vitreous humour in a deforming eye--fluid-structure interaction between a nonlinear elastic solid and a nonlinear viscoleastic fluid,
    Appl. Math. Comput., Vol. 335, pp. 50–64, 2018, IF: 1.738.
  10. Tůma K., Stupkiewicz S., Petryk H.:
    Rate-independent dissipation in phase-field modelling of displacive transformations,
    J. Mech. Phys. Solids, Vol. 114, pp. 117–142, 2018, IF: 4.255.
  11. Hron J., Miloš V., Průša V., Souček O., Tůma K.:
    On thermodynamics of incompressible viscoelastic rate type fluids with temperature dependent material coefficients,
    Int. J. Non. Linear. Mech., Vol. 95, pp. 193–208, 2017, IF: 2.074.
  12. Průša V., Řehoř M., Tůma K.:
    Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots,
    Z. Angew. Math. Phys., Vol. 68, No. 24, pp. 1–13, 2017, IF: 1.687.
  13. Tůma K., Stupkiewicz S., Petryk H.:
    Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach,
    J. Mech. Phys. Solids, Vol. 95, pp. 284–307, 2016, IF: 4.255.
  14. Tůma K., Stupkiewicz S.:
    Phase-field study of size-dependent morphology of austenite-twinned martensite interface in CuAlNi,
    Int. J. Solids Struct., Vol. 97–98, pp. 89–100, 2016, IF: 2.760.
  15. Řehoř M., Průša V., Tůma K.:
    On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting,
    Phys. Fluids, Vol. 28, No. 10, pp. 103102-1–25, 2016, IF: 2.232.
  16. Málek J., Rajagopal K.R., Tůma K.:
    A thermodynamically compatible model for describing asphalt binders: solutions of problems,
    Int. J. Pavement Eng., Vol. 17, No. 6, pp. 550–564, 2016, IF: 1.832.
  17. Málek J., Rajagopal K.R., Tůma K.:
    On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis,
    Int. J. Non. Linear. Mech., Vol. 76, pp. 42–47, 2015, IF: 1.920.
  18. Málek J., Rajagopal K.R., Tůma K.:
    A thermodynamically compatible model for describing the response of asphalt binders,
    Int. J. Pavement Eng., Vol. 16, No. 4, pp. 297–314, 2015, IF: 0.877.
  19. Hron J., Rajagopal K.R., Tůma K.:
    Flow of a Burgers fluid due to time varying loads on deforming boundaries,
    J. Nonnewton. Fluid Mech., Vol. 210, pp. 66–77, 2014, IF: 1.821.
  20. Hron J., Kratochvíl J., Málek J., Rajagopal K.R., Tůma K.:
    A thermodynamically compatible rate type fluid to describe the response of asphalt,
    Math. Comput. Simul., Vol. 82, No. 10, pp. 1853–1873, 2012, IF: 0.836.

Conference proceedings and abstracts

  1. Tůma K., Stupkiewicz S., Petryk H.:
    Rate-independent dissipation in phase-field modeling of evolving microstructure,
    SOLMECH 2018, 41st Solid Mechanics Conference, 2018-08-27/31, Warszawa, ISBN 978-83-65550-13-2, pp. 18--19, 2018.
  2. Tůma K.:
    3D simulation of a wheel tracker test of asphalt concrete described by the Burgers model,
    Seminar on Numerical Analysis & Winter School: Proceedings of the conference SNA'17, 2017-01-30/02-03, Ostrava, pp. 98–101, 2017.
  3. Tůma K., Stupkiewicz S., Petryk H.:
    The effect of twin spacing on the morphology of austenite-twinned martensite interface,
    SOLMECH 2016, 40th Solid Mechanics Conference, 2016-08-29/09-02, Warszawa, No. P069, pp. 1, 2016.
  4. Tůma K., Stupkiewicz S., Petryk H.:
    Phase-field modelling of twinning and martensitic transformation at finite strain,
    PCM-CMM 2015, 3rd Polish Congress of Mechanics and 21st Computer Methods in Mechanics, 2015-09-08/09-11, Gdańsk, pp. 815–816, 2015.
  5. Tůma K.:
    Numerical simulation of viscoelastic fluid described by Oldroyd-B model using finite element method and finite volume method,
    Seminar on Numerical Analysis & Winter School: Proceedings of the conference SNA'12, 2012-01-23/01-27, Ostrava, pp. 167–170, 2012.
  6. Pirkl L., Bodnár T., Tůma K.:
    Viscoelastic Fluid Flows at Moderate Weissenberg Numbers Using Oldroyd Type Model,
    AIP Conference Proceedings, Vol. 1389, pp. 102–105, 2011.
  7. Tůma K.:
    On Capability of a Class of Incompressible Rate-type Fluid Models to Fit Experimental Data for Asphalt,
    WDS 2009, 18th Annual Conference of Doctoral Students, 2009-06-02/06-05, Praha, pp. 224–230, 2009.

Other publications

  1. Tůma K.:
    Nitsche method and its application for implicitly constituted stick-slip boundary condition, 2014.

Thesis

  1. My PhD thesis