Matematická analýza IV (NMTM202)
Požadavky ke zkoušce jsou ke stažení zde.
Obecné informace ke zkoušce (psáno 02.06.2021):
- Vypsal jsem zatím 5 termínů zkoušky (viz SIS), další aspoň jeden termín bude v září (pravděpodobně právě jeden).
- V případě potřeby a podle možností místa přidám.
- Zkoušky budou prezenční, umožní-li to epidemická situace; systém by pak byl stejný jako dosud.
- Na zkoušku musíte přinést platný negativní test, potvrzení o nedávném prodělání covidu nebo potvrzení o očkování. V případě pozitivního testu budete pochopitelně z termínu omluveni.
- Pokud by se někdo ze zdravotních nebo jiných závažných důvodů nemohl dostavit osobně, přichází v úvahu ústní zkouška online.
- Zde najdete pravidelně aktualizované informace k dopadům epidemie koronaviru na výuku. Mj. tam najdete i informace o dovolených způsobech zkoušení, max. počtech osob atd.
Příklady na zápočet: Ke stažení zde. Řešení posílejte ideálně jako jeden soubor ve formátu .pdf. Vaše řešení opravím a buďto zapíšu zápočet, nebo vám ho pošlu zpět k přepracování. Hlavním smyslem je, abyste se ujistili, že víte, co čekat, a že v tom máte zhruba jasno. (Na zkoušce se případné mezery stejně ukážou, takže opisováním byste se pouze připravili o možnost odstranit chyby.)
Online přednášky ke stažení (cvičení jsou v seznamu níže):
- 14. přednáška 02.06.2021: poznámky; video. Přednáška částečně pokračuje i do cvičení z téhož dne.
- 13. přednáška 26.05.2021: poznámky; video.
- 12. přednáška 19.05.2021: poznámky; video. Doporučuji zhlédnout i cvičení z téhož dne.
- 11. přednáška 05.05.2021: poznámky; video.
- 10. přednáška 28.04.2021: poznámky; video.
- 09. přednáška 21.04.2021: poznámky; video.
- 08. přednáška 14.04.2021: poznámky; video.
- 07. přednáška 07.04.2021: poznámky; video.
- 06. přednáška 31.03.2021: poznámky; video.
- 05. přednáška 24.03.2021: poznámky; video.
- 04. přednáška 17.03.2021: poznámky; video. (omlouvám se za video)
- 03. přednáška 10.03.2021: poznámky; video.
- 2a. přednáška 05.03.2021: poznámky; video.
- 02. přednáška 03.03.2021: video.
- 01. přednáška 03.03.2021: poznámky; video.
Sbírky úloh ke cvičení:
- sbírka: Stejnoměrná konvergence posloupnosti funkcí (od kolegy Staňka)
- sbírka: Lagranegeův multiplikátor (od kolegyně Kuncové)
- sbírka: lokální extrémy (od kolegyně Kuncové)
- sbírka: lokální extrémy (od kolegy Staňka)
- sbírka: řetízkové pravidlo (od kolegyně Kuncové)
- sbírka: parciální derivace, totální diferenciál, gradient... (od kolegy Staňka)
- sbírka: limita a spojitost funkce více proměnných.
Online cvičení ke stažení (přednášky jsou v seznamu výše):
- 13. cvičení A 02.06.2021: poznámky; video.
- 12. cvičení B 28.05.2021: poznámky; video.
- 12. cvičení A 26.05.2021: poznámky; video.
- 11. cvičení B 21.05.2021: poznámky; video.
- 11. cvičení A 19.05.2021: poznámky - viz přednáška z téhož dne; video.
- 10. cvičení B 14.05.2021: poznámky.
- 09. cvičení B 07.05.2021: poznámky.
- 09. cvičení A 05.05.2021: poznámky; video.
- 08. cvičení B 30.04.2021: poznámky; video.
- 08. cvičení A 28.04.2021: poznámky; video.
- 07. cvičení B 23.04.2021: poznámky; video.
- 07. cvičení A 21.04.2021: poznámky; video.
- 06. cvičení B 16.04.2021: poznámky; video.
- 06. cvičení A 14.04.2021: poznámky; video.
- 05. cvičení B 09.04.2021: poznámky; video.
- 05. cvičení A 07.04.2021: poznámky; video.
- 04. cvičení A 31.03.2021: poznámky; video.
- 03. cvičení B 26.03.2021: poznámky; video.
- 03. cvičení A 24.03.2021: poznámky; video.
- 02. cvičení B 19.03.2021: poznámky; video.
- 02. cvičení A 17.03.2021: poznámky; video. (omlouvám se za video)
- 01. cvičení B 10.03.2021: poznámky;
- 01. cvičení A 10.03.2021: poznámky;
Základní materiály:
- Učební text budu psát i v tomto semestru.
- Zde: Ilja Černý: Úvod do inteligentního kalkuluv II (Academia). Sbírka obsahuje všechny základní kategorie úloh, které budeme řešit.
- Jiří Kopáček a kolektiv: Příklady z matematiky nejen pro fyziky II (matfyzpress). Sbírka (i řešených) úloh ke všem tématům, která budeme v tomto semestru probírat (a víc).
- Na této stránce najdete všechny možné zdroje k matematice, včetně různých učebních textů atd.
- Vojtěch Jarník: Diferenciální počet I, II, Integrální počet I. Tyto učebnice i po více než sedmdesáti letech od prvního vydání stále patří k těm nejlepším. Jejich autor Vojtěch Jarník byl jedním z nejvýznamnějších českých matematiků, a tomu odpovídá kvalita těchto učebnic. Jejich studium snad nepředstavuje nejrychlejší cestu ke složení zkoušky, jde ale o cestu kvalitní. (Učebnice si můžete stáhnout kliknutím na jméno autora.)
- Jako referenční příručku lze využít těchto vznikajících skript, jehož všichni čtyři autoři (prof. Luboš Pick, prof. Stanislav Hencl, prof. Jiří Spurný a doc. Miroslav Zelený) jsou vynikající matematici z KMA a zároveň skvělí pedagogové. Skripta jsou velmi obsáhlá a pravděpodobně se vám nebudou hodit jako učebnice, může se však hodit do nich příležitostně nahlédnout. I úvodní kapitola o základech matematiky, kterou je nutné projít v úvodu semestru, je tam velmi pěkně shrnuta.
- Sbírečka příkladů na stejnoměrnou konvergenci posloupností a řad funkcí.
- Luděk Zajíček: Vybrané úlohy z matematické analýzy pro 1. a 2. ročník (matfyzpress). Velmi chytře vybraná sbírka úloh pokrývající snad všechny početní metody, které kdy budete v analýze potřebovat. Jde o sázku na kvalitu místo kvantity (příkladů není mnoho, jsou ale často náročnější). Sbírka navíc obsahuje kapitolku o početních metodách pro první semestr.
- Online sbírka řešených příkladů, která je projektem Katedry didaktiky fyziky, MFF, UK.