David Stanovský    //   

ALGEBRAIC INVARIANTS IN KNOT THEORY 2024/25

Syllabus:

  • Fundamental concepts of knot theory: equivalence, Reidemeister moves, basic invariants
  • Coloring invariants
  • Seifert surfaces, Alexander polynomial
  • Skein relations, Conway and Jones polynomial
  • Braid groups
  • Vassiliev invariants

The principal material is the book Knot Theory and Its Applications by Kunio Murasugi, chapters 1-7, 10-11, 15. The topics will be slightly reordered and a few things will be added from the new booklet Knots, Links, and their Invariants by Alexei Sossinsky.

As a supplementary material, covid videos from 2021 are available at the older website of the course. This year, we will cover similar, but not exactly the same topics.

Program: (actual for past lectures, tentative for future lectures):

lecturer topic Murasugi Sossinsky other materials exercises
1.10.DS Introduction: a computational view of knot theory.
Fundamental concepts: knots and links, equivalence, diagrams .
---
1.1-1.4, 2.1
---
1.1, 1.3, 1.4
intro slides
pěkné motivační video
Gauss codes [M 2.2]
8.10. Arithmetic of knots: connected sum, inverses, mirror images.
Some naive invariants.
1.5
4.2-4.4
3
4.1-4.3
Knot decompositions
15.10. Reidemester theorem. Invariants: linking number, writhe. 4.1, 4.5 1.2, 8.4 Reidemeister moves and linking number
22.10.DS Coloring invariants. 4.6 more on quandle coloring Knot coloring
29.10. Conway polynomial (via skein relation). 6.2 2 proof of existence Conway poynomial
5.11. -- *** děkanský den *** --
12.11. Seifert surfaces and their genus, Seifert matrices. 5.1-5.3 Seifert surfaces
19.11.JŠ* Equivalence of Seifert matrices. 5.4, 6.1 Alexander polynomial
26.11.JŠ* Properties of the Alexander polynomial, its relation to the Conway polynomial. 6.1-6.3 / 6.4 (pract.) More invariants, distinguisging mirror images
3.12.JŠ* Kauffmann bracket, Jones polynomial: definition, calculation. 11.4, 11.1 5, 6.1 Jones polynomial
10.12. Jones polynomial: properties, generalizations. 11.2, 11.3 6
17.12.DS Vassiliev invariants. 15 8-11 Torus knots
7.1.DS Vassiliev invariants. 15
8-11 Torus knots

Other literature:

  • any book on knot theory, a particularly good one is, for instance, P. Cromwell: Knots and Links, or C. Adams: The Knot Book
  • knot coloring - Nelson, Elhamdadi: Quandles: An Introduction to the Algebra of Knots