2.2 Mocniny s celým mocnitelem
	Víme už, co je mocnina s přirozeným mocnitelem a jaká pravidla pro ni platí. Co se ale stane,
	když za exponent dosadíme celé číslo?
	Nejdříve se znovu podíváme na pravidla pro počítání s mocninami s přirozeným mocnitelem .
	Když si jednotlivá pravidla pečlivě pročteme, zjistíme, že ve všech může být mocnitelem libovolné přirozené číslo.
	Jenom v jednom je pro exponent připojena další podmínka. O které tvrzení se jedná? 
	Přeci o pravidlo dělení mocnin se stejným základem! K tomuto tvrzení je připojena podmínka,
	že pro mocnitele \(k\), \(l \in \mathbb N\) platí: \(k > l\).
	Zkusme se podívat, co se stane, pokud tato podmínka nebude platit. Tedy když \(k = l\)	nebo \(k < l\).
	\(1. \; k = l\)
	Je zřejmé, že rovnost \(\displaystyle \frac {a^k}{a^k} = 1\) platí pro každé nenulové reálné číslo
	\(a\) a pro libovolné přirozené číslo \(k\).
	Využijeme-li navíc vztah \(0 = k - k\), který zjevně platí, pak můžeme psát:
\(\displaystyle 1 = \frac {a^k}{a^k} = a^{k \, - \, k} = a^0\)
Odtud definujeme:
Definice
Pro každé reálné nenulové číslo \(a\) platí \(a^0 = 1\).Poznámka
Požadujeme, aby číslo \(a\) bylo nenulové, protože význam zápisu \(0^0\) není definován.
	Z uvedených vztahů je vidět, že námi zkoumané pravidlo \(\displaystyle \frac {a^k}{a^l} = a^{k \, - \, l}\) platí i v případě,
	že \(k = l\).
	
	\(2. \; k < l\)
	Pro každé nenulové reálné číslo \(a\) a pro všechna přirozená čísla \(k\),
	\(l\) taková, že \(k < l\), platí:
	\(\displaystyle \frac {a^k}{a^l} = \frac {\overbrace {a \cdot a \cdot \dots \cdot a}^{k \, činitelů}}
	{\underbrace {a \cdot a \cdot \dots \cdot a}_{l \, činitelů}} =
	\frac {\overbrace {a \cdot a \cdot \dots \cdot a}^{k \, činitelů}} {\underbrace {a \cdot a \cdot \dots \cdot a}_{k \, činitelů} \cdot
	\underbrace {a \cdot a \cdot \dots \cdot a}_{l \, - \, k \, činitelů}} = \frac {1} {\underbrace {a \cdot a \cdot \dots \cdot a}_{l \, - \, k \, činitelů}} =
	\frac {1} {a^{l \, - \, k}}\) , kde \(l - k\) je přirozené číslo
Odtud tedy definujeme mocninu s celým mocnitelem:
Definice
Pro každé nenulové reálné číslo \(a\) a pro každé celé číslo \(m\) je \(\displaystyle a^{-m} = \frac {1}{a^m}\) .Podle uvedené definice platí následující:
\(\displaystyle \frac {a^k}{a^l} = \frac {1}{a^{l \, - \, k}} = a^{-\,(l \, - \, k)} = a^{-\,l \, + \, k} = a^{k \, - \, l}\) ,
přičemž \(k - l\) je záporné celé číslo. Pak ale vidíme, že pravidlo \(\displaystyle \frac {a^k}{a^l} = a^{k \, - \, l}\) platí i v případě, že \(k < l\).
Příklad 2.5
| a) \(5^0\) | b) \(0^0\) | c) \(2^{-3}\) | d) \((0,3)^{-3}\) | 
Řešení
	a) \(5^0 = 1\) (podle definice)
	b) Význam tohoto zápisu není definován.
	c) \(\displaystyle 2^{-3} = \frac {1}{2^3} = \frac {1}{8}\)
	d) \(\displaystyle (0,3)^{-3} = \left(\frac {3}{10}\right)^{-3} = \left(\frac {10}{3}\right)^3 =
	\frac {1 \, 000}{27}\)
A nyní si můžeme uvést pravidla pro počítání s mocninami s celým mocnitelem. Pozorný čtenář si jistě všimne, že tato pravidla odpovídají pravidlům pro počítání s mocninami s přirozeným mocnitelem. Pouze zmizela podmínka pro exponent v pravidle 3 o dělení mocnin se stejným základem.
| 1. \(\displaystyle a^k \cdot a^l = a^{k\,+ \,l}\) | 2. \(\displaystyle \left(a^k\right)^l = a^{k \, \cdot \, l}\) | 3. \(\displaystyle \frac {a^k}{a^l} = a^{k \, - \, l}\) | 
| 4. \(\displaystyle (a \cdot b)^k = a^k \cdot b^k\) | 5. \(\displaystyle \left(\frac {a}{b}\right)^k = \frac {a^k}{b^k}\) | 
Příklad 2.6
| a) \(\left(2x^3y^{-\,4}z^{-\,2}\right) \cdot \left(3x^{-\,3}y^6z^{-\,3}\right)\) | b) \(\left(3x^{-\,2}y^{4}z^{-\,3}\right)^{-\,2} \cdot \left(9x^{-\,3}y^6z^{3}\right)\) | c) \(\displaystyle \frac {16x^7y^{-\,3}}{z^{-\,2}} \div \left(\frac {2^{-\,1}y^5}{x^4z^{-\,3}}\right)^{-\,3}\) | 
Řešení
	a) \(\displaystyle \left(2x^3y^{-\,4}z^{-\,2}\right) \cdot \left(3x^{-\,3}y^6z^{-\,3}\right) = 
	6x^{\left[3 \, + \, (-\,3)\right]} \cdot y^{\left[-\,4 \, + \, 6\right]} \cdot z^{\left[-\,2  \, + \, (-\,3)\right]} = 
	6x^0y^2z^{-5} = \frac {6y^2}{z^5}\)
	b) \(\displaystyle \left(3x^{-\,2}y^{4}z^{-\,3}\right)^{-\,2} \cdot \left(9x^{-\,3}y^6z^{3}\right) = 
	\left(3^{\left[1 \, \cdot \ (-\,2)\right]} \cdot x^{\left[-\,2 \, \cdot \, (-\,2)\right]} \cdot 
	y^{\left[4 \, \cdot \, (-\,2)\right]} \cdot z^{\left[-\,3 \, \cdot \, (-\,2)\right]}\right) \cdot \left(9x^{-\,3}y^6z^{3}\right) =\)	
	\(\displaystyle = \left(\frac {1}{9}x^4y^{-\,8}z^6\right) \cdot \left(9x^{-\,3}y^6z^3\right) = 
	1 \cdot x^{\left[4 \,+\,(-\,3) \right]} \cdot y^{\left[-\,8 \,+\,6 \right]} \cdot z^{\left[6 \,+\,3 \right]} = 
	xy^{-\,2}z^9 = \frac {xz^9}{y^2}\)
	c) \(\displaystyle \frac {16x^7y^{-3}}{z^{-2}} \div \left(\frac {2^{-1}y^5}{x^4z^{-3}}\right)^{-3} =
	\frac {16x^7y^{-\,3}}{z^{-\,2}} \cdot \left(\frac {y^5}{2x^4z^{-\,3}}\right)^3 =
	\frac {16x^7y^{-\,3}}{z^{-\,2}} \cdot \frac {y^{[5 \,\cdot \,3]}}{2^3x^{[4 \,\cdot \,3]}z^{[-\,3 \,\cdot \,3]}} =\)
	\(\displaystyle = \frac {16x^7y^{-\,3}}{z^{-\,2}} \cdot \frac {y^{15}}{8x^{12}z^{-\,9}} =
	2x^{[7 \, - \, 12]} \cdot y^{[-\,3 \, + \, 15]} \cdot z^{\left[0 \, - \, (-\,2 \, - \, 9)\right]} = 
	2x^{-\,5}y^{12}z^{11} = \frac {2y^{12}z^{11}}{x^5}\)
Na závěr si ještě uvedeme přehledný způsob, jakým v matematice i v dalších přírodních vědách zapisujeme velká čísla. Využíváme k tomu mocniny se základem \(10\). Zápis vypadá takto:
\(a \cdot 10^n\), kde \(1 \leq a < 10\), \(n \in \mathbb Z\)
Exponent \(n\) odpovídá řádu první platné číslice zapisovaného čísla.
Poznámka
Tento typ zápisu se nazývá semilogaritmický tvar.
Příklad 2.7
| a) \(31\,423\) | b) \(550\) | c) \(0,002\,8\) | d) \(0,000\,907\) | 
Řešení
	
	
Cvičení k této části.